Partial Differential Equations

Mohammad Asadzadeh

Math Tools: TMA372, MMG800, MVE455

Outline: Mathematical Tools

- Function Spaces
- Vector Spaces
- Space of Differentiable functions
- Space of Integrable functions
- Weak Derivative
- Sobolev Spaces
- Basic inequalities
- Pover of Abstraction
- Riesz and Lax-Milgram Theorems

Some Function Space

Regularity requirement of classical solutions on $\Omega \subset \mathbb{R}^{n}$

- $\mathbf{u} \in C^{1}(\Omega)$: Every component of \mathbf{u} has a continuous 1st order derivative.
- $\mathbf{u} \in C^{2}(\Omega)$:All partial derivatives of \mathbf{u} of order 2 are continuous.
- $\mathbf{u} \in C^{1}\left(\mathbb{R}^{+} ; C^{2}(\Omega)\right): \frac{\partial \mathbf{u}}{\partial t}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}, i, j=1, \ldots, n$ are continuous.

Example

- $C[0, T], \quad C^{k}[0, T]$
- $\mathcal{P}^{(q)}$: Space of polynomials of degree $\leq q$
- $\mathcal{T}^{(q)}$: Space of trigonimetric polynomials of degree $\leq q$

Vector Space

Definition

A set V of functions or vectors is called a linear space, or a vector space, if for all $u, v, w \in V$ and all $\alpha, \beta \in \mathbb{R}$,
(i) $u+\alpha v \in V$,
(ii) $(u+v)+w=u+(v+w)$,
(iii) $u+v=v+u$,
(iv) $\exists 0 \in V$ such that $u+0=0+u=u$,
(v) $\forall u \in V, \exists(-u) \in V, \quad$ such that $\quad u+(-u)=0 \in V$,
(vi) $(\alpha+\beta) u=\alpha u+\beta u$,
(vii) $\alpha(u+v)=\alpha u+\alpha v$,
(viii) $\alpha(\beta u)=(\alpha \beta) u, \quad$ such that $1 u=1(u):=1 \times u=u$,

Definition
A subset $U \subset V$ of a vector space V is a subspace of V if

$$
\alpha u+\beta v \in U, \quad \forall u, v \in U, \quad \text { and } \quad \forall \alpha, \beta \in \mathbb{R}
$$

Scalar product

Definition A scalar product (inner product) is a real valued operator on $V \times V$: $\langle u, v\rangle: V \times V \rightarrow \mathbb{R}($ or $(u, v): V \times V \rightarrow \mathbb{R})$ such that $\forall u, v, w \in V$ and $\forall \alpha \in \mathbb{R}$,

$$
\begin{align*}
& \text { (i) }\langle u, v\rangle=\langle v, u\rangle \\
& \text { (ii) }\langle u+\alpha v, w\rangle=\langle u, w\rangle+\alpha\langle v, w\rangle \\
& \text { (iii) }\langle v, v\rangle \geq 0 \quad \forall v \in V \tag{2}\\
& \text { (iv) }\langle v, v\rangle=0 \Longleftrightarrow v=0 .
\end{align*}
$$

Definition An inner product, or scalar product, space is a vector space W associated with a scalar product $\langle\cdot, \cdot\rangle$, defined on $W \times W$.
Example Spaces of continuous functions on $[a, b]: C([a, b])$; k-times continuously differentiable functions on $[a, b]: C^{k}((a, b))$; polynomials of degree $\leq q$ on $[a, b]: \mathcal{P}^{(q)}(a, b)$ are inner product spaces with

$$
\begin{equation*}
\langle u, v\rangle:=\int_{a}^{b} u(x) v(x) d x . \tag{3}
\end{equation*}
$$

Note: space of all polynomials of degree $=q$ on $[a, b]$ is not a vector space.

Orthogonality

Definition

Two real functions $u(x)$ and $v(x)$ are orthogonal ($u \perp v$), if $\langle u, v\rangle=0$.

