

Lecture 11 - Recursion

Housekeeping

● Plan for the rest of the course
– Today: recursion
– Next week: generics and collections
– Next week+1: practical programming

● Send me your requests!

– Final lecture: course recap
● Send me your requests!

Housekeeping

● Easter re-exams
– Part A only
– 8/4, SB building
– NOT the huge SB multisal!
– Register in Ladok, starting from 11/2
– For extended time, etc: contact

tentamen.stodet@chalmers.se

– You can NOT lose points at the exam review!

Quiz time!

qui.su/4NfF

https://qui.su/present/19

OOP recap

● If class A extends class B, then:
– Every public method and instance variable of B, is

now also part of A
– We can use an object of class A as though it were

of class B

– Constructors in A may use super(…) to chain
constructors in B

OOP recap

● If class A extends class B, then:
– A can override methods from B

– That is, if a method m is defined in B, A can provide
its own version of that method.

– A class which overrides a method m can use
super.m(…) to call its superclass’ version of m
instead of its own

OOP quiz time!

qui.su/4NfF

https://qui.su/present/19

Example - Factorial

The function n! (the factorial of n) is defined to
be:

n! = 1 . 2 . … . n

We can define this recursively:

0! = 1

(n+1)! = n! * (n+1)

How Does It Work?

Image from
https://alvinalexander.com/scala/fp-book/recursion-jvm-stacks-stack-frames

https://alvinalexander.com/scala/fp-book/recursion-jvm-stacks-stack-frames

Example – number of zeros in (the decimal
representation of) a number

Iteration vs Recursion – Exponentiation

Recursion vs Iteration

● It is always possible to rewrite a recursive
function so that it is not recursive.

● Iterative methods are usually faster and use
less memory

● Recursive methods can be easier to read,
modify, test and debug

● Very useful for “backtracking” solutions

Fibonacci Numbers

Leonardo of Pisa (“Fibonacci”) wrote Liber Abaci
in 1202:

Fibonacci Numbers

One of the puzzles from Liber Abaci:

A newly born pair of rabbits, one male, one female, are put
in a field;

rabbits are able to mate at the age of one month so that at
the end of its second month a female can produce another
pair of rabbits;

rabbits never die and a mating pair always produces one
new pair (one male, one female) every month from the
second month on.

How many pairs will there be in one year?

Fibonacci Numbers

Month Young pairs Adult pairs
1 0 1

2 1 1

3 1 2

4 2 3

5 3 5

6 5 8

7 8 13

8 13 21

9 21 34

10 34 55

11 55 89

12 89 144

Fibonacci Numbers

F
1
 = 1

F
2
 = 1

F
n+1

 = F
n-1

 + F
n

Break + quiz time!

qui.su/4NfF

https://qui.su/present/19

Towers of Hanoi
https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

Divide-and-Conquer

To solve a problem on a big case:

Just assume you know how to solve it on a smaller case!

Example: Binary Search

To find an element n in a sorted array a[]:
● If a[] is empty, fail
● Compare n to the middle element a[i]
● If they are equal, return i
● If n is smaller, find n in the subarray a[0],…,a[i-1]
● If n is larger, find n in the subarray a[i+1], …, a[a.length-1]

Towers of Hanoi
Can we implement an algorithm for it?

https://www.mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

How to Write a Good Recursive
Method

● The method should contain an if-statement
● One branch of the if-statement (the base case)

returns without recursing
– There can be more than one

● The other branches involve recursive calls in
which the parameter is smaller in some sense.

The Compiler/IDE Cannot Help You!

● It is impossible to write a program that will
decide correctly whether any recursive function
always terminates
– This is an instance of the Halting Problem

Reading and Exercises

● Reading
– Java Direkt med Swing 19.4

● Exercises
– Java Direkt med Swing exercises 19.5, 19.6
– Bonus Exercises: Sorting, fix the bug(s) in this

lecture’s code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

