
  

Lecture Six
Refence Types



  

Announcements

● You can use either Skansholm or Bravaco & 
Simonson on the exam

● Two lectures next week



  

Recap: Programming Principles

● Principle of Least Surprise
– Reading/debugging code is harder than writing it.

– If you use 100% of your smarts to write your programs, you are by 
definition not smart enough to debug it.

● DRY: Don’t Repeat Yourself
– Code duplication? Use helper methods and/or constructor chaining!

● Single Responsibility Principle
– A class/method should have exactly one responsibility!

– Recall Hangman and HangWord from last week’s lecture



  

Recap: this

The keyword this refers to the current object.

public void setRadius(double r) {
  this.radius = r;
}

…

myCircle.setRadius(42.0);



  

Recap: this

The keyword this refers to the current object.

public Circle(double r) {
  this.radius = r;
}

…

Circle myCircle = new Circle(42.0);
// myCircle.getRadius() == 42.0



  

Recap: this

The keyword this can also be used to chain constructors

public Circle(double r, String color) {
  this.radius = r;
  this.color = color;
}
public Circle(double r) {
  this(r, "green");
}

…

Circle myCircle = new Circle(42.0);
// myCircle is now a green circle with radius 42



  

Recap: toString

● Returns a String representation of the object

● All classes have this method, but the default is generally unhelpful
● Always write your own when creating a new class

public String toString() {
  return "I’m a " + this.color +
         " circle with radius " +
         this.radius;
}
…

Circle c = new Circle(42.0, "blue");
System.out.println(c);
// prints I’m a blue circle with radius 42.0



  

New tool: String.format
● String.format(format string, arg1, arg2, …)

● Format string: plain text with format specifiers mixed in

● Example: "%d is an integer and %.2f is a decimal number"

● Format specifiers are replaced with arg1, arg2, etc.

● Specifier format: %[width].[precision][type]

– Left-pad the value until it is [width] characters wide

– Show decimal numbers with [precision] decimals (only valid for 
decimal numbers, not for int, string, etc.)

– The value is a [type]

● d = integer

● f = decimal

● s = string



  

New tool: String.format

● String.format(format string, arg1, arg2, …)

● Gives us more control than "the value is " + x
String s1 = String.format("the value is %f", 42.0);
// s1 is "the value is 42.000000"

String s2 = String.format("the value is %.2f", 42.0);
// s2 is "the value is 42.00"

String s3 = String.format("the value is %10.2f", 42.0);
// s3 is "the value is      42.00"

String s4 = String.format("%f + %d is %.1f", 42.0, 3, 42+3);
// s4 is "42.000000 + 3 is 45.0"

● More about formatting: 
https://dzone.com/articles/java-string-format-examples

https://dzone.com/articles/java-string-format-examples


  

toString with String.format

public String toString() {
  String s = "I'm a %s circle with radius %.1f";
  return String.format(s, this.color, this.radius);
}
…

Circle c = new Circle(42.0, "blue");
System.out.println(c);
// prints I’m a blue circle with radius 42.0



  

Primitive and Reference Variables

● Java’s types are divided into primitive types and 
reference types

● Primitive types:
– byte, short, int, long, char, float, double, 
boolean

● Reference types:
– classes (including String), array types



  

Reference Variables

● A reference variable is a variable whose type is a reference type.
● It holds a reference to an object.  (Think of this as the memory location where 

the object is held.)
● Two reference variables can refer to the same object!

● x = y; makes x refer to the same object as y.  It does not create a copy of 
the object.

● x == y tests whether x and y refer to the same object.  To test whether two 
different objects are equal, use x.equals(y)

● When all references to an object are destroyed, then the object is destroyed 
(garbage collection).

● null is a special reference that points to nothing.

– Attempting to access fields or call methods on null always throws an exception



  

Primitive values are like cash

● It’s immediate: when you have a 100 SEK bill, you know you 
have 100 SEK ready and nobody can tell you otherwise.

● It’s immutable: your 100 SEK bill is a 100 SEK bill, regardless of 
the state of your bank account.

● These properties make cash and primitive types handy and safe 
for small transactions!



  

Primitive values are like cash

● It’s inefficient: when you need a lot of money/values, you need to 
carry them around!

● This makes large amounts of cash or primitive values extremely 
inefficient for large transactions!



  

References are like bank accounts

● It’s indirect: when you have 100 SEK in the bank, you must 
contact the bank to use it.

● It’s mutable: just because you had 100 SEK in the bank this 
morning doesn’t mean that you still do!

● Less safe than cash/primitive types for small transactions!



  

References are like bank accounts

● It’s shareable: your whole family can share the same bank 
account.

● It’s efficient: you only need to pass around the account number, 
regardless of how much money you want to spend.

● These properties make bank accounts and references practical 
for large transactions!



  

Example: A Simple Bank Account



  

Mutability

● When we can change (“mutate”) a variable, it is mutable.
int price = 10;
price = price * 1.25;

● This is often convenient, but makes programs harder to reason 
about!

● Instead, prefer to create new variables when possible.
int price = 10;
int priceWithTax = x * 1.25;



  

final

● A variable which can’t change is immutable.

● We can use the final keyword to mark such variables.

final int price = 10;
price = price * 1.25;
// error: cannot assign a value to final variable price

● This lets the compiler guarantee their immutability.

● Always mark variables intended to be immutable as final!

final int price = 10;
final int priceWithTax = price * 1.25;



  

Immutable Classes

● It is often possible to make your own classes immutable.

● Recovers the safety advantage of primitive types, while 
preserving the efficiency of reference types

● An immutable class:
– Has only final fields

– Has only fields of primitive types and other immutable classes

● Good candidates for immutability:
– Pure data classes (strings, RatNum, vectors, database records, etc.)

