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Some Function Space

Regularity requirement of classical solutions on Ω ⊂ Rn

I u ∈ C 1(Ω) : Every component of u has a continuous 1st order derivative.

I u ∈ C 2(Ω) :All partial derivatives of u of order 2 are continuous.

I u ∈ C 1(R+;C 2(Ω)) : ∂u
∂t ,

∂2u
∂xi∂xj

, i , j = 1, . . . , n are continuous.

Example

I C [0, T ], C k [0, T ]

I P(q): Space of polynomials of degree ≤ q

I T (q): Space of trigonimetric polynomials of degree ≤ q
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Vector Space

Definition
A set V of functions or vectors is called a linear space, or a vector space, if for all
u, v ,w ∈ V and all α, β ∈ R,

(i) u + αv ∈ V ,

(ii) (u + v) + w = u + (v + w),

(iii) u + v = v + u,

(iv) ∃ 0 ∈ V such that u + 0 = 0 + u = u,

(v) ∀ u ∈ V , ∃ (−u) ∈ V , such that u + (−u) = 0 ∈ V ,

(vi) (α + β)u = αu + βu,

(vii) α(u + v) = αu + αv ,

(viii) α(βu) = (αβ)u, such that 1 u = 1(u) := 1× u = u,

(1)

Definition
A subset U ⊂ V of a vector space V is a subspace of V if

αu + βv ∈ U, ∀u, v ∈ U, and ∀α, β ∈ R.
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Scalar product

Definition A scalar product (inner product) is a real valued operator on V × V :
〈u, v〉 : V × V → R (or (u, v) : V × V → R) such that ∀ u, v , w ∈ V and
∀α ∈ R,

(i) 〈u, v〉 = 〈v , u〉 (symmetry)

(ii) 〈u + αv ,w〉 = 〈u,w〉+ α〈v ,w〉 (bi-linearity)

(iii) 〈v , v〉 ≥ 0 ∀v ∈ V (positivity)

(iv) 〈v , v〉 = 0⇐⇒ v = 0.

(2)

Definition An inner product, or scalar product, space is a vector space W
associated with a scalar product 〈·, ·〉, defined on W ×W .

Example Spaces of continuous functions on [a, b] : C ([a, b]); k-times continuously
differentiable functions on [a, b] : C k((a, b)); polynomials of degree ≤ q on
[a, b] : P(q)(a, b) are inner product spaces with

〈u, v〉 :=

∫ b

a

u(x)v(x)dx . (3)

Note: space of all polynomials of degree = q on [a, b] is not a vector space.
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Orthogonality

Definition
Two real functions u(x) and v(x) are orthogonal (u ⊥ v), if 〈u, v〉 = 0.

Definition
The space of all square integrable functions over Ω ∈ Rn is the L2(Ω)-space.
If u ∈ L2(Ω), then the L2-norm of u associated with the above scalar product is

‖u‖L2(Ω) : =
√
〈u, u〉 =

(∫
Ω

|u(x)|2dx
)1/2

,

L2(Ω) : = {u : Ω→ R; ‖u‖L2(Ω) <∞}.
(4)

In the L2 case we usually suppress the subscript and write ‖u‖ for ‖u‖L2(Ω).
General Lp-spaces and norms, 1 ≤ p ≤ ∞, are defined below.

Lp(Ω) := {u : ‖u‖Lp(Ω) =
(∫

Ω

|u(x)|p dx
)1/p

<∞}, 1 ≤ p <∞
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L2-connected inequalitirs

Cauchy Schwarz’ inequality (C-S)

|〈u, v〉| ≤ ‖u‖‖v‖

Simple proof with ‖ · ‖2 := 〈·, ·〉:

〈u, v〉 = ‖u‖‖v‖ cos(u, v).

Triangle inequality (A consequence of C-S):

‖u + v‖ ≤ ‖u‖+ ‖v‖.
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Space of Differentiable Functions

Definition (Ω ⊂ Rn bounded open set)
Ck(Ω̄) is the set of all functions u ∈ Ck(Ω) such that Dαu can be extended from
Ω to Ω̄, for all multiindex α = (α1, . . . , αn), |α| ≤ k . The space Ck(Ω̄) is
equipped with supremum norm

||u||Ck (Ω̄) :=
∑
|α|≤k

sup
x∈Ω
|Dαu(x)|.

Hence, e.g., for k = 0,

C(Ω̄) := C0(Ω̄) = {u : ||u||C(Ω̄) = ||u||C0(Ω̄) <∞}

where
||u||C(Ω̄) := ||u||C0(Ω̄) = sup

x∈Ω
|u(x)| = max

x∈Ω
|u(x)|.

and for k = 1,

||u||C1(Ω̄) :=
∑
|α|≤1

sup
x∈Ω
|Dαu(x)| = sup

x∈Ω
|u(x)|+

n∑
i=1

sup
x∈Ω
| ∂u
∂xi

(x)|.
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Space of Integrable Functions

Class of Lebesgue integrable functions on an open set Ω ⊂ Rn (or Ω = Rn):

Lp(Ω) :=
{
u :
(∫

Ω

|u(x)|p dx
)1/p

<∞
}
, 1 ≤ p <∞.

u = v ∈ Lp(Ω), if u = v except on a set of measure zero. We say u = v almost
everywhere (denote by u = v a.e. ). Lp(Ω) is associated with norm

||u||Lp(Ω) :=
(∫

Ω

|u(x)|p dx
)1/p

, 1 ≤ p <∞

||u||L∞(Ω) := ess. supx∈Ω |u(x)|,

The latter is the L∞(Ω)-norm, also know as maximum norm in case Ω is bounded.

