Partial Differential Equations

Mohammad Asadzadeh

Math Tools: TMA372, MMG800, MVE455

Outline: Mathematical Tools

- Function Spaces
- Vector Spaces
- Space of Differentiable functions
- Space of Integrable functions
- Weak Derivative
- Sobolev Spaces
- Basic inequalities
- Pover of Abstraction
- Riesz and Lax-Milgram Theorems

Some Function Space

Regularity requirement of classical solutions on $\Omega \subset \mathbb{R}^n$

- ▶ $\mathbf{u} \in C^1(\Omega)$: Every component of \mathbf{u} has a continuous 1st order derivative.
- ▶ $\mathbf{u} \in C^2(\Omega)$:All partial derivatives of \mathbf{u} of order 2 are continuous.
- ► $\mathbf{u} \in C^1(\mathbb{R}^+; C^2(\Omega)) : \frac{\partial \mathbf{u}}{\partial t}, \frac{\partial^2 \mathbf{u}}{\partial x_i \partial x_j}, i, j = 1, ..., n$ are continuous.

Example

- ► $C[0, T], C^{k}[0, T]$
- $\mathcal{P}^{(q)}$: Space of polynomials of degree $\leq q$
- $\mathcal{T}^{(q)}$: Space of trigonimetric polynomials of degree $\leq q$

Vector Space

Definition

A set V of functions or vectors is called a *linear space*, or a *vector space*, if for all $u, v, w \in V$ and all $\alpha, \beta \in \mathbb{R}$,

(i)
$$u + \alpha v \in V$$
,
(ii) $(u + v) + w = u + (v + w)$,
(iii) $u + v = v + u$,
(iv) $\exists 0 \in V$ such that $u + 0 = 0 + u = u$,
(v) $\forall u \in V, \exists (-u) \in V$, such that $u + (-u) = 0 \in V$,
(vi) $(\alpha + \beta)u = \alpha u + \beta u$,
(vii) $\alpha(u + v) = \alpha u + \alpha v$,
(viii) $\alpha(\beta u) = (\alpha \beta)u$, such that $1 u = 1(u) := 1 \times u = u$,
(1)

Definition

A subset $U \subset V$ of a vector space V is a *subspace* of V if

 $\alpha u+\beta v\in U,\quad \forall u,v\in U,\quad \text{and}\quad \forall \alpha,\beta\in\mathbb{R}.$

Scalar product

Definition A scalar product (inner product) is a real valued operator on $V \times V$: $\langle u, v \rangle : V \times V \to \mathbb{R}$ (or $(u, v) : V \times V \to \mathbb{R}$) such that $\forall u, v, w \in V$ and $\forall \alpha \in \mathbb{R}$,

(i)
$$\langle u, v \rangle = \langle v, u \rangle$$
 (symmetry)
(ii) $\langle u + \alpha v, w \rangle = \langle u, w \rangle + \alpha \langle v, w \rangle$ (bi-linearity)
(iii) $\langle v, v \rangle \ge 0 \quad \forall v \in V$ (positivity)
(iv) $\langle v, v \rangle = 0 \iff v = 0.$
(2)

Definition An inner product, or scalar product, space is a vector space W associated with a *scalar product* $\langle \cdot, \cdot \rangle$, defined on $W \times W$.

Example Spaces of continuous functions on [a, b] : C([a, b]); *k*-times continuously differentiable functions on $[a, b] : C^k((a, b))$; polynomials of degree $\leq q$ on $[a, b] : \mathcal{P}^{(q)}(a, b)$ are inner product spaces with

$$\langle u, v \rangle := \int_{a}^{b} u(x)v(x)dx.$$
 (3)

19 /

Note: space of all polynomials of degree = q on [a, b] is not a vector space. Mohammad Asadzadeh (Mathematical Sciences, Chalmers/GU)
Mohammad Asadzadeh (Mathematical Sciences, Chalmers/GU)

Orthogonality

Definition

Two real functions u(x) and v(x) are orthogonal $(u \perp v)$, if $\langle u, v \rangle = 0$.

Definition

The space of all square integrable functions over $\Omega \in \mathbb{R}^n$ is the $L_2(\Omega)$ -space. If $u \in L_2(\Omega)$, then the L_2 -norm of u associated with the above scalar product is

$$\begin{aligned} |u||_{L_{2}(\Omega)} &:= \sqrt{\langle u, u \rangle} = \left(\int_{\Omega} |u(x)|^{2} dx \right)^{1/2}, \\ L_{2}(\Omega) &:= \{ u : \Omega \to \mathbb{R}; \ \|u\|_{L_{2}(\Omega)} < \infty \}. \end{aligned}$$

$$(4)$$

In the L_2 case we usually suppress the subscript and write ||u|| for $||u||_{L_2(\Omega)}$. General L_p -spaces and norms, $1 \le p \le \infty$, are defined below.

$$L_p(\Omega) := \{ u : \|u\|_{L_p(\Omega)} = \left(\int_{\Omega} |u(x)|^p dx\right)^{1/p} < \infty \}, \quad 1 \le p < \infty$$

L₂-connected inequalitirs

Cauchy Schwarz' inequality (C-S)

 $|\langle u,v\rangle| \leq \|u\|\|v\|$

Simple proof with $\|\cdot\|^2 := \langle \cdot, \cdot \rangle$:

$$\langle u, v \rangle = ||u|| ||v|| \cos(u, v).$$

Triangle inequality (A consequence of C-S):

$$||u + v|| \le ||u|| + ||v||.$$

Space of Differentiable Functions

Definition ($\Omega \subset \mathbb{R}^n$ bounded open set)