Definition

The space of all square integrable functions over $\Omega \in \mathbb{R}^{n}$ is the $L_{2}(\Omega)$-space. If $u \in L_{2}(\Omega)$, then the L_{2}-norm of u associated with the above scalar product is

$$
\begin{align*}
\|u\|_{L_{2}(\Omega)} & :=\sqrt{\langle u, u\rangle}=\left(\int_{\Omega}|u(x)|^{2} d x\right)^{1 / 2}, \tag{4}\\
L_{2}(\Omega) & :=\left\{u: \Omega \rightarrow \mathbb{R} ;\|u\|_{L_{2}(\Omega)}<\infty\right\} .
\end{align*}
$$

In the L_{2} case we usually suppress the subscript and write $\|u\|$ for $\|u\|_{L_{2}(\Omega)}$. General L_{p}-spaces and norms, $1 \leq p \leq \infty$, are defined below.

$$
L_{p}(\Omega):=\left\{u:\|u\|_{L_{p}(\Omega)}=\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}<\infty\right\}, \quad 1 \leq p<\infty
$$

L_{2}-connected inequalitirs

Cauchy Schwarz' inequality (C-S)

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

Simple proof with $\|\cdot\|^{2}:=\langle\cdot, \cdot\rangle$:

$$
\langle u, v\rangle=\|u\|\|v\| \cos (u, v) .
$$

Triangle inequality (A consequence of C-S):

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

Space of Differentiable Functions

Definition $\left(\Omega \subset \mathbb{R}^{n}\right.$ bounded open set) $\mathcal{C}^{k}(\bar{\Omega})$ is the set of all functions $u \in \mathcal{C}^{k}(\Omega)$ such that $D^{\alpha} u$ can be extended from Ω to $\bar{\Omega}$, for all multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right),|\alpha| \leq k$. The space $\mathcal{C}^{k}(\bar{\Omega})$ is equipped with supremum norm

$$
\|u\|_{\mathcal{C}^{k}(\bar{\Omega})}:=\sum_{|\alpha| \leq k} \sup _{x \in \Omega}\left|D^{\alpha} u(x)\right| .
$$

Hence, e.g., for $k=0$,

$$
\mathcal{C}(\bar{\Omega}):=\mathcal{C}^{0}(\bar{\Omega})=\left\{u:\|u\|_{\mathcal{C}(\bar{\Omega})}=\|u\|_{\mathcal{C}^{0}(\bar{\Omega})}<\infty\right\}
$$

where

$$
\|u\|_{\mathcal{C}(\bar{\Omega})}:=\|u\|_{\mathcal{C}^{0}(\bar{\Omega})}=\sup _{x \in \Omega}|u(x)|=\max _{x \in \Omega}|u(x)| .
$$

and for $k=1$,

$$
\|u\|_{\mathcal{C}^{1}(\bar{\Omega})}:=\sum_{|\alpha| \leq 1} \sup _{x \in \Omega}\left|D^{\alpha} u(x)\right|=\sup _{x \in \Omega}|u(x)|+\sum_{i=1}^{n} \sup _{x \in \Omega}\left|\frac{\partial u}{\partial x_{i}}(x)\right| .
$$

Space of Integrable Functions

Class of Lebesgue integrable functions on an open set $\Omega \subset \mathbb{R}^{n}\left(\right.$ or $\left.\Omega=\mathbb{R}^{n}\right)$:

$$
L_{p}(\Omega):=\left\{u:\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}<\infty\right\}, \quad 1 \leq p<\infty .
$$

$u=v \in L_{p}(\Omega)$, if $u=v$ except on a set of measure zero. We say $u=v$ almost everywhere (denote by $u=v$ a.e.). $L_{p}(\Omega)$ is associated with norm

$$
\begin{aligned}
& \|u\|_{L_{p}(\Omega)}:=\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}, \quad 1 \leq p<\infty \\
& \|u\|_{L_{\infty}(\Omega)}:=\text { ess. } \sup _{x \in \Omega}|u(x)|,
\end{aligned}
$$

The latter is the $L_{\infty}(\Omega)$-norm, also know as maximum norm in case Ω is bounded.

Applications:

Modelling density of particles $L_{1}(\Omega)$-norm corresponds to a measure for the mass. $L_{2}(\Omega)$-norm can be related to measuring the energy.
$\|u\|_{L_{2}(\Omega)}=(u, u)^{1 / 2} \geq 0$ (with equality only if $u \equiv 0$).

