

Lecture 7
switch, enum and jshell

Remainder of LP2

● Friday: final lecture 13-15
– No exercises this week

● Exam preparation
– Send me your requests

(or else I’ll force you to sit through more pony examples)

● Monday: exam time!
– There will be no graphical programming on the exam

● Exercises next week: final exercise session
– We will go through Monday’s exam

Mid-course evaluation

● Summary available on course website
● Generally very positive!
● But let’s have a closer look at how the course

will improve for LP3!

Exercises

● Problem: exercise sessions are unstructured.
● Problem: book exercises too easy compared to

labs/exam.
● Action: a larger/harder exercise will be handed

out as homework for the exercise session.
– This exercise is not mandatory.

Lectures

● Problem: lectures are too fast-paced for
students with no prior exposure to
programming.

● Action: quiz checkpoints during lectures.
● If you don’t understand, interrupt me!

– If you didn’t understand something, there are at
least another ten students who also didn’t!

Lectures

● Problem: it’s hard to write everything down
during lectures.

● Action: please don’t!
– Slides + code are available from the course website
– Slides are designed to work as study material on

their own
– If you want to take notes, focus on key points!

final and constructors

● final fields may be assigned either where they are
declared or in the object’s constructor
public class HangWord {
 private final String word = "blah";

 public HangWord() {
 }
}

vs
public class HangWord {
 private final String word;

 public HangWord(String word) {
 this.word = word;
 }
}

Assigning final fields in
the constructor is generally

a lot more useful.

However, in this case you
should probably just make
the field static as well,

since it will have the same
value in every object.

Recap: references

● Strings and other classes are reference types
● Variables of reference types store references to their

actual content
● Many reference variables can point to the same object:
Pony ponyA = new Pony("Bruce Dickinson");
Pony ponyB = ponyA;
ponyB.train("heavy metal");

● ponyA and ponyB point to the same object, so both will
learn the “heavy metal” skill!

Recap: mutability

● Modifying an object or variable = mutating it
● Variables are mutable by default…

● ...but become immutable if declared final

● Mutating a variable and mutating an object are not the
same thing!

● Prefer immutable types when possible
● Primitive types are immutable
● An immutable class:

– Has only final fields, and

– Has only fields of other immutable types

Recap: class variables

● Just like methods, variables can also be static
● Such variables are called “class variables”
● Belong to the class itself, not objects of the class

● Usually final (at least when public)

Recap: Make Hangman Great Again!
(Using the things we learned last week)

Important exam notice

Nothing new from this point
forward will appear on the first

exam!

(Material which also appeared in previous lectures may of
course be on the exam.)

jshell

● A “Read-Eval-Print-Loop” (REPL for short) for Java
● Run snippets of Java code without a main method
● Useful for testing your classes as you write them

Watch out for “Hadouken Code”!

switch statements

● Selects between multiple branches

● Equivalent to if … else if … else if …
else
switch(expression) {
case 0:
 // do something if expression == 0
 break;
case 1:
 // do something else if expression == 1
 break;
…
default:
 // we end up here if expression was not equal to any case
}

switch statements

● case branches will “fall through” if break is omitted

● Sometimes handy, often dangerous!
switch(expression) {
case 0:
case 1:
case 29:
 // do something else if expression == 0, 1 or 29
 break;
case 2:
 // do something else if expression == 2
 break;
…
default:
 // we end up here if expression was not equal to any case
}

enum types

● Declares a new type which can have one of a finite amount of values

● Often declared inside a class that uses it, but can be declared in its
own file

● public class Fika {
 public enum Pastry { CAKE, CINNAMON_ROLL, LUSSEKATT }
 public enum Drink { COFFEE, TEA, MILK }

 public static void serve(Pastry eat, Drink drink) {
 ...
 }
}

● Can be used like any other type

public class FikaMain {
 public static void main(String[] args) {
 Fika.Pastry toEat = Fika.Pastry.CAKE;
 Fika.Drink toDrink = Fika.Drink.MILK;
 Fika.serve(toEat, toDrink);
 }
}

enum types

● Declares a new type which can have one of a finite amount of values

● Often declared inside a class that uses it, but can be declared in its
own file
public class Fika {
 public enum Pastry { CAKE, CINNAMON_ROLL, LUSSEKATT }
 public enum Drink { COFFEE, TEA, MILK }

 public static void serve(Pastry eat, Drink drink) {
 ...
 }
}

● Can be used like any other type

public class FikaMain {
 public static void main(String[] args) {
 Fika.Pastry toEat = Fika.Pastry.CAKE;
 Fika.Drink toDrink = Fika.Drink.MILK;
 Fika.serve(toEat, toDrink);
 }
}

