Lecture 14
Wrapping Up



About the Exam

Friday, March 13t 08.30 to 11.00
- It was the only available slot :(

Will cover second half of the course
- But no graphical programming!
Some knowledge from first half still necessary

- Kind of hard to come up with questions that don’t involve
methods, variables, etc...

- Grading will be more lenient for these parts

Everyone registered in Canvas on Feb. 28t (a Friday)
will be registered for the exam

- Spread the word!



Overloading

public Circle(double r, String color) {

}

public Circle (double r) {

}



Overloading

public class Enemy {
public void kick (int damage) {

}
public void kick (Player kicker) {

}

Player john = new Player ("John McClane");
Enemy hans = new Enemy ("Hans Gruber");

hans.kick (5) ;
hans.kick (john);



Inheritance

* A class can extend another class
e class Enemy extends Fighter { .. }

- Enemy IS a subclass of Fighter
- Fighter is the superclass of Enemy

— All public and protected members of Fighter are now also members
of Enemy

- Objects of type Enemy can be used as though they were of type Fighter:

public static void punch(Fighter £f) { .. }

punch (new Enemy (..));

- An Enemy ISa Fighter!



Inheritance

* A subclass can have methods not present in its
superclass

e class Person {
public void talk () {
System.out.println ("Hi!");

}
}

class BritishPerson extends Person {
public void drinkTea () {
System.out.println (
"I do say, this blend is most delightful!"
) ;
}
}

BritishPerson p = new BritishPerson();
p.talk () ;
p.drinkTea () ;



Inheritance

* Adding a method to a subclass does not add it to its
superclass

e class Person {
public void talk () {
System.out.println ("Hi!");

}
}

class BritishPerson extends Person {
public void drinkTea () {
System.out.println (
"I do say, this blend is most delightful!"
) ;
}
}

Person p = new BritishPerson();

p.talk();

p.drinkTea (); « Compiler error! Person has no method
drinkTea () !



Overriding

* A subclass can override its superclass’ methods

e class Person {
public void talk () {
System.out.println ("H1!");

}
}

class BritishPerson extends Person {
@Override
public void talk () {
System.out.println ("Greetings, old chap!");

}
}

Person p = new BritishPerson();
p.talk();

e



Overriding

* A subclass can override its superclass’ methods

e class Person {
public void talk () {
System.out.println ("H1!");

n extends Person {

c void talk () {
stem.out.println (

Person p = new BritishPerson();
p.talk();



Overriding vs. Overloading

* Overloading: decided at compile time ~ g&

public class Enemy extends Fighter { .. }

public void punch (Enemy e) {
System.out.println ("punched an enemy");

}

public void punch(Fighter e) {
System.out.println ("punched a fighter");

}

Fighter someone = new Enemy (..);
punch (someone) ;

« Output: punched a fighter



Overriding vs. Overloading

* Overriding: decided at run time AE

public class Fighter {
public void punch () {
System.out.println ("fighter got punched");
}
}

public class Enemy extends Fighter ({
@Override
public void punch () {
System.out.println ("enemy got punched");
}
}

Fighter someone = new Enemy (..);
someone.punch () ;

e Output: enemy got punched



The super keyword

Let A be a subclass of B.
Inside the class A, the keyword super has two uses:

* |t refers to the current object as If it were an object
of class B, letting you use the methods and fields

of class B.

* As the first line of a constructor, it invokes a
constructor of B.

(Compare with the keyword this.)



Is-a vs Has-a

class Vehicle {
public voilid speedUp () {..}

}

class Engine {
public 1nt getSize () {..}

}

How should we write the class Car?

We want to speedUp a car and get Iits engine
size...



Is-a vs Has-a

* Is-a relationships are represented by subclassing
* Has-a relationships are represented by composition

A car is a vehicle
A car has an engine

class Car extends Vehicle {
Engine engine;
public int getEngineSize () {
return engine.getSize();

}



Interface

Before Java 8:

An interface is a collection of abstract methods:

interface HasMass {
double getMass();

}

Note:

* All methods are public and abstract. Keywords
are optional.

- Do not include them =



Implementing Interfaces

A class can implement an interface:

class PointMass implements HasMass ({
public double mass;

@Override
public double hasMass () {
return mass;

}
}



Implementing Interfaces

A class can implement an interface:

class RigidBody implements HasMass {
public double wvolume;
public double density;

@Override
public double hasMass () {
return volume * density;

}



Implementing Multiple Interfaces

A class can only extend one class (abstract or
non-abstract)

but it can implement many interfaces:

class FillledSquare
extends Square

implements Moveable, Drawable,



Abstract Classes

An abstract class Is an incomplete class!

It may contain abstract methods — methods with
no definition!

The intention Is that we create subclasses that
Implement these abstract methods in different

ways.

We cannot create an instance of an abstract class
— only an instance of a completed subclass.