Sobolev Spaces

Definition (Ω open subset of $\mathbb{R}^{n} ; k \geq 0$, integer; $p \in[1, \infty]$).
Sobolev space of order k and corresponding Sobolev norms are defined by

$$
\begin{align*}
& W_{p}^{k}(\Omega):=\left\{u \in L_{p}(\Omega): D^{\alpha} u \in L_{p}(\Omega),|\alpha| \leq k\right\}, \tag{5}\\
&\|u\|_{W_{p}^{k}(\Omega)}:=\left(\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L_{p}(\Omega)}^{p}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{6}\\
&\|u\|_{W_{\infty}^{k}(\Omega)}:=\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L_{\infty}(\Omega)} . \tag{7}
\end{align*}
$$

We also define the seminorms

$$
\begin{equation*}
|u|_{W_{p}^{k}(\Omega)}:=\left(\sum_{|\alpha|=k}\left\|D^{\alpha} u\right\|_{L_{p}(\Omega)}^{p}\right)^{1 / p}, \quad 1 \leq p<\infty . \tag{8}
\end{equation*}
$$

Thus $\|u\|_{W_{p}^{k}(\Omega)}=\left(\sum_{j=0}^{k}|u|_{W_{p}^{j}(\Omega)}^{p}\right)^{1 / p}, \quad 1 \leq p<\infty$, and
$|u|_{W_{\infty}^{k}(\Omega)}:=\sum_{|\alpha|=k}\left\|D^{\alpha} u\right\|_{L_{\infty}(\Omega)} \quad$ which implies $\|u\|_{W_{\infty}^{k}(\Omega)}=\sum_{j=0}^{k}|u|_{W_{\infty}^{j}(\Omega)}$.

Hilbert Spaces

For $k=0,|\cdot|_{W_{p}^{k}(\Omega)}$ is the usual L_{p}-norm. Seminorm is used when $k \geq 1$. $p=2$ and $k=1,2$ called the Hilbert spaces and denoted by $H^{k}(\Omega)$:

$$
\begin{gather*}
H^{1}(\Omega):=\left\{u \in L_{2}(\Omega): \frac{\partial u}{\partial x_{j}} \in L_{2}(\Omega), j=1, \ldots, n\right\} \tag{9}\\
\|u\|_{H^{2}(\Omega)}:=\left(\|u\|_{L_{2}(\Omega)}^{2}+\sum_{j=1}^{n}\left\|\frac{\partial u}{\partial x_{j}}\right\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2},|u|_{H^{1}(\Omega)}:=\left(\sum_{j=1}^{n}\left\|\frac{\partial u}{\partial x_{j}}\right\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2} . \\
H^{2}(\Omega):=\left\{u: u, \frac{\partial u}{\partial x_{j}}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \in L_{2}(\Omega), i, j=1, \ldots, n\right\} \\
\|u\|_{H^{2}(\Omega)}:=\left(\|u\|_{L_{2}(\Omega)}^{2}+\sum_{j=1}^{n}\left\|\frac{\partial u}{\partial x_{j}}\right\|_{L_{2}(\Omega)}^{2}+\sum_{i, j=1}^{n}\left\|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right\| \|_{L_{2}(\Omega)}^{2}\right)^{1 / 2}, \\
|u|_{H^{2}(\Omega)}:=\left(\sum_{i, j=1}^{n}\left\|\frac{\partial u}{\partial x_{i} \partial x_{j}}\right\| \|_{L_{2}(\Omega)}^{2}\right)^{1 / 2} .
\end{gather*}
$$

Basic Inequalities

Definition: p and $q, 1<p, q<\infty$ are conjugate exponents if $1 / p+1 / q=1$. Minkowski and Hölder Inequalities:

$$
\begin{equation*}
\|u+v\|_{L_{p}(\Omega)} \leq\|u\|_{L_{p}(\Omega)}+\|v\|_{L_{p}(\Omega)}, \quad \text { (Minkowski) } \tag{10}
\end{equation*}
$$

If $u \in L_{p}(\Omega), v \in L_{q}(\Omega)$ and $1 / p+1 / q=1$, then

$$
\begin{equation*}
\int_{\Omega} u(x) v(x) d x \leq\|u\|_{L_{p}(\Omega)}\|v\|_{L_{q}(\Omega)} \quad \text { (Hölder) } \tag{11}
\end{equation*}
$$

Poincaré inequality: (u, solution of a homogeneous Dirichlet problem) $u,|\nabla u| \in L_{2}(\Omega), \Omega \subset \mathbb{R}^{d}$ (bdd). Then, $\exists C_{\Omega}$, independent of u such that

$$
\begin{equation*}
\|u\| \leq C_{\Omega}\|\nabla u\| . \tag{12}
\end{equation*}
$$

