
  

Lecture 8
Exam preparation



  

Exam tips & tricks

● Q: How are the exams graded?
● A:

– Deductions are made for (including but not limited to):
● Wrong answers
● Type errors
● Significantly overcomplicated solutions

– Deductions are NOT made for (unless explicitly specified):
● Minor syntax errors
● Lack of comments
● Lack of error handling
● Slow solutions

∑
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Exam tips & tricks

● Q: What do I do if I realize that I need to insert 
some more code in the middle of my solution?

● A: Draw a box with your code, with an arrow 
pointing to where you want to insert it.

int sum = 0;
for(int i = 1; i < max; i++) {
    sum += i;
}
System.out.println(sum);

Scanner scan = new Scanner(System.in);
int max = scan.nextInt();

 



  

Exam tips & tricks

● Q: Do I need to include X?

● X = import statements: no

● X = comments: no

● X = error checking: only if explicitly asked

● X = { braces }: yes, but we’ll be lenient about it

● X = indentation: YES!

● X = assumptions (if question is unclear): YES!



  

Exam tips & tricks

● Read through the entire exam before you start 
working!
– This will help you plan your time

● Write down any questions about the exam on a 
scrap paper!
– This will help you remember to ask them when I drop 

by at 9 AM
– My next visit isn’t until 11 AM!



  

Exceptions

An exception is an event, which occurs during the execution of a
program, that disrupts the normal flow of the program's instructions.
(Definition from https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html)

We can catch exceptions in order to handle them gracefully.

If an exception happens and is not caught, then the program
crashes. 

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html


  

Catching Exceptionstry {
  block 0
} catch (ExceptionType1 varName1) {
  block 1
} catch (ExceptionType2 varName2) {
  block 2
} … catch (ExceptionTypen varNamen) {
  block n
} finally {
  block n+1
}

1) Block 0 is executed.
2) If no exception occurs: block n+1 is executed.
3) If an exception of type ExceptionType occurs while executing 

block 1, then the exception is stored in the variable (“caught”),
and block 2 is executed, then block n+1 is executed.

4) If an exception of another type occurs, block n+1 is executed, then the
exception is thrown to the calling method.
(If this is in main: the program crashes.)

The part finally { block n+1 } is optional



  

Throwing Exceptions

throw new IllegalArgumentException();

The type of exception to throw

We create a new exception
to throw

Throwing an exception:
stop execution and jump
to closest catch block.



  

Exception control flow

● Prerequisite knowledge: Ariadne and Theseus



  

Exception control flow

● “Closest” catch block?
public static void A() {
  try {
    B();
  } catch (IllegalStateException e) {
    // do something useful here
  }
}

public static void B() {
  C();
}

public static void C() {
  try {
    D();
  } catch (IllegalStateException e) {
    // do something useful here
  }
}

public static void D() {
  throw new IllegalStateException();
}
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Exception control flow

● “Closest” catch block?
public static void A() {
  try {
    B();
  } catch (IllegalStateException e) {
    // do something useful here
  }
}

public static void B() {
  C();
}

public static void C() {
  try {
    D();
  } catch (IllegalStateException e) {
    // do something useful here
  }
}

public static void D() {
  throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B() 
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Exception control flow

● “Closest” catch block?
public static void A() {
  try {
    B();
  } catch (IllegalStateException e) {
    // do something useful here
  }
}

public static void B() {
  C();
}

public static void C() {
  try {
    D();
  } catch (IllegalStateException e) {
    // do something useful here
  }
}

public static void D() {
  throw new IllegalStateException();
}

void main(String[] args)

void A()*

void B() 

void C()*

void D() 

* = contains a catch block

Closest catch block = the catch block
we arrive at first when “following the thread

out of the labyrinth”.



  

Throwing Exceptions

● Common use case: checking method arguments
public static double[] divide(double[] a, double divisor) {
    double x, y, z;
    if(Math.abs(divisor) < 0.0001) {
        throw new IllegalArgumentException();
    }
    x = a[0]/divisor;
    y = a[1]/divisor;
    z = a[2]/divisor;
    return new double[] { x, y, z };
}



  

Throwing Exceptions

● Common use case: checking method arguments
public static double[] divide(double[] a, double divisor) {
    double x, y, z;
    if(Math.abs(divisor) < 0.0001) {
        throw new IllegalArgumentException();
    }
    x = a[0]/divisor;
    y = a[1]/divisor;
    z = a[2]/divisor;
    return new double[] { x, y, z };
}

      Check arguments as
      as early as possible



  

References

● Java has both primitive types and reference types.

● Primitive types represent single values:

– int, char, double, etc.

● Reference types represent collections of values:

– String (a collection of letters)

– int[] (a collection of ints)

– Pony (a collection of two strings)

– HangMan (a collection of a HangWord and an int)



  

References

● Values of primitive types are stored directly in their variables.

– int x = 42; ← Here x literally contains the value 42

● Values of reference types are called objects, and are stored in another 
part of memory.