Applications:
Modelling density of particles L1(Ω)-norm corresponds to a measure for the mass.
L2(Ω)-norm can be related to measuring the energy.
||u||L2(Ω) = (u, u)1/2 ≥ 0 (with equality only if u ≡ 0).
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Sobolev Spaces
Definition (Ω open subset of Rn; k ≥ 0, integer; p ∈ [1,∞]).
Sobolev space of order k and corresponding Sobolev norms are defined by

W k
p (Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k}, (5)

||u||W k
p (Ω) :=

( ∑
|α|≤k

||Dαu||pLp(Ω)

)1/p

, 1 ≤ p <∞ (6)

||u||W k
∞(Ω) :=

∑
|α|≤k

||Dαu||L∞(Ω). (7)

We also define the seminorms

|u|W k
p (Ω) :=

( ∑
|α|=k

||Dαu||pLp(Ω)

)1/p

, 1 ≤ p <∞. (8)

Thus ||u||W k
p (Ω) =

(∑k
j=0 |u|

p

W j
p(Ω)

)1/p

, 1 ≤ p <∞, and

|u|W k
∞(Ω) :=

∑
|α|=k ||Dαu||L∞(Ω) which implies ||u||W k

∞(Ω) =
∑k

j=0 |u|W j
∞(Ω).
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Hilbert Spaces

For k = 0, | · |W k
p (Ω) is the usual Lp-norm. Seminorm is used when k ≥ 1.

p = 2 and k = 1, 2 called the Hilbert spaces and denoted by Hk(Ω):

H1(Ω) := {u ∈ L2(Ω) :
∂u

∂xj
∈ L2(Ω), j = 1, . . . , n} (9)

||u||H1(Ω) :=
(
||u||2L2(Ω) +

n∑
j=1

|| ∂u
∂xj
||2L2(Ω)

)1/2

, |u|H1(Ω) :=
( n∑

j=1

|| ∂u
∂xj
||2L2(Ω)

)1/2

.

H2(Ω) :=
{
u : u,

∂u

∂xj
,

∂2u

∂xi∂xj
∈ L2(Ω), i , j = 1, . . . , n

}
||u||H2(Ω) :=

(
||u||2L2(Ω) +

n∑
j=1

|| ∂u
∂xj
||

2

L2(Ω)

+
n∑

i,j=1

|| ∂
2u

∂xi∂xj
||2L2(Ω)

)1/2

,

|u|H2(Ω) :=
( n∑

i,j=1

|| ∂u

∂xi∂xj
||2L2(Ω)

)1/2

.
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Basic Inequalities

Definition: p and q, 1 < p, q <∞ are conjugate exponents if 1/p + 1/q = 1.
Minkowski and Hölder Inequalities:

||u + v ||Lp(Ω) ≤ ||u||Lp(Ω) + ||v ||Lp(Ω), (Minkowski) (10)

If u ∈ Lp(Ω), v ∈ Lq(Ω) and 1/p + 1/q = 1, then∫
Ω

u(x)v(x) dx ≤ ||u||Lp(Ω)||v ||Lq(Ω) (Hölder) (11)

Poincaré inequality: (u, solution of a homogeneous Dirichlet problem)
u, |∇u| ∈ L2(Ω), Ω ⊂ Rd (bdd). Then, ∃CΩ, independent of u such that

‖u‖ ≤ CΩ‖∇u‖. (12)

Trace inequality: Let u ∈W 1
p (Ω), then ∃C constant such that, for 1 ≤ p ≤ ∞,

||u||Lp(∂Ω) ≤ C ||u||1−1/p
Lp(Ω) ||u||

1/p
W 1

p (Ω). (13)

In particular for p = 2 we have that

||u||2L2(∂Ω) ≤ C ||u||L2(Ω)||u||H1(Ω). (14)
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Gronwall’s lemma

Suppose that u is a non-negative continuous function such that

ϕ(t) ≤ α(t)−
∫ t

0

β(s)ϕ(s) ds, t > 0,

(a) If β is nonnegative then

ϕ(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp
(∫ t

s

β(r) dr
)
ds, t > 0.