Trace inequality: Let $u \in W_{p}^{1}(\Omega)$, then $\exists C$ constant such that, for $1 \leq p \leq \infty$,

$$
\begin{equation*}
\|u\|_{L_{p}(\partial \Omega)} \leq C\|u\|_{L_{p}(\Omega)}^{1-1 / p}\|u\|_{W_{p}^{1}(\Omega)}^{1 / p} . \tag{13}
\end{equation*}
$$

In particular for $p=2$ we have that

$$
\begin{equation*}
\|u\|_{L_{2}(\partial \Omega)}^{2} \leq C\|u\|_{L_{2}(\Omega)}\|u\|_{H^{1}(\Omega)} . \tag{14}
\end{equation*}
$$

Gronwall's lemma

Suppose that u is a non-negative continuous function such that

$$
\varphi(t) \leq \alpha(t)-\int_{0}^{t} \beta(s) \varphi(s) d s, \quad t>0
$$

(a) If β is nonnegative then

$$
\varphi(t) \leq \alpha(t)+\int_{0}^{t} \alpha(s) \beta(s) \exp \left(\int_{s}^{t} \beta(r) d r\right) d s, \quad t>0 .
$$

(b) If, in addition, α is non-decreasing, then

$$
\varphi(t) \leq \alpha(t) \exp \left(\int_{0}^{t} \beta(s) d s\right)
$$

Boundary value problem

$u(x)$: displacement of the bar at a point $x \in I=(0,1)$
$a(x)$: modulus of elasticity
$f(x)$: load function.
Then u satisfies the boundary value problem:

$$
(B V P)_{1} \quad\left\{\begin{array}{l}
-\left(a(x) u^{\prime}(x)\right)^{\prime}=f(x), \quad 0<x<1 \tag{15}\\
u(0)=u(1)=0
\end{array}\right.
$$

Equation (15) is modelling also the stationary heat flux derived in Chapter 1. Assume $a(x)$ is continuous in $(0,1)$ and bounded for $0 \leq x \leq 1$. Let $v, v^{\prime} \in L_{2}(0,1)$, and recall the L_{2}-based Sobolev space: Hilbert space

$$
\begin{equation*}
H_{0}^{1}(0,1)=\left\{v: \int_{0}^{1}\left(v(x)^{2}+v^{\prime}(x)^{2}\right) d x<\infty, \quad v(0)=v(1)=0\right\} \tag{16}
\end{equation*}
$$

As a consequence of Poincaré inequality $H_{0}^{1}(0,1)$ is identically defined as

$$
\begin{equation*}
H_{0}^{1}(0,1)=\left\{v: \int_{0}^{1} v^{\prime}(x)^{2} d x<\infty, \quad v(0)=v(1)=0\right\} \tag{17}
\end{equation*}
$$

Variational Formulation (VF)

Multiply $(\mathrm{BVP})_{1}$ by a test function $v \in H_{0}^{1}(0,1)$ and integrate over $(0,1)$:

$$
\begin{equation*}
-\int_{0}^{1}\left(a(x) u^{\prime}(x)\right)^{\prime} v(x) d x=\int_{0}^{1} f(x) v(x) d x \tag{18}
\end{equation*}
$$

Integration by parts yields

$$
\begin{equation*}
-\left[a(x) u^{\prime}(x) v(x)\right]_{0}^{1}+\int_{0}^{1} a(x) u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x \tag{19}
\end{equation*}
$$

Since $v(0)=v(1)=0$ we obtain the variational formulation for the problem (15):
Find $u \in H_{0}^{1}(0,1)$ such that

$$
\begin{equation*}
(\mathrm{VF})_{1} \quad \int_{0}^{1} a(x) u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x, \quad \forall v \in H_{0}^{1} \tag{20}
\end{equation*}
$$

Thus, we have shown that if u satisfies $(\mathrm{BVP})_{1}$, then u satisfies $(\mathrm{VF})_{1}$:

$$
(\mathrm{BVP})_{1} \Longrightarrow(\mathrm{VF})_{1} .
$$

We shall show the reverse implication is also true, i.e., $(\mathrm{VF})_{1} \Longrightarrow(\mathrm{BVP})_{1}$.