● Variables of reference types only contain a pointer to the memory where 
the actual values are stored.
– Pony p = new Pony("Aristotle");
– Here p only contains a pointer – or reference – to the memory 

address where the actual Aristotle pony is stored!

● Why? Because objects can be very large, which makes copying them 
around in memory very inefficient.

● A reference to an object only takes 8 bytes of memory, so it is very 
efficient to pass around.



  

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because 
they refer to the same object!



  

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because 
they refer to the same object!

A new pony is created, and stored at
(for instance) memory location 64



  

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because 
they refer to the same object!

The value 64 is stored in ponyA,
because that is where we can find

the actual Aristotle pony.



  

References

● Multiple reference variables can refer to the same object.
Pony ponyA = new Pony("Aristotle");
Pony ponyB = ponyA;

● Changes made to ponyA will be reflected in ponyB – because 
they refer to the same object!

The value 64 is copied from ponyA to ponyB.
Now both refer to the same pony!



  

References

● Equality operator only compares the references!

● Two identical objects are not equal if they are stored at different 
memory locations, according to the == operator.

Pony ponyA = new Pony("Aristotle");
Pony ponyB = new Pony("Aristotle");
System.out.println(ponyA == ponyB); // prints “false”

● To compare objects, we must use the equals method!

String a = "hello";
String b = String.format("hello");
System.out.println(a == b); // prints “false"
System.out.println(a.equals(b)); // prints “true”

● General idea: compare objects element for element.

● See lecture 6 for details.



  

References

● Sometimes we want to make an identical copy of an object.
– Usually because we want to be sure other parts of the program can’t make 

unexpected changes to it.

– But also because we want to make changes in our copy without affecting 
other parts of the program.

● For our own classes: create a copy constructor!
public Pony(Pony original) {
    this.name = original.name;
    this.skill = original.skill;
}

● For arrays: copy element by element, or use clone method!

int[] arr1 = {1, 2, 3};
int[] arr2 = arr1.clone();
arr1[0] = 100; // does not affect arr2



  

References

● If your object or array contains other objects, you need to make a 
deep copy!
public static Pony[] copyPonies(Pony[] ponies) {
    Pony[] clones = new Pony[ponies.length];
    for(int i = 0; i < ponies.length; i++) {
        clones[i] = new Pony(ponies[i]);
    }
    return clones;
}

● You need to make a deep copy of everything that’s not:

– a primitive type; or
– an immutable class.



  

References

● An immutable class:

– has only final fields; and

– has only fields of primitive types OR other immutable classes.

● Intuition: an object of an immutable class can’t be changed after it’s created.

● String is immutable: all its operations return a new string, none modify the 
existing object.

● Writing immutable (or partially immutable) classes when possible is good 
coding style!



  

Constructors

● A constructor is a special method which initializes an object.

● Returns a reference to the newly created object.

● To call the two argument constructor of the Pony class and store 
the resulting pony in a variable:

Pony myPony = new Pony("Socrates", "philosophy");
● The purpose of the constructor is to ensure that the newly created 

object is ready to use.



  

Constructors

● The creation of an object:
– The programmer calls new SomeClass(...)
– Java allocates memory for the object’s fields

– Java calls the specified constructor for SomeClass
– The code in the constructor is executed

– A reference to the newly created object (this) is 
returned



  

Constructors

● The creation of an object:
– The programmer calls new SomeClass(...)
– Java allocates memory for the object’s fields

– Java calls the specified constructor for SomeClass
– The code in the constructor is executed

– A reference to the newly created object (this) is 
returned

This is the only part you (i.e. the person
who implements the class) have

control over!



  

Constructors

● Constructors are not magic!

● The following will have no effect:
public Pony(String name) {
    new Pony(name, "no particular skill");
}

● You are creating a new pony and discarding it right away!

● Just as if you did the same in any other method.

● Instead, you need to either chain to another constructor, fill in 
the object’s fields yourself, or both.



  

● this is a reference to the object we’re currently executing 
a method or constructor on.

● We can access fields and other methods on the same 
object using this.someMethod(arg1, arg2, …) and 
this.someField respectively.

● However, this can be omitted!

– this.someMethod(arg1, arg2, …) and 
someMethod(arg1, arg2) are equivalent!

– So are this.someField = 0 and someField = 0

What’s this?



  

● There are two cases where this is mandatory:

– Disambiguating between local variables and fields:
public class Pony {
    private String name;
    …
    public Pony(String name) {
        this.name = name;
    }
}

– When we want to pass a reference to our object
public class Pony {
    private String name;
    …
    public void addToArray(Pony[] ponies, int i) {
        ponies[i] = this;
    }
}

What’s this?



  

● this can also refer to another constructor of the same class, when 
used in a constructor.
public class Pony {
    private String name;
    private String skill;

    public Pony(String name, String skill) {
        this.name = name;
        this.skill = skill;
    }

    public Pony(String name) {
        this(name, "eating");
    }
}

● This is called “constructor chaining” - very handy to keep DRY!

