Partial Differential Equations

Mohammad Asadzadeh

Course Information: TMA372, MMG800, MVE455

Outline

- Theoretical approach
- Approximation procedure
- Computational aspects

Content

- I. Trinities, ...,
- II. Vector/Function-spaces: The working environment
- III. Hadamards priciples: Existance, Uniqueness, Stability
- IV. Polynomial Approximation/Interpolation, Quadrature rule
- V. Galerkin Methods, Variational formulation, Minimization problem
- VI. Assignments I\&/I: Compulsary, Bonus generating
- VII. Final: (≥ 1 theory)+ 5 problems;

Breaking: $40 \%(3), 60 \%(4), 80(5) \%$ (Before add of bonus points) GU: 50\%(GK),74\%(VG)

Trinities

The usual three differential operators (of second order):

Laplace operator

$$
\Delta_{n}:=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n}^{2}},
$$

Diffusion operator

$$
\begin{array}{r}
\frac{\partial}{\partial t}-\Delta_{n}, \\
\square:=\frac{\partial^{2}}{\partial t^{2}}-\Delta_{n},
\end{array}
$$

d'Alembert operator
$\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is the space variabl $t \in \mathbb{R}^{+}$is the time, $\partial^{2} / \partial x_{i}^{2}$ denotes the second partial derivative with respect to $x_{i}, 1 \leq i \leq n$. We also define the gradient operator:

$$
\nabla_{n}:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) .
$$

Classifying second order PDE in 2 dimensions

I) The constant coefficient case

$A u_{x x}(x, y)+2 B u_{x y}(x, y)+C u_{y y}(x, y)+D u_{x}(x, y)+E u_{y}(x, y)+F u(x, y)+G=0$
The Discriminant: $d=A C-B^{2}$: determines the equation type:
Elliptic: if $d>0, \quad$ Parabolic: if $d=0, \quad$ and Hyperbolic: if $d<0$.

Example:

Potential equation	Heat equation	Wave equation
$\Delta u=0$	$\frac{\partial u}{\partial t}-\Delta u=0$	$\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0$
$u_{x x}+u_{y y}=0$	$u_{t}-u_{x x}=0$	$u_{t t}-u_{x x}=0$
$A=C=1, B=0$	$B=C=0, A=-1$	$A=-1, B=0, C=1$
$d=1$ (elliptic)	$d=0$ (parabolic)	$d=-1$ (hyperbolic).

Classifying (continued)

II) Variable coefficient case (only local classification)

Example For Tricomi equation of gas dynamics:

$$
L u(x, y)=y u_{x x}+u_{y y} \quad \Longrightarrow A=y, B=0, C=1, d=A C-B^{2}=y:
$$

Domain of ellipticity: $y>0$, so on,

The usual three types of problems in differential equation

I. Initial value problems (IVP)

Example: Wave equation, on real line, augmented with the given initial data:

$$
\left\{\begin{array}{lll}
u_{t t}-u_{x x}=0, & -\infty<x<\infty, & t>0, \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), & -\infty<x<\infty, & t=0
\end{array}\right.
$$

For the unbounded spatial domain $(-\infty, \infty)$ it is required that $u(x, t) \rightarrow 0$ (or $\rightarrow u_{\infty}=$ constant) as $|x| \rightarrow \infty$ (corresponds to two boundary conditions).
II. Boundary value problems (BVP)

Example: One-dimensional stationary heat equation:

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x), \quad \text { for } 0<x<1
$$

To determine $u(x)$ uniquely, the equation is complemented by boundary conditions; for example $u(0)=u_{0}$ and $u(1)=u_{1}$, (u_{0} and u_{1} : real numbers).

Problems (continued)

III. Eigenvalue problems (EVP)

Example: vibrating string given by

$$
-u^{\prime \prime}(x)=\lambda u(x), \quad u(0)=u(\pi)=0
$$

where λ is an eigenvalue and $u(x)$ is an eigenfunction.

The usual three types of boundary conditions

I. Dirichlet boundary condition: Solution known at the boundary of the domain,

$$
u(\mathbf{x}, t)=f(\mathbf{x}), \quad \text { for } \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \partial \Omega, \quad t>0 .
$$

II. Neumann boundary condition: Derivative of solution is given in a direction:

$$
\begin{aligned}
& \frac{\partial u}{\partial \mathbf{n}}=\mathbf{n} \cdot \operatorname{grad}(u)=\mathbf{n} \cdot \nabla u=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega \\
& \mathbf{n}=\mathbf{n}(\mathbf{x}): \text { outward unit normal to } \partial \Omega \text { at } \mathbf{x} \in \partial \Omega
\end{aligned}
$$

III. Robin boundary condition: (a combination of I and II),

$$
\frac{\partial u}{\partial \mathbf{n}}+k \cdot u(\mathbf{x}, t)=f(\mathbf{x}), \quad k>0, \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \partial \Omega .
$$

The usual three studies

In Theory:

I. Existence: there exists at least one solution u.
II. Uniqueness: we have either one solution or no solutions at all.
III. Stability: the solution depends continuously on the data.

In applications:
I. Construction of the solution.
II. Regularity: how smooth is the found solution.
III. Approximation: when an exact construction is impossible.

Three general approaches for solving differential equations

I. Separation of Variables Method:

Separation of variables technique reduces the (PDEs) to simpler eigenvalue problems (ODEs). This method is known as Fourier method, or solution by eigenfunction expansion.

II. Variational Formulation Method:

Variational formulation or the multiplier method is a strategy for extracting information by multiplying a differential equation by suitable test functions and then integrating. (Referred to as The Energy Method subject of our study).
III. Green's Function Method:

Fundamental solutions, or solution of integral equations (advanced PDE).

