

Lecture 8
Exam preparation

Exam tips & tricks

● Q: How are the exams graded?
● A:

– Deductions are made for (including but not limited to):
● Wrong answers
● Type errors
● Significantly overcomplicated solutions

– Deductions are NOT made for (unless explicitly specified):
● Minor syntax errors
● Lack of comments
● Lack of error handling
● Slow solutions

∑
i=1

qs

max(0 ,maxpointsi−deductions i)

Exam tips & tricks

● Q: What do I do if I realize that I need to insert
some more code in the middle of my solution?

● A: Draw a box with your code, with an arrow
pointing to where you want to insert it.

int sum = 0;
for(int i = 1; i < max; i++) {
 sum += i;
}
System.out.println(sum);

Scanner scan = new Scanner(System.in);
int max = scan.nextInt();

Exam tips & tricks

● Q: Do I need to include X?

● X = import statements: no

● X = comments: no

● X = error checking: only if explicitly asked

● X = { braces }: yes, but we’ll be lenient about it

● X = indentation: YES!

● X = assumptions (if question is unclear): YES!

Exam tips & tricks

● Read through the entire exam before you start
working!
– This will help you plan your time

● Write down any questions about the exam on a
scrap paper!
– This will help you remember to ask them when I drop

by at 9 AM
– My next visit isn’t until 11 AM!

Exceptions

An exception is an event, which occurs during the execution of a
program, that disrupts the normal flow of the program's instructions.
(Definition from https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html)

We can catch exceptions in order to handle them gracefully.

If an exception happens and is not caught, then the program
crashes.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Catching Exceptionstry {
 block 0
} catch (ExceptionType1 varName1) {
 block 1
} catch (ExceptionType2 varName2) {
 block 2
} … catch (ExceptionTypen varNamen) {
 block n
} finally {
 block n+1
}

1) Block 0 is executed.
2) If no exception occurs: block n+1 is executed.
3) If an exception of type ExceptionType occurs while executing

block 1, then the exception is stored in the variable (“caught”),
and block 2 is executed, then block n+1 is executed.

4) If an exception of another type occurs, block n+1 is executed, then the
exception is thrown to the calling method.
(If this is in main: the program crashes.)

The part finally { block n+1 } is optional

Throwing Exceptions

throw new IllegalArgumentException();

The type of exception to throw

We create a new exception
to throw

Throwing an exception:
stop execution and jump
to closest catch block.

Exception control flow

● Prerequisite knowledge: Ariadne and Theseus

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B()

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B()

void C()*

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B()

void C()*

void D()

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B()

void C()*

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

* = contains a catch block

Exception control flow

● “Closest” catch block?
public static void A() {
 try {
 B();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void B() {
 C();
}

public static void C() {
 try {
 D();
 } catch (IllegalStateException e) {
 // do something useful here
 }
}

public static void D() {
 throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B()

void C()*

void D()

* = contains a catch block

Closest catch block = the catch block
we arrive at first when “following the thread

out of the labyrinth”.

Throwing Exceptions

● Common use case: checking method arguments
public static double[] divide(double[] a, double divisor) {
 double x, y, z;
 if(Math.abs(divisor) < 0.0001) {
 throw new IllegalArgumentException();
 }
 x = a[0]/divisor;
 y = a[1]/divisor;
 z = a[2]/divisor;
 return new double[] { x, y, z };
}

Throwing Exceptions

● Common use case: checking method arguments
public static double[] divide(double[] a, double divisor) {
 double x, y, z;
 if(Math.abs(divisor) < 0.0001) {
 throw new IllegalArgumentException();
 }
 x = a[0]/divisor;
 y = a[1]/divisor;
 z = a[2]/divisor;
 return new double[] { x, y, z };
}

 Check arguments as
 as early as possible

References

● Java has both primitive types and reference types.

● Primitive types represent single values:

– int, char, double, etc.

● Reference types represent collections of values:

– String (a collection of letters)

– int[] (a collection of ints)

– Pony (a collection of two strings)

– HangMan (a collection of a HangWord and an int)

References

● Values of primitive types are stored directly in their variables.

– int x = 42; ← Here x literally contains the value 42

● Values of reference types are called objects, and are stored in another
part of memory.

● Variables of reference types only contain a pointer to the memory where
the actual values are stored.
– Pony p = new Pony("Aristotle");
– Here p only contains a pointer – or reference – to the memory

address where the actual Aristotle pony is stored!

