

Lecture 10
Abstract classes, interfaces,

packages, lists

Inheritance Recap

● A class can extend another class
● class Enemy extends Fighter { … }

– Enemy is a subclass of Fighter

– Fighter is the superclass of Enemy

– All public and protected members of Fighter are now also members
of Enemy

– Objects of type Enemy can be used as though they were of type Fighter:

public static void punch(Fighter f) { … }
…
punch(new Enemy(…));

– An Enemy IS a Fighter!

Inheritance Recap

● A subclass can have methods not present in its
superclass

● class Person {
 public void talk() {
 System.out.println("Hi!");
 }
}
class BritishPerson extends Person {
 public void drinkTea() {
 System.out.println(
 "I do say, this blend is most delightful!"
);
 }
}
…
BritishPerson p = new BritishPerson();
p.talk();
p.drinkTea();

Inheritance Recap

● Adding a method to a subclass does not add it to its
superclass

● class Person {
 public void talk() {
 System.out.println("Hi!");
 }
}
class BritishPerson extends Person {
 public void drinkTea() {
 System.out.println(
 "I do say, this blend is most delightful!"
);
 }
}
…
Person p = new BritishPerson();
p.talk();
p.drinkTea(); ← Compiler error! Person has no method
 drinkTea()!

Inheritance Recap

● A subclass can override its superclass’ methods
● class Person {
 public void talk() {
 System.out.println("Hi!");
 }
}
class BritishPerson extends Person {
 @Override
 public void talk() {
 System.out.println("Greetings, old chap!");
 }
}
Person p = new BritishPerson();
p.talk();

Greetings, old chap!

Inheritance Recap

● A subclass can override its superclass’ methods
● class Person {
 public void talk() {
 System.out.println("Hi!");
 }
}
class BritishPerson extends Person {
 @Override
 public void talk() {
 System.out.println("Greetings, old chap!");
 }
}
Person p = new BritishPerson();
p.talk();

Which methods are available?
Decided by declared type.

Which version of each method to call?
Decided by actual type.

Inheritance Recap

Code Example: Adding a Boss Enemy

Abstract Classes

● An abstract class is an incomplete class!
● It may contain abstract methods – methods with

no definition!
● The intention is that we create subclasses that

implement these abstract methods in different
ways.

● We cannot create an instance of an abstract class
– only an instance of a completed subclass.

Abstract Classes - Example

abstract class Shape {
 public abstract double area();
}

class Circle extends Shape {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 @Override
 public double area() {
 return Math.PI * this.radius * this.radius;
 }
}

class Square extends Shape { … }

Abstract Classes - Rules

● A class is declared abstract with the abstract
keyword

● A method is declared abstract with the abstract
keyword

● If a class contains an abstract method, it must be
an abstract class

● An abstract class C cannot be instantiated.
new C(…) will not compile

● Abstract classes can contain everything that a non-
abstract class can contain:
instance variables, non-abstract methods, class
methods, class variables

Abstract Classes

Code Example: Abstract Fighters

Interface

Before Java 8:

An interface is a collection of abstract methods:
interface HasMass {
 double getMass();
}

Note:
● All methods are public and abstract. Keywords

are optional.
● Do not include them

Implementing Interfaces

A class can implement an interface:
class PointMass implements HasMass {
 public double mass;

 @Override
 public double hasMass() {
 return mass;
 }
}

Implementing Interfaces

A class can implement an interface:
class RigidBody implements HasMass {
 public double volume;
 public double density;

 @Override
 public double hasMass() {
 return volume * density;
 }
 …
}

Implementing Interfaces

Code Example

Abstract Classes vs Interfaces

Before Java 8:
● Abstract classes may contain instance

variables, non-abstract methods
● Interfaces can only contain abstract methods

(and constants)
● A class can only extend one class (abstract or

non-abstract)
● A class can implement more than one interface

Multiple Inheritance

● The Diamond Problem (Deadly Diamond of
Death):

A has a method f
B and C both override f
We call f on an object of type D
Which code is executed?

Image from Wikipedia

Solutions from Various Languages:

● C++: We have to say which we want when we
call f (B::A.f() or C::A.f())

● Python: We give the superclasses an order
when we construct D

● PHP (before 2012): No multiple inheritance

Implementing Multiple Interfaces

A class can only extend one class (abstract or
non-abstract)

but it can implement many interfaces:
class FilledSquare
 extends Square
 implements Moveable, Drawable, ...

Multiple Inheritance

So f cannot be defined (non-abstract) in both B and C.
When we call f() on an object, it must have just one
definition.

Abstract Classes vs Interfaces

Java 7
Abstract Class Interface

Instance variables Yes No

Abstract methods Yes Yes

Public non-abstract methods Yes No

Constants Yes Yes

Constructors Yes No

Private methods Yes No

Abstract Classes vs Interfaces

Java 8

● Public non-abstract methods are added with the
default keyword

Abstract Class Interface

Instance variables Yes No

Abstract methods Yes Yes

Public non-abstract methods Yes Yes

Constants Yes Yes

Constructors Yes No

Private methods Yes No

Abstract Classes vs Interfaces

Java 9
Abstract Class Interface

Instance variables Yes No

Abstract methods Yes Yes

Public non-abstract methods Yes Yes

Constants Yes Yes

Constructors Yes No

Private methods Yes Yes

So what about the Diamond
Problem?

● If interfaces I1 and I2 both implement default
method f (i.e. non-abstract method):
class C implements I1, I2 { … }
will not compile.

● I expect in future versions of Java: no difference
between abstract classes and interfaces

Is-a vs Has-a

class Vehicle {
 public void speedUp() {…}
}
class Engine {
 public int getSize() {…}
}

How should we write the class Car?

We want to speedUp a car and get its engine
size...

Is-a vs Has-a

● Is-a relationships are represented by subclassing
● Has-a relationships are represented by composition

A car is a vehicle
A car has an engine
class Car extends Vehicle {
 Engine engine;
 public int getEngineSize() {
 return engine.getSize();
 }
}

Packages

Classes are collected into packages

Package names are all lower case

Put related classes in the same package

The first line of the file gives the name of the
package
package graphics;

The package name must be the same as the
directory name

Namespaces

Suppose class Circle is in package graphics

Inside graphics: we refer to it as Circle

Outside graphics: we must import it to use it
● import graphics;

– We can now refer to the class as graphics.Circle

● import graphics.Circle;
– We can now refer to the class as Circle

Access Modifiers

● A class or interface may be public or
package-private (no modifier)
– Public: Can be accessed anywhere in the program
– Package-private: Can only be accessed within the

same package

● A file can contain at most one public class,
which must have the same name as the file
(minus .java)

Access Modifiers

● A member (method or instance variable) can be
public, protected, private or package-
private (no modifier)

Image from opensourceforgeeks.blogspot.com

Subpackages

Packages can contain subpackages:
package graphics.3d;

This must be in the directory graphics/3d

● Reading
– Java Direkt med Swing 10.7-10.8, 3.1-3.2

● Exercises
– Java Direkt med Swing chapter 10
– The Object-Oriented Zoo 2.0 (see course website)
– Play around with this week’s code examples – can

you turn the pieces into a simple, text-based game?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

