

Lecture Six
Refence Types

Announcements

● You can use either Skansholm or Bravaco &
Simonson on the exam

● Two lectures next week

Recap: Programming Principles

● Principle of Least Surprise
– Reading/debugging code is harder than writing it.

– If you use 100% of your smarts to write your programs, you are by
definition not smart enough to debug it.

● DRY: Don’t Repeat Yourself
– Code duplication? Use helper methods and/or constructor chaining!

● Single Responsibility Principle
– A class/method should have exactly one responsibility!

– Recall Hangman and HangWord from last week’s lecture

Recap: this

The keyword this refers to the current object.

public void setRadius(double r) {
 this.radius = r;
}

…

myCircle.setRadius(42.0);

Recap: this

The keyword this refers to the current object.

public Circle(double r) {
 this.radius = r;
}

…

Circle myCircle = new Circle(42.0);
// myCircle.getRadius() == 42.0

Recap: this

The keyword this can also be used to chain constructors

public Circle(double r, String color) {
 this.radius = r;
 this.color = color;
}
public Circle(double r) {
 this(r, "green");
}

…

Circle myCircle = new Circle(42.0);
// myCircle is now a green circle with radius 42

Recap: toString

● Returns a String representation of the object

● All classes have this method, but the default is generally unhelpful
● Always write your own when creating a new class

public String toString() {
 return "I’m a " + this.color +
 " circle with radius " +
 this.radius;
}
…

Circle c = new Circle(42.0, "blue");
System.out.println(c);
// prints I’m a blue circle with radius 42.0

New tool: String.format
● String.format(format string, arg1, arg2, …)

● Format string: plain text with format specifiers mixed in

● Example: "%d is an integer and %.2f is a decimal number"

● Format specifiers are replaced with arg1, arg2, etc.

● Specifier format: %[width].[precision][type]

– Left-pad the value until it is [width] characters wide

– Show decimal numbers with [precision] decimals (only valid for
decimal numbers, not for int, string, etc.)

– The value is a [type]

● d = integer

● f = decimal

● s = string

New tool: String.format

● String.format(format string, arg1, arg2, …)

● Gives us more control than "the value is " + x
String s1 = String.format("the value is %f", 42.0);
// s1 is "the value is 42.000000"

String s2 = String.format("the value is %.2f", 42.0);
// s2 is "the value is 42.00"

String s3 = String.format("the value is %10.2f", 42.0);
// s3 is "the value is 42.00"

String s4 = String.format("%f + %d is %.1f", 42.0, 3, 42+3);
// s4 is "42.000000 + 3 is 45.0"

● More about formatting:
https://dzone.com/articles/java-string-format-examples

https://dzone.com/articles/java-string-format-examples

toString with String.format

public String toString() {
 String s = "I'm a %s circle with radius %.1f";
 return String.format(s, this.color, this.radius);
}
…

Circle c = new Circle(42.0, "blue");
System.out.println(c);
// prints I’m a blue circle with radius 42.0

Primitive and Reference Variables

● Java’s types are divided into primitive types and
reference types

● Primitive types:
– byte, short, int, long, char, float, double,
boolean

● Reference types:
– classes (including String), array types

Reference Variables

● A reference variable is a variable whose type is a reference type.
● It holds a reference to an object. (Think of this as the memory location where

the object is held.)
● Two reference variables can refer to the same object!

● x = y; makes x refer to the same object as y. It does not create a copy of
the object.

● x == y tests whether x and y refer to the same object. To test whether two
different objects are equal, use x.equals(y)

● When all references to an object are destroyed, then the object is destroyed
(garbage collection).

● null is a special reference that points to nothing.

– Attempting to access fields or call methods on null always throws an exception

Primitive values are like cash

● It’s immediate: when you have a 100 SEK bill, you know you
have 100 SEK ready and nobody can tell you otherwise.

● It’s immutable: your 100 SEK bill is a 100 SEK bill, regardless of
the state of your bank account.

● These properties make cash and primitive types handy and safe
for small transactions!

Primitive values are like cash

● It’s inefficient: when you need a lot of money/values, you need to
carry them around!

● This makes large amounts of cash or primitive values extremely
inefficient for large transactions!

References are like bank accounts

● It’s indirect: when you have 100 SEK in the bank, you must
contact the bank to use it.

● It’s mutable: just because you had 100 SEK in the bank this
morning doesn’t mean that you still do!

● Less safe than cash/primitive types for small transactions!

References are like bank accounts

● It’s shareable: your whole family can share the same bank
account.

● It’s efficient: you only need to pass around the account number,
regardless of how much money you want to spend.

● These properties make bank accounts and references practical
for large transactions!

Example: A Simple Bank Account

Mutability

● When we can change (“mutate”) a variable, it is mutable.
int price = 10;
price = price * 1.25;

● This is often convenient, but makes programs harder to reason
about!

● Instead, prefer to create new variables when possible.
int price = 10;
int priceWithTax = x * 1.25;

final

● A variable which can’t change is immutable.

● We can use the final keyword to mark such variables.

final int price = 10;
price = price * 1.25;
// error: cannot assign a value to final variable price

● This lets the compiler guarantee their immutability.

● Always mark variables intended to be immutable as final!

final int price = 10;
final int priceWithTax = price * 1.25;

Immutable Classes

● It is often possible to make your own classes immutable.

● Recovers the safety advantage of primitive types, while
preserving the efficiency of reference types

● An immutable class:
– Has only final fields

– Has only fields of primitive types and other immutable classes

● Good candidates for immutability:
– Pure data classes (strings, RatNum, vectors, database records, etc.)