● Why? Because objects can be very large, which makes copying them
around in memory very inefficient.

● A reference to an object only takes 8 bytes of memory, so it is very
efficient to pass around.

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because
they refer to the same object!

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because
they refer to the same object!

A new pony is created, and stored at
(for instance) memory location 64

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because
they refer to the same object!

The value 64 is stored in ponyA,
because that is where we can find

the actual Aristotle pony.

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because
they refer to the same object!

The value 64 is copied from ponyA to ponyB.
Now both refer to the same pony!

References

● Equality operator only compares the references!

● Two identical objects are not equal if they are stored at different
memory locations, according to the == operator.

Pony ponyA = new Pony("Aristotle");
Pony ponyB = new Pony("Aristotle");
System.out.println(ponyA == ponyB); // prints “false”

● To compare objects, we must use the equals method!

String a = "hello";
String b = String.format("hello");
System.out.println(a == b); // prints “false"
System.out.println(a.equals(b)); // prints “true”

● General idea: compare objects element for element.

● See lecture 6 for details.

References

● Sometimes we want to make an identical copy of an object.
– Usually because we want to be sure other parts of the program can’t make

unexpected changes to it.

– But also because we want to make changes in our copy without affecting
other parts of the program.

● For our own classes: create a copy constructor!
public Pony(Pony original) {
 this.name = original.name;
 this.skill = original.skill;
}

● For arrays: copy element by element, or use clone method!

int[] arr1 = {1, 2, 3};
int[] arr2 = arr1.clone();
arr1[0] = 100; // does not affect arr2

References

● If your object or array contains other objects, you need to make a
deep copy!
public static Pony[] copyPonies(Pony[] ponies) {
 Pony[] clones = new Pony[ponies.length];
 for(int i = 0; i < ponies.length; i++) {
 clones[i] = new Pony(ponies[i]);
 }
 return clones;
}

● You need to make a deep copy of everything that’s not:

– a primitive type; or
– an immutable class.

References

● An immutable class:

– has only final fields; and

– has only fields of primitive types OR other immutable classes.

● Intuition: an object of an immutable class can’t be changed after it’s created.

● String is immutable: all its operations return a new string, none modify the
existing object.

● Writing immutable (or partially immutable) classes when possible is good
coding style!

Constructors

● A constructor is a special method which initializes an object.

● Returns a reference to the newly created object.

● To call the two argument constructor of the Pony class and store
the resulting pony in a variable:

Pony myPony = new Pony("Socrates", "philosophy");
● The purpose of the constructor is to ensure that the newly created

object is ready to use.

Constructors

● The creation of an object:
– The programmer calls new SomeClass(...)
– Java allocates memory for the object’s fields

– Java calls the specified constructor for SomeClass
– The code in the constructor is executed

– A reference to the newly created object (this) is
returned

Constructors

● The creation of an object:
– The programmer calls new SomeClass(...)
– Java allocates memory for the object’s fields

– Java calls the specified constructor for SomeClass
– The code in the constructor is executed

– A reference to the newly created object (this) is
returned

This is the only part you (i.e. the person
who implements the class) have

control over!

Constructors

● Constructors are not magic!

● The following will have no effect:
public Pony(String name) {
 new Pony(name, "no particular skill");
}

● You are creating a new pony and discarding it right away!

● Just as if you did the same in any other method.

● Instead, you need to either chain to another constructor, fill in
the object’s fields yourself, or both.

● this is a reference to the object we’re currently executing
a method or constructor on.

● We can access fields and other methods on the same
object using this.someMethod(arg1, arg2, …) and
this.someField respectively.

● However, this can be omitted!

– this.someMethod(arg1, arg2, …) and
someMethod(arg1, arg2) are equivalent!

– So are this.someField = 0 and someField = 0

What’s this?

● There are two cases where this is mandatory:

– Disambiguating between local variables and fields:
public class Pony {
 private String name;
 …
 public Pony(String name) {
 this.name = name;
 }
}

– When we want to pass a reference to our object
public class Pony {
 private String name;
 …
 public void addToArray(Pony[] ponies, int i) {
 ponies[i] = this;
 }
}

What’s this?

● this can also refer to another constructor of the same class, when
used in a constructor.
public class Pony {
 private String name;
 private String skill;

 public Pony(String name, String skill) {
 this.name = name;
 this.skill = skill;
 }

 public Pony(String name) {
 this(name, "eating");
 }
}

● This is called “constructor chaining” - very handy to keep DRY!

