

Lecture 9
Subclassing, Inheritance and

Polymorphism

Housekeeping

● Exams are ready for collection from
Studentexpeditionen in EDIT building, 4th floor

● Exam review period is Wednesday 29 January
12.00-13.00 in EDIT 6110

● Threshold for passing grade (3) lowered to 13
points

● Thresholds for other grades (4, 5) unchanged

IDE

● An IDE (Integrated Development Environment) provides:
– a source code editor
– code completion
– highlighting of many (not all!) errors
– automatic build tools
– debugger
– unit testing
– …

● IntelliJ IDEA is installed on the university machines

OOP Recap

● A class is a recipe for making objects.
● Classes can have constructors, fields and

methods.
● You can create any number of objects from the

same class.

OOP Recap

● Each object has its own copy of the (non-static)
fields and methods defined in its class.
– You need an object to use them:

Pony pony = new Pony("Fluttershy");
pony.greet("everyone");

● Static methods and fields are shared between
all objects.
– You can access them using the name of their class:

System.out.println(Pony.MAX_AGE);

Using Objects

Code Example: Text-Based Fighting Game

Overloading

public Circle(double r, String color) {
 ...
}

public Circle(double r) {
 ...
}

Overloading

public class Enemy {
 public void kick(int damage) {
 ...
 }
 public void kick(Player kicker) {
 ...
 }
}

...

Player john = new Player("John McClane");
Enemy hans = new Enemy("Hans Gruber");
hans.kick(5);
hans.kick(john);

Overloading

Code Example: Better Kicks

Subclassing

We can make a class A a subclass of a class B.

This means: every object of type A is also an object of
type B.

(Think ‘subset’ in mathematics.)

Other ways of saying the same thing:
● B is a superclass of A
● A inherits from B
● A is derived from B

Subclassing

To make A a subclass of B:
class A extends B {
 …
}

All the public members of B are now members of A.

Subclassing

● The subclass relation is transitive.
– If A is a subclass of B, and B is a sublass of C, then A is

also a subclass of C

– Samon is a Fish, Fish is a Vertebrate, and
Vertebrate is an Animal – thus Salmon is an Animal

● Object is a superclass of all other classes!

● This is why all objects have equals, toString,
etc.: they are inherited from Object

Subclassing

Code Example: Subclassing Fighters

Overriding

class B {
 public int f(int x) {…}
}
class A extends B {
 …
}

The class A has a method f. Calling it executes the same code is calling it in
B.

We can also write a new version of f in A. This is called overriding f.

class A extends B {
 @Override
 public int f(int x) {...}
}
The @Override annotation is not required, but helps with finding bugs and
readability.

Overriding vs. Overloading

● Overloading: decided at compile time

public class Enemy extends Fighter { … }

public void punch(Enemy e) {
 System.out.println("punched an enemy");
}
public void punch(Fighter e) {
 System.out.println("punched a fighter");
}

Fighter someone = new Enemy(…);
punch(someone);

● Output: punched a fighter

Overriding vs. Overloading

● Overriding: decided at run time

public class Fighter {
 public void punch() {
 System.out.println("fighter got punched");
 }
}

public class Enemy extends Fighter {
 @Override
 public void punch() {
 System.out.println("enemy got punched");
 }
}

Fighter someone = new Enemy(…);
someone.punch();

● Output: enemy got punched

Overriding vs. Overloading

● Overriding: decided at run time

public class Fighter {
 public void punch() {
 System.out.println("fighter got punched");
 }
}

public class Enemy extends Fighter {
 @Override
 public void punch() {
 System.out.println("enemy got punched");
 }
}

Fighter someone = new Enemy(…);
someone.punch();

● Output: enemy got punched

Object:
run time

Argument list:
compile time

Access Modifiers

A member of a class A may be:

● public – can be accessed anywhere

● private – can only be accessed from within A

● protected – can be accessed from within A
and the subclasses of A, and other classes in
the same package (see later weeks)

● package-private – see later weeks

The super keyword

Let A be a subclass of B.

Inside the class A, the keyword super has two uses:

● It refers to the current object as if it were an object
of class B, letting you use the methods and fields
of class B.

● As the first line of a constructor, it invokes a
constructor of B.

(Compare with the keyword this.)

A Note About Constructors

Let A be a subclass of B.
● The first thing that a constructor of A does is call a

constructor of B.

● If you do not use the super keyword, then Java
automatically calls the no-argument constructor of B.

● If you do not use the super keyword and B does not
have a no-argument constructor, the code will not
compile.

Object-Oriented Principles

● Abstraction
● Encapsulation
● Inheritance
● Polymorphism

These principles had been recognised as useful ways to
organise programs for a long time.

When we created object-oriented languages, we
represented these principles in the syntax of the
language.

Abstraction

Also known as information hiding.

The outside world should only see relevant
information. Details should be hidden.

The outside world “sees” the public methods –
their signatures (names and arguments). It does
not know how they are implemented. It does not
see private methods and private fields.

Encapsulation

Data and the code that uses that data should be
found together.

Change in one part of a program should not
require change in another part.

Closely related to abstraction.

Inheritance

Each subclass should define only the fields and
methods that are unique to it.

Shared behaviour should be inherited from the
parent class.

Single Inheritance

● A class can only inherit from one class in Java
(no multiple inheritance)
– A class can implement multiple interfaces (next

week)

Polymorphism

Call a method on objects of different classes
should do different things.

I call the same method on objects of different
classes, and trust that each object will do the right
thing.

Closely related to inheritance.

Object Oriented Principles

● Abstraction and Encapsulation are
represented by the concept of a class

● Inheritance is represented by the concept of
subclassing

● Polymorphism is represented by the concept
of overriding methods (and overloading
methods)

Advantages

● Easier to maintain and modify code
– Small change to one object instead of searching

through the whole codebase
– If the code is well designed!
– “Code will always be changed” - bug fixes, new

features

● Code reuse(?)
● Unit testing

Reading and Exercises

● Reading
– 2.10
– Chapter 4
– 10.1-10.6, 10.12

● Exercises
– 4.6 (all), 10.14 (exercises 1-6)
– The Object-Oriented Zoo (see course website)

● Labs
– Get started on lab 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

