Lecture 14
Wrapping Up



About the Exam

Friday, March 13t 08.30 to 11.00
- It was the only available slot :(

Will cover second half of the course
- But no graphical programming!
Some knowledge from first half still necessary

- Kind of hard to come up with questions that don’t involve
methods, variables, etc...

- Grading will be more lenient for these parts

Everyone registered in Canvas on Feb. 28t (a Friday)
will be registered for the exam

- Spread the word!



Overloading

public Circle(double r, String color) {

}

public Circle (double r) {

}



Overloading

public class Enemy {
public void kick (int damage) {

}
public void kick (Player kicker) {

}

Player john = new Player ("John McClane");
Enemy hans = new Enemy ("Hans Gruber");

hans.kick (5) ;
hans.kick (john);



Inheritance

* A class can extend another class
e class Enemy extends Fighter { .. }

- Enemy IS a subclass of Fighter
- Fighter is the superclass of Enemy

— All public and protected members of Fighter are now also members
of Enemy

- Objects of type Enemy can be used as though they were of type Fighter:

public static void punch(Fighter £f) { .. }

punch (new Enemy (..));

- An Enemy ISa Fighter!



Inheritance

* A subclass can have methods not present in its
superclass

e class Person {
public void talk () {
System.out.println ("Hi!");

}
}

class BritishPerson extends Person {
public void drinkTea () {
System.out.println (
"I do say, this blend is most delightful!"
) ;
}
}

BritishPerson p = new BritishPerson();
p.talk () ;
p.drinkTea () ;



Inheritance

* Adding a method to a subclass does not add it to its
superclass

e class Person {
public void talk () {
System.out.println ("Hi!");

}
}

class BritishPerson extends Person {
public void drinkTea () {
System.out.println (
"I do say, this blend is most delightful!"
) ;
}
}

Person p = new BritishPerson();

p.talk();

p.drinkTea (); « Compiler error! Person has no method
drinkTea () !



Overriding

* A subclass can override its superclass’ methods

e class Person {
public void talk () {
System.out.println ("H1!");

}
}

class BritishPerson extends Person {
@Override
public void talk () {
System.out.println ("Greetings, old chap!");

}
}

Person p = new BritishPerson();
p.talk();

e



Overriding

* A subclass can override its superclass’ methods

e class Person {
public void talk () {
System.out.println ("H1!");

n extends Person {

c void talk () {
stem.out.println (

Person p = new BritishPerson();
p.talk();



Overriding vs. Overloading

* Overloading: decided at compile time ~ g&

public class Enemy extends Fighter { .. }

public void punch (Enemy e) {
System.out.println ("punched an enemy");

}

public void punch(Fighter e) {
System.out.println ("punched a fighter");

}

Fighter someone = new Enemy (..);
punch (someone) ;

« Output: punched a fighter



Overriding vs. Overloading

* Overriding: decided at run time AE

public class Fighter {
public void punch () {
System.out.println ("fighter got punched");
}
}

public class Enemy extends Fighter ({
@Override
public void punch () {
System.out.println ("enemy got punched");
}
}

Fighter someone = new Enemy (..);
someone.punch () ;

e Output: enemy got punched



The super keyword

Let A be a subclass of B.
Inside the class A, the keyword super has two uses:

* |t refers to the current object as If it were an object
of class B, letting you use the methods and fields

of class B.

* As the first line of a constructor, it invokes a
constructor of B.

(Compare with the keyword this.)



Is-a vs Has-a

class Vehicle {
public voilid speedUp () {..}

}

class Engine {
public 1nt getSize () {..}

}

How should we write the class Car?

We want to speedUp a car and get Iits engine
size...



Is-a vs Has-a

* Is-a relationships are represented by subclassing
* Has-a relationships are represented by composition

A car is a vehicle
A car has an engine

class Car extends Vehicle {
Engine engine;
public int getEngineSize () {
return engine.getSize();

}



Interface

Before Java 8:

An interface is a collection of abstract methods:

interface HasMass {
double getMass();

}

Note:

* All methods are public and abstract. Keywords
are optional.

- Do not include them =



Implementing Interfaces

A class can implement an interface:

class PointMass implements HasMass ({
public double mass;

@Override
public double hasMass () {
return mass;

}
}



Implementing Interfaces

A class can implement an interface:

class RigidBody implements HasMass {
public double wvolume;
public double density;

@Override
public double hasMass () {
return volume * density;

}



Implementing Multiple Interfaces

A class can only extend one class (abstract or
non-abstract)

but it can implement many interfaces:

class FillledSquare
extends Square

implements Moveable, Drawable,



Abstract Classes

An abstract class Is an incomplete class!

It may contain abstract methods — methods with
no definition!

The intention Is that we create subclasses that
Implement these abstract methods in different

ways.

We cannot create an instance of an abstract class
— only an instance of a completed subclass.



