

Lecture 2
if, for, while

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

Make
showInputDialog/showMessageDialog

available

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

Curly braces are used to group things into blocks.

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

A class: a collection of data and operations.
Java programs are built from these.

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

The main method.
Executed when the program starts.

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

A variable of type String, called name.
A named location for storing text data.

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

The showInputDialog method is called.

The arguments to showInputDialog:
null and the string “Vad heter du?”

The return value is assigned to the variable name.

Lecture 1 recap

import static javax.swing.JOptionPane.*;

public class Hello {
 public static void main(String[] args) {
 String name;
 name = showInputDialog(null, "Vad heter du?");
 showMessageDialog(null, "Hej " + name + "!");
 }
}

Semicolons terminate statements.

Expressions have types and values.

Administrative stuff

Still looking for student
representatives!

(There will be cake.)

About the exam

● When? 16/12 at 08.30 – 11-30
● Where? SB-Multisal
● Registration not through Studieportalen

– Registered on course = registered on exam
– Make sure you’re registered in Canvas!

Go to “People”

Search your name
Role should be “Student”

Lab groups

● All TM students have
the same group for labs

● Still two TM groups for
exercises

No TM!

Yes TM!

Lab groups

● Omreg/other groupless without partners:
– Find a lab partner
– Join their group

Lab Matchmaking

● Matchmaking during the break
● If you have not found a lab partner after that, try

posting a “looking for partner” message on the
discussion board.

● If you still can’t find one, email me
(antonek@chalmers.se)

Enough with the boring stuff,
let’s code!

Symbols Used in This Course
When we give instructions on how to write Java:

Syntax

The rules of Java
If you do not do it this way, it will not work!

Best Practice

There are several ways that will work.
This way is almost always better than the others.

Conventions

There are several ways that will work. None is best.
This is the way everyone does it. It was an arbitrary choice.

Common Mistakes

Be Boring

“Principle of Least Surprise”

Follow the best practices and the conventions unless there is
a very good reason not to.

It makes your code easier to read and understand.

Example
Mobile phone calculator

Given:
● the price per minute and number of minutes

used in a month,
● the price per GB and number of GB used in a

month,

calculate my phone bill this month.

If I buy more than 100 GB, I get a 10% discount
on the whole bill

Conditional Statements

if (condition) {
block

}

if (condition) {
block

} else {
block

}
The boolean expression is evaluated.
If it is true, the first block is executed.
If it is false and there is an else block, the else block is executed.

Conditional Statements

if (condition) {
block

}

if (condition) {
block

} else {
block

}

If there is only one statement in the block, the braces { } are
optional.

Include them anyway

Conditional Statements

if(userIsAdmin)
 doSensitiveOperation();

If there is only one statement in the block, the braces { } are
optional.

Include them anyway

Conditional Statements

if(userIsAdmin)
 doSensitiveOperation();
 doAnotherSensitiveOperation();

If there is only one statement in the block, the braces { } are
optional.

Include them anyway

Conditional Statements

if(userIsAdmin)
 doSensitiveOperation();
 doAnotherSensitiveOperation();

If there is only one statement in the block, the braces { } are
optional.

Include them anyway

This line is always executed!

Conditional Statements

if(userIsAdmin) {
 doSensitiveOperation();
 doAnotherSensitiveOperation();
}

If there is only one statement in the block, the braces { } are
optional.

Include them anyway

Much better!Much better!

A Common Pattern
if (condition1) {

block 1
} else if (condition 2) {

block 2
} else if (condition 3) {

block 3
} else if …
…
… else {

block n
}

If the number of conditions gets too large, consider
reorganising your code.

Example
Projectile range calculator

We are firing a projectile at a given initial speed and angle.
Assume no air resistance and level ground.
What is the range of the projectile? (How far along the ground
has it travelled when it hits the ground again?)

We will make it easy for ourselves
Just use the formula:

r=
2v2 sinθcosθ

g

If it flies more than 40 meters, say “nice throw”
Otherwise, say “try again”

Example

Every month I invest 1000 kr in a bank account
with 3% interest.

I am rich if I own 1.000.000 kr

When will I become rich?

while-loops

while (condition) {
 block
}

If the condition is true, execute the block
Keep executing the block until the condition becomes false
Note: No semicolon at the end!

do {
 block
} while (condition);

Execute the block
If the condition is true, execute the block again
Keep executing the block until the condition becomes false
(Always executes the block at least once.)
Note: yes semicolon at the end!

Example
The user enters an integer k

Calculate the sum of all the integers from 1 to k

for-loops

for (initialisation; condition; increment) {
 block
}

Execute the initialisation statement
If the condition is true, then execute the block and the increment
Keep executing (block then increment) until the condition becomes
false

Note: If the condition is false immediately after initialisation,
then block is never executed

Examples of using for

● for (int i = 1; i <= 10; i++)
counts from 1 to 10

● for (int i = 10; i >= 1; i--)
counts down from 10 to 1

● for (int i = 2; i <= 10; i+=2)
counts 2, 4, 6, 8, 10

for and while are equivalent

for (initialisation; condition; increment) {
 block
}

does the same as
{

 initialisation;
 while (condition) {
 block
 increment;
 }
}

for and while are equivalent

while (condition) {
 block
}

does the same as

for (;condition;) {
 block
}

for and while are equivalent

Use for when you know in advance how many times
the block will be executed

Use while when the condition depends on something
that will be changed inside the block

Rules for Naming Variables

Best Practice

Please do not use Swedish letters (ä, å, ö) in your code.
(I know the textbook does this, but please don’t!)