(b) If, in addition, α is non-decreasing, then

ϕ(t) ≤ α(t) exp
(∫ t

0

β(s) ds
)
.
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Boundary value problem

u(x): displacement of the bar at a point x ∈ I = (0, 1)
a(x): modulus of elasticity
f (x): load function.
Then u satisfies the boundary value problem:

(BVP)1

{
−
(
a(x)u′(x)

)′
= f (x), 0 < x < 1,

u(0) = u(1) = 0.
(15)

Equation (15) is modelling also the stationary heat flux derived in Chapter 1.
Assume a(x) is continuous in (0, 1) and bounded for 0 ≤ x ≤ 1.
Let v , v ′ ∈ L2(0, 1), and recall the L2-based Sobolev space: Hilbert space

H1
0 (0, 1) =

{
v :

∫ 1

0

(v(x)2 + v ′(x)2)dx <∞, v(0) = v(1) = 0
}
. (16)

As a consequence of Poincaré inequality H1
0 (0, 1) is identically defined as

H1
0 (0, 1) =

{
v :

∫ 1

0

v ′(x)2 dx <∞, v(0) = v(1) = 0
}
. (17)
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Variational Formulation (VF)

Multiply (BVP)1 by a test function v ∈ H1
0 (0, 1) and integrate over (0, 1) :

−
∫ 1

0

(a(x)u′(x))′v(x)dx =

∫ 1

0

f (x)v(x)dx . (18)

Integration by parts yields

−
[
a(x)u′(x)v(x)

]1

0
+

∫ 1

0

a(x)u′(x)v ′(x)dx =

∫ 1

0

f (x)v(x)dx . (19)

Since v(0) = v(1) = 0 we obtain the variational formulation for the problem (15):
Find u ∈ H1

0 (0, 1) such that

(VF)1

∫ 1

0

a(x)u′(x)v ′(x)dx =

∫ 1

0

f (x)v(x)dx , ∀v ∈ H1
0 . (20)

Thus, we have shown that if u satisfies (BVP)1, then u satisfies (VF)1:

(BVP)1 =⇒ (VF)1.

We shall show the reverse implication is also true, i.e., (VF)1 =⇒ (BVP)1.
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The minimization Problem

For problem (15), we formulate yet another equivalent problem:

Find u ∈ H1
0 : F (u) ≤ F (w), ∀w ∈ H1

0 ,

(MP)1 F (w) =
1

2

∫ 1

0

a(w ′)2dx

Internal (elastic) energy

−
∫ 1

0

fwdx .

Load potential

(21)

This means that the solution u minimizes the energy functional F (w).

Theorem
(BVP)1 ”⇐⇒ ” (VF )1 ⇐⇒ (MP)1.

Recall that ”⇐⇒ ” is a conditional equivalence, requiring u to be twice
differentiable, for the reverse implication.
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An Abstract Framework

Consider the simple one-dimensional boundary value problem:

(BVP) : −u′′(x) = f (x), 0 < x < 1 u(0) = u(1) = 0, (22)

Let V = H1
0 and define

a(u, v) := (u, v) :=

∫ 1

0

u′(x)v ′(x)dx , (23)

then (·, ·) is symmetric, i.e. (u, v) = (v , u), bilinear , and positive definite:

(u, u) ≥ 0, and (u, u) = 0⇐⇒ u ≡ 0.

Further, for f ∈ L2(0, 1), let

`(v) =

∫ 1

0

fv dx , ∀v ∈ H1
0, (24)

Then our (VF) can be restated as : Find u ∈ H1
0 such that

a(u, v) = `(v), ∀v ∈ H1
0. (25)
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General form, Hilbers spce, coercivity

Generalizing the above (e.g. to a Hilbert space defined below), to a bilinear form
a(·, ·), and a linear form L(·), we get the abstract problem: Find u ∈ V , such that

a(u, v) = L(v) ∀v ∈ V . (26)

Definition. A linear space V (vector space) with the norm ‖ · ‖ is called complete
if every Cauchy sequence in V is convergent.

Definition.A Hilbert space is a complete linear space with a scalar product.

Definition. Let ‖ · ‖V be a norm corresponding to a scalar product (·, ·)V defined
on V × V . Then the bilinear form a(·, ·) is called coercive ( V-elliptic), and a(·, ·)
and L(·) are continuous, if there are constants ci , i = 1, 2, 3 such that:

a(v , v) ≥ c1‖v‖2
V , ∀v ∈ V (coercivity) (27)

|a(u, v)| ≤ c2‖u‖V ‖v‖V , ∀u, v ∈ V (a is bounded) (28)

|L(v)| ≤ c3‖v‖V , ∀v ∈ V (L is bounded). (29)
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Existence, Uniqueness; Riesz and Lax-Milgram Theorem

Recalling

(u, v) =

∫ 1

0

u′(x)v ′(x)dx and `(v) =

∫ 1

0

f (x)v(x)dx ,

we may redefine variational formulation (VF) and minimization problem (MP) in
an abstract form as (V) and (M):

(V) Find u ∈ H1
0, such that (u, v) = `(v) for all v ∈ H1

0

(M) Find u ∈ H1
0, such that F (u) = min

v∈H1
0

F (v) F (v) =
1

2
‖v‖2 − `(v).

Riesz and Lax-Milgram Theorem:

There exists a unique solution for the, equivalent, problems (V) and (M).
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