What’s this?



  

To static or not to static

● static methods and variables belong to the class itself, not objects of the 
class.
– There is only a single copy of each static method or variable in your whole 

application.

– They are accessed using the class itself: ClassName.method()

● Non-static methods and variables (fields) belong to objects of the class.

– They can only be accessed using an object of the class: object.method()

– There is one copy of each non-static method and field of a class for each object of 
that class.

● Non-static methods have access to:
– this

– Other non-static methods and fields

● static methods do not.



  

public vs private

● When a method or field is public, it can be 
accessed from other classes.
– The methods we make public define how we 

expect the user of our class to interact with it.

● When private, it can only be accessed from 
the class in which it is defined.
– Always make fields private

– Make helper methods private



  

Boolean expressions

● Logical expressions consist of one or more truth values 
connected by conjunction (&&), disjunction (||) or negation (!).

● Logical expressions are themselves truth values.

● Truth values have the type boolean.

● Examples of truth values:
– Boolean constants: true, false

– Comparisons: x == y, z != null, a > b

– Logical expressions:
● (c >= 'a' && c <= 'z') || (c >= 'A' && c <= ‘Z’)
● !x



  

Boolean expressions

● if, while, etc. accept ANY boolean expression

– if(x == 5) 
– while(y)

(where y has type boolean)

– if(someMethod(x, y, z))
(where someMethod has return type boolean)

– if(x == 5 && !y)

● It does NOT have to be a comparison!

● Don’t do if(x == true), do if(x) instead.

● Don’t do if(x == false), do if(!x) instead.



  

Boolean expressions

● There is nothing “magical” about the condition 
used for if, while, etc.

● Don’t:
if(some boolean expression) {
    return true;
} else {
    return false;
}

● Do:
return some boolean expression;



  

String.format

● String String.format(String fmt, type1 arg1, type2 arg2, …)

● fmt is a plain string which may or may not contain format specifiers.

● The most basic format specifiers:

– %s – a string

– %d – an integer

– %f – a decimal number

● Format specifiers can be prefixed with a number

– %10s – a string, left-padded with spaces to at least 10 chars

– %5d – an integer, left-padded with spaces to at least 5 chars

● %f can also be prefixed with a dot and the number of digits of precision to use

– %.0f – a decimal number rounded to the closest whole number

– %.2f – a decimal number rounded to two digits of precision

– %10.2f – a decimal number rounded to two digits of precision, and left-padded with 
spaces to at least 10 chars



  

import vs. import static

● import brings a class into scope

– We still need to explicitly name the class to use it

– import java.util.Scanner; lets us create and use Scanner objects:

Scanner scan = new Scanner(System.in);
System.out.println(scan.nextInt());

– import javax.swing.JOptionPane; lets us call static methods on 
JOptionPane by explicitly referencing the class:

JOptionPane.showMessageDialog(null, "Hej!");

● import static brings all static members of a class into scope

– We don’t need to name the class to use them:

import static javax.swing.JoptionPane.*;
...
showMessageDialog(null, "Hej!");



  

Single quotes vs. double quotes

● Exactly one letter within single quotes denotes 
a single character, and has type char
– char c = 'a';

● Zero or more letters within double quotes 
denotes a string, and has type String
– String s = "Hello!";

● Both may contain escaped characters
– String s = "Hello\nWorld";
– char c = '\n';



  

Scanner

● Lets us read structured data from a text source.

● So far, we’ve used standard input:
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● But we can also use it to read from a string:
String myString = "10 15 hello";
Scanner s = new Scanner(myString);
System.out.println(s.nextInt());
System.out.println(s.nextDouble());
System.out.println(s.next());

Will print:
10
15.0
hello



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25



  

Scanner

● Lets us read structured data from standard input.
Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
String answer = String.format("%d + %d = %d", a, b, a+b);

● Scanner consumes its input with each call to nextInt, 
nextDouble, etc.

Scanner s = new Scanner(System.in);
int a = s.nextInt();
int b = s.nextInt();
int c = s.nextInt();
int d = s.nextInt();
System.out.println("a+b+c+d = " + (a+b+c+d));

5 10 15 20 25

a+b+c+d = 50



  

Scanner

● Lets us “look before we jump”
Scanner s = new Scanner(System.in);
if(!s.hasNextDouble()) {
    System.out.println("You have to enter a number!");
} else {
    double value = s.nextDouble();
    String result = String.format("%f^2 = %f", value, value*value);
    System.out.println(result);
}

● Will throw a NoSuchElementException if we try to read 
something that’s not there

Exception java.util.NoSuchElementException
      at Scanner.throwFor (Scanner.java:937)
      at Scanner.next (Scanner.java:1594)
      at Scanner.nextDouble (Scanner.java:2564)



  

Good luck, and Merry Christmas!
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