● Even when the whole class can’t be immutable, many fields can 
often be marked final!



  

final and constructors

● final fields may be assigned either where they are 
declared or in the object’s constructor
public class HangWord {
    private final String word = "blah";

    public HangWord() {
    }
}

vs
public class HangWord {
    private final String word;

    public HangWord(String word) {
        this.word = word;
    }
}

Assigning final fields in
the constructor is generally

a lot more useful.

However, in this case you
should probably just make
the field static as well,

since it will have the same
value in every object.



  

Immutable Classes

● It’s impossible to create an immutable array in Java!

● Java will refuse to compile the following code:
public class Foo {
  private final int[] values = new int[] {1, 2, 3};

  public void breakTheValues() {
    this.values = new int[] {4, 5, 6};
  }
  // Error:
  // cannot assign a value to final variable values
}



  

Immutable Classes

● It’s impossible to create an immutable array in Java!

● However, it happily compiles the following:
public class Foo {
  private final int[] values = new int[] {1, 2, 3};

  public void breakTheValues() {
    this.values[0] = 42;
  }
}



  

Immutable Classes

● It’s tricky to create immutable class in Java!

● This is also perfectly OK according to Java:
public class Foo {
  private final MyClass[] obj = new MyClass();

  public void breakTheObject() {
    this.obj.setSomething(42);
  }
}



  

Immutable Classes

● It’s tricky to create immutable class in Java!

● This is also perfectly OK according to Java:
public class Foo {
  private final MyClass[] obj = new MyClass();

  public void breakTheObject() {
    this.obj.setSomething(42);
  }
}

● final only prevents overwriting variables, not mutating their 
contents!

● Always copy objects and arrays before use, if immutability is 
important!
– Exception: classes you know for sure are immutable



  

Example: Reference Ponies and Mutability



  

The Method equals()

● Every object has a method equals

● This tests whether two objects have the same value.

● Java standards require that equals can take an argument of any type.

● There is a standard pattern for writing an equals method:
public boolean equals(Object o) {
  if (this == o) {
    return true;
  }
  if (o == null || this.getClass() != o.getClass()) {
    return false;
  }
  MyClass other = (MyClass) o;

  test whether this and other have the same value
}

● See Java Direkt med Swing section 10.12.2



  

The Method equals()

● Every object has a method equals

● This tests whether two objects have the same value.

● Java standards require that equals can take an argument of any type.

● There is a standard pattern for writing an equals method:
public boolean equals(Object o) {
  if (this == o) {
    return true;
  }
  if (o == null || this.getClass() != o.getClass()) {
    return false;
  }
  MyClass other = (MyClass) o;

  test whether this and other have the same value
}

● See Java Direkt med Swing section 10.12.2

Only use getClass if you know             
exactly why (i.e. in equals)!              

getClass tells you the type of an object.



  

Example: Pony Equality



  

Copying Constructor

● A copying constructor creates a copy of an object.

● If your class is immutable, it should probably have one.

● Example:
class Circle {
  private int x;
  private int y;
  private int radius;
  …
  public Circle(Circle c) {
    this.x = c.x;
    this.y = c.y;
    this.radius = c.radius;
  }
  …
}



  

Example: Copying Ponies



  

Copying Constructor

● Normally, the copy constructor needs to copy all reference variables 
(i.e. objects and arrays) in the object.

– Exception: immutable objects

● This is called a deep copy.

● Example:
class Hangman {
  private int wrongGuesses;
  private HangWord word;
  …
  public Hangman(Hangman h) {
    this.wrongGuesses = h.wrongGuesses;
    this.word = new HangWord(h.word);
  }
  …
}



  

Class Variables

● Just like we can have class methods, we can have class variables.

● Accessible to every object of the class if private…

● ...or to the whole world, if public.

● Class variables are accessed by ClassName.VARIABLE_NAME.

class Math {
  public static double PI = 3.1415926535;
  …
}
…
double area = radius*radius*Math.PI;
String message = String.format("The area is %.2f", area);
System.out.println(message);



  

Class Variables

● Public class variables should ALWAYS be declared final!

● Private class variables should usually be final.

● final class variables are called constants, and are usually named in 
ALL_CAPS_WITH_UNDERSCORES.

class Math {
  public static final double PI = 3.1415926535;
  …
}
…
double area = radius*radius*Math.PI;
String message = String.format("The area is %.2f", area);
System.out.println(message);



  

Class Variables

● Important part of DRY and PoLS

– Some constants may change (you don’t want to forget to update 
tax rates in half your application)

– Most values are incomprehensible without a good name

● Use constants instead of “magic numbers”

● Good:
public Double getArea() {
  return Math.pow(this.radius, 2)*Math.PI;
}

● Bad:
public Double getArea() {
  return Math.pow(this.radius, 2)*3.1415926535;
}



  

Class Variables

● Make your class variables public if and only if the user of your class is 
expected to use them somehow.

– They’re useful constants in your class’ problem domain (i.e. Math.PI)

– They’re used as input to your methods

● Otherwise make them private.

class Pony {
  public static final int MIN_AGE = 0;
  public static final int MAX_AGE = 30;
  …

  public Pony(int age) {
    if(age < Pony.MIN_AGE || age > Pony.MAX_AGE) {
      throw new IllegalArgumentException("bad age");
    }
    …
  }
}



  

● Reading
Java Direkt med Swing sections 2.3, 2.5, 2.6, 3.3, 
3.6, 3.7, 3.9, 10.12.2

● Exercises
Same as last week
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