● Even when the whole class can’t be immutable, many fields can
often be marked final!

final and constructors

● final fields may be assigned either where they are
declared or in the object’s constructor
public class HangWord {
 private final String word = "blah";

 public HangWord() {
 }
}

vs
public class HangWord {
 private final String word;

 public HangWord(String word) {
 this.word = word;
 }
}

Assigning final fields in
the constructor is generally

a lot more useful.

However, in this case you
should probably just make
the field static as well,

since it will have the same
value in every object.

Immutable Classes

● It’s impossible to create an immutable array in Java!

● Java will refuse to compile the following code:
public class Foo {
 private final int[] values = new int[] {1, 2, 3};

 public void breakTheValues() {
 this.values = new int[] {4, 5, 6};
 }
 // Error:
 // cannot assign a value to final variable values
}

Immutable Classes

● It’s impossible to create an immutable array in Java!

● However, it happily compiles the following:
public class Foo {
 private final int[] values = new int[] {1, 2, 3};

 public void breakTheValues() {
 this.values[0] = 42;
 }
}

Immutable Classes

● It’s tricky to create immutable class in Java!

● This is also perfectly OK according to Java:
public class Foo {
 private final MyClass[] obj = new MyClass();

 public void breakTheObject() {
 this.obj.setSomething(42);
 }
}

Immutable Classes

● It’s tricky to create immutable class in Java!

● This is also perfectly OK according to Java:
public class Foo {
 private final MyClass[] obj = new MyClass();

 public void breakTheObject() {
 this.obj.setSomething(42);
 }
}

● final only prevents overwriting variables, not mutating their
contents!

● Always copy objects and arrays before use, if immutability is
important!
– Exception: classes you know for sure are immutable

Example: Reference Ponies and Mutability

The Method equals()

● Every object has a method equals

● This tests whether two objects have the same value.

● Java standards require that equals can take an argument of any type.

● There is a standard pattern for writing an equals method:
public boolean equals(Object o) {
 if (this == o) {
 return true;
 }
 if (o == null || this.getClass() != o.getClass()) {
 return false;
 }
 MyClass other = (MyClass) o;

 test whether this and other have the same value
}

● See Java Direkt med Swing section 10.12.2

The Method equals()

● Every object has a method equals

● This tests whether two objects have the same value.

● Java standards require that equals can take an argument of any type.

● There is a standard pattern for writing an equals method:
public boolean equals(Object o) {
 if (this == o) {
 return true;
 }
 if (o == null || this.getClass() != o.getClass()) {
 return false;
 }
 MyClass other = (MyClass) o;

 test whether this and other have the same value
}

● See Java Direkt med Swing section 10.12.2

Only use getClass if you know
exactly why (i.e. in equals)!

getClass tells you the type of an object.

Example: Pony Equality

Copying Constructor

● A copying constructor creates a copy of an object.

● If your class is immutable, it should probably have one.

● Example:
class Circle {
 private int x;
 private int y;
 private int radius;
 …
 public Circle(Circle c) {
 this.x = c.x;
 this.y = c.y;
 this.radius = c.radius;
 }
 …
}

Example: Copying Ponies

Copying Constructor

● Normally, the copy constructor needs to copy all reference variables
(i.e. objects and arrays) in the object.

– Exception: immutable objects

● This is called a deep copy.

● Example:
class Hangman {
 private int wrongGuesses;
 private HangWord word;
 …
 public Hangman(Hangman h) {
 this.wrongGuesses = h.wrongGuesses;
 this.word = new HangWord(h.word);
 }
 …
}

Class Variables

● Just like we can have class methods, we can have class variables.

● Accessible to every object of the class if private…

● ...or to the whole world, if public.

● Class variables are accessed by ClassName.VARIABLE_NAME.

class Math {
 public static double PI = 3.1415926535;
 …
}
…
double area = radius*radius*Math.PI;
String message = String.format("The area is %.2f", area);
System.out.println(message);

Class Variables

● Public class variables should ALWAYS be declared final!

● Private class variables should usually be final.

● final class variables are called constants, and are usually named in
ALL_CAPS_WITH_UNDERSCORES.

class Math {
 public static final double PI = 3.1415926535;
 …
}
…
double area = radius*radius*Math.PI;
String message = String.format("The area is %.2f", area);
System.out.println(message);

Class Variables

● Important part of DRY and PoLS

– Some constants may change (you don’t want to forget to update
tax rates in half your application)

– Most values are incomprehensible without a good name

● Use constants instead of “magic numbers”

● Good:
public Double getArea() {
 return Math.pow(this.radius, 2)*Math.PI;
}

● Bad:
public Double getArea() {
 return Math.pow(this.radius, 2)*3.1415926535;
}

Class Variables

● Make your class variables public if and only if the user of your class is
expected to use them somehow.

– They’re useful constants in your class’ problem domain (i.e. Math.PI)

– They’re used as input to your methods

● Otherwise make them private.

class Pony {
 public static final int MIN_AGE = 0;
 public static final int MAX_AGE = 30;
 …

 public Pony(int age) {
 if(age < Pony.MIN_AGE || age > Pony.MAX_AGE) {
 throw new IllegalArgumentException("bad age");
 }
 …
 }
}

● Reading
Java Direkt med Swing sections 2.3, 2.5, 2.6, 3.3,
3.6, 3.7, 3.9, 10.12.2

● Exercises
Same as last week

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