Abstract Classes - Example

abstract class Shape {
public abstract double area();

}

class Circle extends Shape {
private double radius;

public Circle (double radius) {

this.radius = radius;
}
@Override
public double area () {

return Math.PI * this.radius * this.radius;

}
}

class Square extends Shape { .. }



Abstract Classes - Rules

‘ A class is declared abstract with the abstract
keyword

A method is declared abstract with the abstract
keyword

e |f a class contains an abstract method, it must be
an abstract class

 An abstract class C cannot be instantiated.
new C(...) will not compile

* Abstract classes can contain everything that a non-
abstract class can contain:
Instance variables, non-abstract methods, class
methods, class variables



Recursion

A method calling itself until some condition is
met

e Arecursive method m should have:

— A conditional (if, switch, etc.) statement which
decides which case to execute

- 1+ base case(s), which return without recursing
- 1+ recursive case(s), which call m with smaller input

* For some notion of “smaller”



Recursive Example: Fibonacci

public int fib(int n) {
if(n < 2) {
return 1;
}
return fib(n-1) + fib(n—-2);
}



Recursive Example: Fibonacci

public int fib(int n) {
if(n < 2) {
return 1;

}
return fib(n-1) + fib(n-2);

}
« Don’t worry about how fib works when you call it
recursively

* Instead, just assume that it will solve the problem for the
smaller input

* Then combine solutions for smaller inputs into solution for
“your” input



Recursion vs Iteration

* |t Is always possible to rewrite a recursive
function so that It iIs not recursive.

* |terative methods are usually faster and use
ess memory

 Recursive methods can be easier to read,
modify, test and debug

* Very useful for “backtracking” solutions



Generic Methods

A method signature may have type parameters:

public static <T> List<T> replicate(int copies, T elem) {
List<T> list = new ArrayList<T>();
for(int i = 0; 1 < copies; i++) {
list.add(elem) ;
}

return list;

}

Inside the method, we may use type parameters like
any other type.

* Variables can have type S, T or S[] or List<S> or ...
However, we cannot write new S();



Generic Classes

Classes may also have type parameters:

public class Pair<S, T> {

Now we have classes
e Pair<Integer, Integer>

e Palr<String, Double>

e« Pair<Pair<Integer, Integer>, Double>

* etc.

A type parameter must be instantiated with a class (not a primitive data
type).
Abstract classes and interfaces may have type parameters.



Lists

Different types of list implement the List<T>

Interface
LinkedList<T>

- Fast append, slow indexing
ArrayList<T>

- Fast indexing, slow append
Use the right one for your use case



Lists

* Lists are handy when:

- We don’t know in advance how many elements we
will need

- We want to add and remove elements later (not just
overwrite old ones)

* They are not so good when:
- We need very high performance
- We need to minimize memory usage



Maps (“avbildningstabeller”)

The interface Map<K, V> has the following methods:

e boolean put (K key, V value) (optional) —
associates value with key

e boolean containsKey (Object o) —true if the map
contains an entry with the key o

« E get (K key) —returns the element associated with
the given key

e int size () - number of mappings in the map

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html


https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

equals has a friend: hashCode

* Generates a hash of the object
e If a.equals (b), then

a.hashCode () == b.hashCode ()
- Does NOT apply the other way around!
(E.g. a.hashCode () == b.hashCode ()

does not Imply a.equals (b))

* Used to speed up comparisons

— 1f (a.hashCode () == b.hashCode()) {
return a.equals (b);
} else {
return false;

}



equals has a friend: hashCode

« Simplest valid implementation of equals:

@QOverride
public int hashCode () {
return 0O;

}
* A more useful implementation:

@QOverride

public int hashCode () {
int hash = this.name.hashCode () ;
hash = hash*97 + this.skill.hashCode () ;
hash = hash*97 + this.age;

return hash; *
}



HashMap

 Efficient implementation of Map<K, V> based
on hashing

 Unordered, but useful In most circumstances
when you want a map

* Performance and correctness depends on
K .hashCode () being correct and well-written



File Handling

* Atext editor that can’t save or load files Is pretty
useless

e« So far we've used java Program < file.txt

* But this Is very inflexible
- What If we want to read more than one file?

- What if we don’t know which file to read when we
start the program?



File Handling

« We can use the File class to work with files
File file = new File("my_file.txt");

if (file.exists ()) {
System.out.println ("The file exists!");
file.delete () ;
System.out.println ("Now it’s gone!");
} else {
System.out.println ("The file does not exist!");

}
e File lives In package java.io.

* https://docs.oracle.com/javase///docs/api/java/io/File.html


https://docs.oracle.com/javase/7/docs/api/java/io/File.html

Reading Files

« We can construct a Scanner fromarile

File file = new File("my_file.txt");

try {
Scanner scan = new Scanner (file) ;
while (scan.hasNextLine ()) {

System.out.println(scan.nextLine());

}
scan.close () ;

} catch (FileNotFoundException e) {
System.out.println("The file does not exist!");
System.exit (1) ;



Writing Files

e« We can constructaFileWriter fromarile

e ...which we then use to constructa PrintWriter

File file = new File("my_file.txt");

try {
FileWriter fileWriter = new FileWriter (file);
PrintWriter writer = new PrintWriter (fileWriter);
writer.println("Hello, I'm a line of text!");
writer.println("And so am I!");
writer.close () ;

} catch (IOException e) {

System.out.println ("Something went wrong!");
System.exit (1) ;

}

e FileWriter and PrintWriter live In package
java.1io.



Command Line Arguments

public class Program {

public static void main(String[] args) {
for (String arg: args) {

System.out.println (arqg);

}
}
}

jJjava Program Hello, I am the arguments!

Prints:
Hello,

I

am

the
arguments!



Reading and Exercises

* Reading
- Everything from lectures 9 through 13

e Exercises
- Everything from lectures 9 through 13
- Bonus exercises

- Old exams
 But check course website for old exam errata!



Good luck on the exam!

Thanks for a great course!
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