

Lecture 13
Practical Programming

“Practical”?

● Real programs:
– Manipulate files
– Can be called with arguments
– Are often event-based

● ...but we haven’t done any of that so far!
● Because there’s so much to learn, and so little

time! :(

Graphical Programs

● We’re going to make a (bad) text editor!
● Using Swing!

– Pros: used in the book, easy to get started
– Cons: being replaced by JavaFX, looks terrible

● Principles are largely the same
● There will be no graphics programming on the

exam!

Components

● Graphical programs consist of (many)
components

● Inherit (unsurprisingly) from… Component
● In our program:

– JFrame: the window

– JTextArea: an area for text entry

– JButton: a button

– JPanel: used to lay out the other components

Let’s Get Started!

Event-Based Programming

● Most programs are event-based
● They sit around doing nothing until something

happens – an event
– A network request
– A keystroke
– A mouse click
– …

● Then they respond to the event, and go back to
doing nothing

ActionListener

● Interface for classes that can react to events
● Has one important method:

void actionPerformed(ActionEvent event)

● Objects implementing ActionListener can
be added to Components

● actionPerformed is called whenever an
event happens on that component

Adding a “Clear” Button

File Handling

● A text editor that can’t save or load files is pretty
useless

● So far we’ve used java Program < file.txt
● But this is very inflexible

– What if we want to read more than one file?
– What if we don’t know which file to read when we

start the program?

File Handling

● We can use the File class to work with files
File file = new File("my_file.txt");
if(file.exists()) {
 System.out.println("The file exists!");
 file.delete();
 System.out.println("Now it’s gone!");
} else {
 System.out.println("The file does not exist!");
}

● File lives in package java.io.
● https://docs.oracle.com/javase/7/docs/api/java/io/File.html

https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Reading Files

● We can construct a Scanner from a File
File file = new File("my_file.txt");
try {
 Scanner scan = new Scanner(file);
 while(scan.hasNextLine()) {
 System.out.println(scan.nextLine());
 }
 scan.close();
} catch (FileNotFoundException e) {
 System.out.println("The file does not exist!");
 System.exit(1);
}

Reading Files

● We can construct a Scanner from a File
File file = new File("my_file.txt");
try {
 Scanner scan = new Scanner(file);
 while(scan.hasNextLine()) {
 System.out.println(scan.nextLine());
 }
 scan.close();
} catch (FileNotFoundException e) {
 System.out.println("The file does not exist!");
 System.exit(1);
}

FileNotFoundException is
a checked exception: we must

handle it, or our program
won’t compile!

Don’t forget to close
the scanner; the file will
be locked until we do!

Adding a “Save” Button

Writing Files

● We can construct a FileWriter from a File

● ...which we then use to construct a PrintWriter
File file = new File("my_file.txt");
try {
 FileWriter fileWriter = new FileWriter(file);
 PrintWriter writer = new PrintWriter(fileWriter);
 writer.println("Hello, I’m a line of text!");
 writer.println("And so am I!");
 writer.close();
} catch (IOException e) {
 System.out.println("Something went wrong!");
 System.exit(1);
}

● FileWriter and PrintWriter live in package
java.io.

Writing Files

● We can construct a FileWriter from a File

● ...which we then use to construct a PrintWriter
File file = new File("my_file.txt");
try {
 FileWriter fileWriter = new FileWriter(file);
 PrintWriter writer = new PrintWriter(fileWriter);
 writer.println("Hello, I’m a line of text!");
 writer.println("And so am I!");
 writer.close();
} catch (IOException e) {
 System.out.println("Something went wrong!");
 System.exit(1);
}

● FileWriter and PrintWriter live in package
java.io.

IOException is also checked,
and could mean a disk error,

trying to create a file in a directory
that doesn’t exist, etc.

The writer also needs to be
closed, to avoid locking
the file for longer than

necessary

Adding a “Load” Button

Command Line Arguments

● Like methods, programs can take arguments
● cp my_file.txt my_copy.txt

– Copies my_file.txt to my_copy.txt

● wc -l my_file.txt
– Counts the number of lines in my_file.txt

● cat a.txt b.txt c.txt > abc.txt
– Concatenates a, b and c.txt, and writes the result

to abc.txt

Command Line Arguments

● When you double-click file.txt
– The operating system figures out which program is

used to open .txt files

– The operating system calls that program with
file.txt as its first argument

– C:\Windows\system32\notepad.exe file.txt
on a new Windows machine

Command Line Arguments

public class Program {
 public static void main(String[] args) {
 for(String arg: args) {
 System.out.println(arg);
 }
 }
}

Did you ever wonder what
String[] args is?

Command Line Arguments

public class Program {
 public static void main(String[] args) {
 for(String arg: args) {
 System.out.println(arg);
 }
 }
}

java Program Hello, I am the arguments!
Prints:
Hello,
I
am
the
arguments!

Did you ever wonder what
String[] args is?

Command Line Arguments

● public class Program {
 public static void main(String[] args) {
 for(String arg: args) {
 System.out.println(arg);
 }
 }
}

java Program "Hello, I am the arguments!"
Prints:
Hello, I am the arguments!

Did you ever wonder what
String[] args is?

Starting the Program with a File

Reading and Exercises

● Reading
– 5.5, 16.6, 9.4

● Exercises
– 5.7, exercises 5, 6, 8
– Bonus exercise: Contact List (see course website)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