When these are uploaded to Fire then downloaded, they can
become corrupted.

If you want to write Swedish, use
“ae” for “ä”, “aa” for “å”, “oe” for “ö”

Syntax A variable name may be any combination
of lower-case letters, upper-case letters, numerals
and the underscore (_) and dollar ($) sign,
but they must not start with a numeral.

Convention Variables start with a lower case letter
and use “camel case” (numberOfCustomers)

Types

● Primitive types

boolean, byte, short, int, long, float, double, char

● Types defined in library

String, …

● Define your own types

Built-in Types
● Types for integers:

● Types for floating-point numbers:

Type Values Memory Used

byte -128 to 127 1 byte

short -32768 to 32767 2 bytes

int -2147483648 to 2147483647 4 bytes
long -9223372036854775808 to

9223372036854775807
8 bytes

Type Values Memory Used

float ±3.40282347x1038 to ±1.40239846x10-45 4 bytes

double ±1.79769313486231570 x10308 to
± 4.9406564581246544 x10-324

8 bytes

Best Practice Use int and double unless there is a very good
reason not to.

Built-in Types

● Other
Type Values Memory

boolean true and false 1 byte

char one character 2 bytes

Numeric Literals

A literal is an expression denoting a fixed value.

● int literals
● Decimal numerals: 26, 0, -15
● Hexadecimal numerals: 0x1a
● Binary numerals: 0b11010

● double literals
● Numeral with a decimal point: 135.7, 26.0
● Scientific notation: 3.0e5, 2e-4, 1.9E7
● These can be followed by d: 135.7d, 2e-4D

● long literals
● int literal followed by l: 99l, -24L

● float literals
● double literal followed by f: 135.7f, 1.9E7F

Literals
● char literals

● Character in single quotes: 'a', ' ', '$', '0'
● Unicode code: '\u0275'
● Escape character

● '\n': Newline
● '\'': Single quote
● '\"': Double quote
● '\\': Backslash

● String literals
● Sequence of characters in double quotes: "Hello World", "a",
"", " "

● Same escape sequences as for characters
● Can mix regular characters and escape sequences:
"Hello World!\nMy name is \"Anton\"\n"

● boolean literals
● true/false

Arithmetic Operators

On the numeric types:
byte, short, int, long, float, double

We can build up expressions using operators.

● Addition: x + y
● Subtraction: x – y
● Multiplication: x * y
● Division: x / y
● Modulus: x % y – Remainder when dividing x by y

Example: 12 % 5 returns 2
● Most common use: if (x % 2 == 0) tests whether x is even

Integer division returns an integer!

double a = 12 / 5 will set a to be 2.0

Logical Operators

On the types int and boolean, we can use == to test equality:
x == y is true if x and y have equal values
x != y is true if x and y have unequal values

On the numeric types, we can write:

x < y x > y x <= y x >= y

Rounding Errors
Whenever you do arithmetic using floating point
numbers, expect rounding errors.

Therefore, never use == to compare two floating
point numbers.

Instead, use Math.abs(x – y) < 0.001

Choose this constant
wisely!

Logical Operators

We can use these operators on the type boolean:

● x && y – “x and y”.
True if x and y are both true
False if x is false or y is false or both

● x || y – “x or y”
True if x is true or y is true or both (inclusive or)
False if x and y are both false

● ! x – “not x”
True if x is false
False if x is true

Logical Operators

Don’t compare boolean values to true/false:

● x == true is equivalent to x
● x == false is equivalent to !x
● Good:

● while(condition)
● if(!condition)

● Bad:
● while(condition == true)
● if(condition == false)

Other Operators

● x++ - increments x (adds one to x) and returns the value after
increment

● ++x – increments x and returns the value before increment
● x-- - decrements x (subtracts one from x) and returns the value

after decrement
● --x – decrements x and returns the value after decrement
● -x – returns the negation of x (-1 multiplied by x)
● x += y – equivalent to x = x + y
● x -= y – equivalent to x = x – y
● x *= y – equivalent to x = x * y
● x /= y – equivalent to x = x / y
● cond ? x : y – evaluates cond. If cond is true, returns x.

If cond is false, returns y

Priority

3 + 4 * 5 % 6 will be evaluated as 3 + ((4 * 5) % 6)

Full rules for priority in appendix A of Java Direkt

If in doubt – use brackets

Use brackets if the reader might have a hard time working
out the priorities,
even if the compiler does not need them

3 + (4 * 5) % 6

Typecasting

When we want to change an int into a double:

int a = 3;

The expression (double)a returns the double value 3.0

We have cast or typecast an integer to a double.

Typecasting

double a = 1 / 2;

This sets a to be 0.0. Not what we wanted. Instead:

double a = 1.0 / 2; or double a = 1 / 2.0;
or double a = 1.0 / 2.0;

int a = 1;
int b = 2;
double c = a / b;

This sets a to be 0.0. Not what we wanted. Instead:

double c = (double) a / b;
or double c = a / (double) b;

Reading this week:
● Java Direkt med Swing 1.8-1.13, 2.4, 3.4, 5.2
● Code Complete Chapter 8

Exercises this week:
● Java Direkt med Swing section 1.16 (excluding
exercises about graphical programs)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