The minimization Problem

For problem (15), we formulate yet another equivalent problem:
Find $u \in H_{0}^{1}: F(u) \leq F(w), \forall w \in H_{0}^{1}$,

$$
\begin{equation*}
(\mathrm{MP})_{1} \quad F(w)=\frac{1}{2} \int_{0}^{1} a\left(w^{\prime}\right)^{2} d x \quad-\int_{0}^{1} f w d x . \tag{21}
\end{equation*}
$$

This means that the solution u minimizes the energy functional $F(w)$.
Theorem

$$
(B V P)_{1} " \Longleftrightarrow "(V F)_{1} \Longleftrightarrow(M P)_{1} .
$$

Recall that " $\Longleftrightarrow "$ is a conditional equivalence, requiring u to be twice differentiable, for the reverse implication.

An Abstract Framework

Consider the simple one-dimensional boundary value problem:

$$
\begin{equation*}
(B \vee P): \quad-u^{\prime \prime}(x)=f(x), \quad 0<x<1 \quad u(0)=u(1)=0, \tag{22}
\end{equation*}
$$

Let $V=\mathcal{H}_{0}^{1}$ and define

$$
\begin{equation*}
a(u, v):=(u, v):=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x, \tag{23}
\end{equation*}
$$

then (\cdot, \cdot) is symmetric, i.e. $(u, v)=(v, u)$, bilinear , and positive definite:

$$
(u, u) \geq 0, \quad \text { and }(u, u)=0 \Longleftrightarrow u \equiv 0 .
$$

Further, for $f \in L_{2}(0,1)$, let

$$
\begin{equation*}
\ell(v)=\int_{0}^{1} f v d x, \quad \forall v \in \mathcal{H}_{0}^{1} \tag{24}
\end{equation*}
$$

Then our (VF) can be restated as : Find $u \in \mathcal{H}_{0}^{1}$ such that

$$
\begin{equation*}
a(u, v)=\ell(v), \quad \forall v \in \mathcal{H}_{0}^{1} \tag{25}
\end{equation*}
$$

General form, Hilbers spce, coercivity

Generalizing the above (e.g. to a Hilbert space defined below), to a bilinear form $a(\cdot, \cdot)$, and a linear form $L(\cdot)$, we get the abstract problem: Find $u \in V$, such that

$$
\begin{equation*}
a(u, v)=L(v) \quad \forall v \in V . \tag{26}
\end{equation*}
$$

Definition. A linear space V (vector space) with the norm $\|\cdot\|$ is called complete if every Cauchy sequence in V is convergent.

Definition.A Hilbert space is a complete linear space with a scalar product.
Definition. Let $\|\cdot\|_{V}$ be a norm corresponding to a scalar product $(\cdot, \cdot)_{V}$ defined on $V \times V$. Then the bilinear form $a(\cdot, \cdot)$ is called coercive (V-elliptic), and $a(\cdot, \cdot)$ and $L(\cdot)$ are continuous, if there are constants $c_{i}, i=1,2,3$ such that:

$$
\begin{align*}
a(v, v) \geq c_{1}\|v\|_{V}^{2}, \quad \forall v \in V & \text { (coercivity) } \tag{27}\\
|a(u, v)| \leq c_{2}\|u\|_{v}\|v\|_{v}, \quad \forall u, v \in V & \text { (a is bounded) } \tag{28}\\
|L(v)| \leq c_{3}\|v\|_{v}, \quad \forall v \in V & \text { (} L \text { is bounded). } \tag{29}
\end{align*}
$$

Existence, Uniqueness; Riesz and Lax-Milgram Theorem

Recalling

$$
(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x \quad \text { and } \quad \ell(v)=\int_{0}^{1} f(x) v(x) d x
$$

we may redefine variational formulation (VF) and minimization problem (MP) in an abstract form as (V) and (M):
(V) Find $u \in \mathcal{H}_{0}^{1}$, such that $(u, v)=\ell(v)$ for all $v \in \mathcal{H}_{0}^{1}$
(M) Find $u \in \mathcal{H}_{0}^{1}$, such that $F(u)=\min _{v \in \mathcal{H}_{0}^{1}} F(v) \quad F(v)=\frac{1}{2}\|v\|^{2}-\ell(v)$.

Riesz and Lax-Milgram Theorem:
There exists a unique solution for the, equivalent, problems (V) and (M).