Abstract Classes - Example

abstract class Shape {
public abstract double area();

}

class Circle extends Shape {
private double radius;

public Circle (double radius) {

this.radius = radius;
}
@Override
public double area () {

return Math.PI * this.radius * this.radius;

}
}

class Square extends Shape { .. }



Abstract Classes - Rules

‘ A class is declared abstract with the abstract
keyword

A method is declared abstract with the abstract
keyword

e |f a class contains an abstract method, it must be
an abstract class

 An abstract class C cannot be instantiated.
new C(...) will not compile

* Abstract classes can contain everything that a non-
abstract class can contain:
Instance variables, non-abstract methods, class
methods, class variables



Recursion

A method calling itself until some condition is
met

e Arecursive method m should have:

— A conditional (if, switch, etc.) statement which
decides which case to execute

- 1+ base case(s), which return without recursing
- 1+ recursive case(s), which call m with smaller input

* For some notion of “smaller”



Recursive Example: Fibonacci

public int fib(int n) {
if(n < 2) {
return 1;
}
return fib(n-1) + fib(n—-2);
}



Recursive Example: Fibonacci

public int fib(int n) {
if(n < 2) {
return 1;

}
return fib(n-1) + fib(n-2);

}
« Don’t worry about how fib works when you call it
recursively

* Instead, just assume that it will solve the problem for the
smaller input

* Then combine solutions for smaller inputs into solution for
“your” input



Recursion vs Iteration

* |t Is always possible to rewrite a recursive
function so that It iIs not recursive.

* |terative methods are usually faster and use
ess memory

 Recursive methods can be easier to read,
modify, test and debug

* Very useful for “backtracking” solutions



Generic Methods

A method signature may have type parameters:

public static <T> List<T> replicate(int copies, T elem) {
List<T> list = new ArrayList<T>();
for(int i = 0; 1 < copies; i++) {
list.add(elem) ;
}

return list;

}

Inside the method, we may use type parameters like
any other type.

* Variables can have type S, T or S[] or List<S> or ...
However, we cannot write new S();



Generic Classes

Classes may also have type parameters:

public class Pair<S, T> {

Now we have classes
e Pair<Integer, Integer>

e Palr<String, Double>

e« Pair<Pair<Integer, Integer>, Double>

* etc.

A type parameter must be instantiated with a class (not a primitive data
type).
Abstract classes and interfaces may have type parameters.



Lists

Different types of list implement the List<T>

Interface
LinkedList<T>

- Fast append, slow indexing
ArrayList<T>

- Fast indexing, slow append
Use the right one for your use case



Lists

* Lists are handy when:

- We don’t know in advance how many elements we
will need

- We want to add and remove elements later (not just
overwrite old ones)

* They are not so good when:
- We need very high performance
- We need to minimize memory usage



Maps (“avbildningstabeller”)

The interface Map<K, V> has the following methods:

e boolean put (K key, V value) (optional) —
associates value with key

e boolean containsKey (Object o) —true if the map
contains an entry with the key o

« E get (K key) —returns the element associated with
the given key

e int size () - number of mappings in the map

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html


https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

equals has a friend: hashCode

* Generates a hash of the object
e If a.equals (b), then

a.hashCode () == b.hashCode ()
- Does NOT apply the other way around!
(E.g. a.hashCode () == b.hashCode ()

does not Imply a.equals (b))

* Used to speed up comparisons

— 1f (a.hashCode () == b.hashCode()) {
return a.equals (b);
} else {
return false;

}



equals has a friend: hashCode

« Simplest valid implementation of equals:

@QOverride
public int hashCode () {
return 0O;

}
* A more useful implementation:

@QOverride

public int hashCode () {
int hash = this.name.hashCode () ;
hash = hash*97 + this.skill.hashCode () ;
hash = hash*97 + this.age;

return hash; *
}



HashMap

 Efficient implementation of Map<K, V> based
on hashing

 Unordered, but useful In most circumstances
when you want a map

* Performance and correctness depends on
K .hashCode () being correct and well-written



File Handling

* Atext editor that can’t save or load files Is pretty
useless

e« So far we've used java Program < file.txt

* But this Is very inflexible
- What If we want to read more than one file?

- What if we don’t know which file to read when we
start the program?



File Handling

« We can use the File class to work with files
File file = new File("my_file.txt");

if (file.exists ()) {
System.out.println ("The file exists!");
file.delete () ;
System.out.println ("Now it’s gone!");
} else {
System.out.println ("The file does not exist!");

}
e File lives In package java.io.

* https://docs.oracle.com/javase///docs/api/java/io/File.html


https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Reading Files

« We can construct a Scanner fromarile

File file = new File("my_file.txt");

try {
Scanner scan = new Scanner (file) ;
while (scan.hasNextLine ()) {

System.out.println(scan.nextLine());

}
scan.close () ;

} catch (FileNotFoundException e) {
System.out.println("The file does not exist!");
System.exit (1) ;



Writing Files

e« We can constructaFileWriter fromarile

e ...which we then use to constructa PrintWriter

File file = new File("my_file.txt");

try {
FileWriter fileWriter = new FileWriter (file);
PrintWriter writer = new PrintWriter (fileWriter);
writer.println("Hello, I'm a line of text!");
writer.println("And so am I!");
writer.close () ;

} catch (IOException e) {

System.out.println ("Something went wrong!");
System.exit (1) ;

}

e FileWriter and PrintWriter live In package
java.1io.



Command Line Arguments

public class Program {

public static void main(String[] args) {
for (String arg: args) {

System.out.println (arqg);

}
}
}

jJjava Program Hello, I am the arguments!

Prints:
Hello,

I

am

the
arguments!



Reading and Exercises

* Reading
- Everything from lectures 9 through 13

e Exercises
- Everything from lectures 9 through 13
- Bonus exercises

- Old exams
 But check course website for old exam errata!



Good luck on the exam!

Thanks for a great course!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