What’s this?

To static or not to static

● static methods and variables belong to the class itself, not objects of the
class.
– There is only a single copy of each static method or variable in your whole

application.

– They are accessed using the class itself: ClassName.method()

● Non-static methods and variables (fields) belong to objects of the class.

– They can only be accessed using an object of the class: object.method()

– There is one copy of each non-static method and field of a class for each object of
that class.

● Non-static methods have access to:
– this

– Other non-static methods and fields

● static methods do not.

public vs private

● When a method or field is public, it can be
accessed from other classes.
– The methods we make public define how we

expect the user of our class to interact with it.

● When private, it can only be accessed from
the class in which it is defined.
– Always make fields private

– Make helper methods private

Boolean expressions

● Logical expressions consist of one or more truth values
connected by conjunction (&&), disjunction (||) or negation (!).

● Logical expressions are themselves truth values.

● Truth values have the type boolean.

● Examples of truth values:
– Boolean constants: true, false

– Comparisons: x == y, z != null, a > b

– Logical expressions:
● (c >= 'a' && c <= 'z') || (c >= 'A' && c <= ‘Z’)
● !x

Boolean expressions

● if, while, etc. accept ANY boolean expression

– if(x == 5)
– while(y)

(where y has type boolean)

– if(someMethod(x, y, z))
(where someMethod has return type boolean)

– if(x == 5 && !y)

● It does NOT have to be a comparison!

● Don’t do if(x == true), do if(x) instead.

● Don’t do if(x == false), do if(!x) instead.

Boolean expressions

● There is nothing “magical” about the condition
used for if, while, etc.

● Don’t:
if(some boolean expression) {
 return true;
} else {
 return false;
}

● Do:
return some boolean expression;

String.format

● String String.format(String fmt, type1 arg1, type2 arg2, …)

● fmt is a plain string which may or may not contain format specifiers.

● The most basic format specifiers:

– %s – a string

– %d – an integer

– %f – a decimal number

● Format specifiers can be prefixed with a number

– %10s – a string, left-padded with spaces to at least 10 chars

– %5d – an integer, left-padded with spaces to at least 5 chars

● %f can also be prefixed with a dot and the number of digits of precision to use

– %.0f – a decimal number rounded to the closest whole number

– %.2f – a decimal number rounded to two digits of precision

– %10.2f – a decimal number rounded to two digits of precision, and left-padded with
spaces to at least 10 chars

import vs. import static

● import brings a class into scope

– We still need to explicitly name the class to use it

– import java.util.Scanner; lets us create and use Scanner objects:

Scanner scan = new Scanner(System.in);
System.out.println(scan.nextInt());

– import javax.swing.JOptionPane; lets us call static methods on
JOptionPane by explicitly referencing the class:

JOptionPane.showMessageDialog(null, "Hej!");

● import static brings all static members of a class into scope

– We don’t need to name the class to use them:

import static javax.swing.JoptionPane.*;
...
showMessageDialog(null, "Hej!");

Single quotes vs. double quotes

● Exactly one letter within single quotes denotes
a single character, and has type char
– char c = 'a';

● Zero or more letters within double quotes
denotes a string, and has type String
– String s = "Hello!";

● Both may contain escaped characters
– String s = "Hello\nWorld";
– char c = '\n';

Scanner

● Lets us read structured data from a text source.

● So far, we’ve used standard input:
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● But we can also use it to read from a string:
String myString = "10 15 hello";
Scanner s = new Scanner(myString);
System.out.println(s.nextInt());
System.out.println(s.nextDouble());
System.out.println(s.next());

Will print:
10
15.0
hello

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt,
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

a+b+c+d = 50

Scanner

● Lets us “look before we jump”
Scanner s = new Scanner(System.in);
if(!s.hasNextDouble()) {
 System.out.println("You have to enter a number!");
} else {
 double value = s.nextDouble();
 String result = String.format("%f^2 = %f", value, value*value);
 System.out.println(result);
}

● Will throw a NoSuchElementException if we try to read
something that’s not there

Exception java.util.NoSuchElementException
 at Scanner.throwFor (Scanner.java:937)
 at Scanner.next (Scanner.java:1594)
 at Scanner.nextDouble (Scanner.java:2564)

Good luck, and Merry Christmas!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