A variable of type Fika.Drink can
only be either Fika.Drink.COFFEE,

Fika.Drink.TEA,
or Fika.Drink.MILK.

enum types

● Declares a new type which can have one of a finite amount of values

● Often declared inside a class that uses it, but can be declared in its
own file
public class Fika {
 public enum Pastry { CAKE, CINNAMON_ROLL, LUSSEKATT }
 public enum Drink { COFFEE, TEA, MILK }

 public static void serve(Pastry eat, Drink drink) {
 ...
 }
}

● Can be used like any other type

public class FikaMain {
 public static void main(String[] args) {
 Fika.Pastry toEat = Fika.Pastry.CAKE;
 Fika.Drink toDrink = Fika.Drink.MILK;
 Fika.serve(toEat, toDrink);
 }
}

This method is in the same class as
Pastry and Drink, so we can

shorten Fika.Pastry to just Pastry.

enum goes well with switch
public static void serve(Pastry eat, Drink drink)
 switch(eat) {
 case CAKE:
 System.out.println("You have some cake.");
 System.out.println("It’s so delicious and moist.");
 break;
 case CINNAMON_ROLL:
 System.out.println("You have a cinnamon roll.");
 System.out.println("It’s tasty.");
 break;
 case LUSSEKATT:
 System.out.println("You’re overcome with Christmas spirit.");
 break;
 default:
 throw new IllegalArgumentException("unsupported value for"+eat);
 }
 ...
}

● Cover all possible values of the type

● Use a default branch to throw an appropriate exception

● Easy to forget updating when adding new values to enum!

enum goes well with switch
public static void serve(Pastry eat, Drink drink)
 switch(eat) {
 case CAKE:
 System.out.println("You have some cake.");
 System.out.println("It’s so delicious and moist.");
 break;
 case CINNAMON_ROLL:
 System.out.println("You have a cinnamon roll.");
 System.out.println("It’s tasty.");
 break;
 case LUSSEKATT:
 System.out.println("You’re overcome with Christmas spirit.");
 break;
 default:
 throw new IllegalArgumentException("unsupported value for"+eat);
 }
 ...
}

● Cover all possible values of the type

● Use a default branch to throw an appropriate exception

● Easy to forget updating when adding new values to enum!

No need to say Pastry.CAKE here,
Java knows that CAKE is a Pastry
because eat (i.e. the expression

we’re switching on) has type Pastry.

Example: Pony Types

null

● Called “my billion dollar mistake” by its inventor
● Has been around since 1965(!)
● Now considered a “code smell”
● Avoid using it whenever possible
● We’ll see more safe/modern

alternatives later
Tony Hoare,

Inventor of null

Optional<T>

● A “box” which may or may not contain a value

● T is the type of the thing in the box

● Important methods

– T get() returns the value inside the box, or throws a
NoSuchElementException if the box is empty

– boolean isEmpty() returns true if the box is empty, otherwise false

– static Optional<T> empty() creates an empty box

– static Optional<T> of(T value) creates a box which contains
value

Optional<String> maybeName = Optional.empty();
Optional<String> maybeName2 = Optional.of("Gösta");

System.out.println(maybeName.isEmpty()); // true
System.out.println(maybeName2.isEmpty()); // false

Optional<T>

● Optional<T> only works when T is a reference type

– String, your own classes, etc.

● There are also OptionalInt, OptionalDouble, etc.

– These classes don’t have the get method

– Instead, they have getAsInt, getAsDouble, etc.

Optional<T>

● Use Optional instead of null for methods which might
not return a value

● Or for optional instance variables

● If I had created showInputDialog:
– public static Optional<String> showInputDialog(String text)

● Other imaginary examples:
– public static OptionalDouble safeDiv(double d, double divisor)

● Returns OptionalDouble.empty() if divisor is 0

– public Optional<String> getAddress()
● Returns Optional.empty() if person is homeless

– public OptionalInt getWinner()
● Returns Optional.empty() if game still doesn’t have a winner

Example: Optional Pony Skills

Recommended Reading

● Java Direkt med Swing 3.11, 19.3.1

● Optional<T> tutorial
– https://dzone.com/articles/java-8-optional-usage-and-best-practices

● Code Complete Chapter 5

https://dzone.com/articles/java-8-optional-usage-and-best-practices

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