 $\mathcal{C}^{k}(\overline{\Omega})$ is the set of all functions $u \in \mathcal{C}^{k}(\Omega)$ such that $D^{\alpha}u$ can be extended from Ω to $\overline{\Omega}$, for all multiindex $\alpha = (\alpha_{1}, \ldots, \alpha_{n}), |\alpha| \leq k$. The space $\mathcal{C}^{k}(\overline{\Omega})$ is equipped with supremum norm

$$||u||_{\mathcal{C}^k(\bar{\Omega})} := \sum_{|lpha| \leq k} \sup_{x \in \Omega} |D^{lpha}u(x)|.$$

Hence, e.g., for k = 0,

$$\mathcal{C}(\bar{\Omega}) := \mathcal{C}^{0}(\bar{\Omega}) = \{ u : ||u||_{\mathcal{C}(\bar{\Omega})} = ||u||_{\mathcal{C}^{0}(\bar{\Omega})} < \infty \}$$

where

$$||u||_{\mathcal{C}(\bar{\Omega})} := ||u||_{\mathcal{C}^0(\bar{\Omega})} = \sup_{x\in\Omega} |u(x)| = \max_{x\in\Omega} |u(x)|.$$

and for k = 1,

$$||u||_{\mathcal{C}^1(\bar{\Omega})} := \sum_{|\alpha| \leq 1} \sup_{x \in \Omega} |D^{\alpha}u(x)| = \sup_{x \in \Omega} |u(x)| + \sum_{i=1}^n \sup_{x \in \Omega} |\frac{\partial u}{\partial x_i}(x)|.$$

Space of Integrable Functions

Class of Lebesgue integrable functions on an open set $\Omega \subset \mathbb{R}^n$ (or $\Omega = \mathbb{R}^n$):

$$L_p(\Omega) := \Big\{ u : \Big(\int_{\Omega} |u(x)|^p \, dx \Big)^{1/p} < \infty \Big\}, \quad 1 \le p < \infty$$

 $u = v \in L_p(\Omega)$, if u = v except on a set of measure zero. We say u = v almost everywhere (denote by u = v a.e.). $L_p(\Omega)$ is associated with norm

$$\begin{aligned} ||u||_{L_p(\Omega)} &:= \left(\int_{\Omega} |u(x)|^p \, dx\right)^{1/p}, \qquad 1 \le p < \infty \\ ||u||_{L_{\infty}(\Omega)} &:= ess. \sup_{x \in \Omega} |u(x)|, \end{aligned}$$

The latter is the $L_{\infty}(\Omega)$ -norm, also know as maximum norm in case Ω is bounded.

Applications:

Modelling density of particles $L_1(\Omega)$ -norm corresponds to a measure for the mass. $L_2(\Omega)$ -norm can be related to measuring the energy. $||u||_{L_2(\Omega)} = (u, u)^{1/2} \ge 0$ (with equality only if $u \equiv 0$).

Sobolev Spaces

Definition (Ω open subset of \mathbb{R}^n ; $k \ge 0$, integer; $p \in [1, \infty]$). *Sobolev space* of order *k* and corresponding *Sobolev norms* are defined by

$$\mathcal{W}_{\rho}^{k}(\Omega) := \{ u \in L_{\rho}(\Omega) : D^{\alpha}u \in L_{\rho}(\Omega), \ |\alpha| \le k \},$$
(5)

$$||u||_{W^k_p(\Omega)} := \left(\sum_{|\alpha| \le k} ||D^{\alpha}u||^p_{L_p(\Omega)}\right)^{1/p}, \qquad 1 \le p < \infty$$
(6)

$$||u||_{W^k_{\infty}(\Omega)} := \sum_{|\alpha| \le k} ||D^{\alpha}u||_{L_{\infty}(\Omega)}.$$
(7)

We also define the *seminorms*

$$|u|_{W^k_p(\Omega)} := \left(\sum_{|\alpha|=k} ||D^{\alpha}u||^p_{L_p(\Omega)}\right)^{1/p}, \qquad 1 \le p < \infty.$$
(8)

Thus
$$||u||_{W_p^k(\Omega)} = \left(\sum_{j=0}^k |u|_{W_p^j(\Omega)}^p\right)^{1/p}$$
, $1 \le p < \infty$, and
 $|u|_{W_\infty^k(\Omega)} := \sum_{|\alpha|=k} ||D^{\alpha}u||_{L_\infty(\Omega)}$ which implies $||u||_{W_\infty^k(\Omega)} = \sum_{j=0}^k |u|_{W_\infty^j(\Omega)}$.
Math Tools: TMA372, MMG800, MVE455

Hilbert Spaces

For k = 0, $|\cdot|_{W_{p}^{k}(\Omega)}$ is the usual L_{p} -norm. Seminorm is used when $k \ge 1$. p = 2 and k = 1, 2 called the *Hilbert spaces* and denoted by $H^{k}(\Omega)$:

$$H^{1}(\Omega) := \{ u \in L_{2}(\Omega) : \frac{\partial u}{\partial x_{j}} \in L_{2}(\Omega), \ j = 1, \dots, n \}$$
(9)

$$||u||_{H^{1}(\Omega)} := \left(||u||_{L_{2}(\Omega)}^{2} + \sum_{j=1}^{n} ||\frac{\partial u}{\partial x_{j}}||_{L_{2}(\Omega)}^{2} \right)^{1/2}, \ |u|_{H^{1}(\Omega)} := \left(\sum_{j=1}^{n} ||\frac{\partial u}{\partial x_{j}}||_{L_{2}(\Omega)}^{2} \right)^{1/2}.$$

$$H^{2}(\Omega) := \left\{ u : u, \frac{\partial u}{\partial x_{j}}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \in L_{2}(\Omega), i, j = 1, \dots, n \right\}$$

$$||u||_{H^{2}(\Omega)} := \left(||u||_{L_{2}(\Omega)}^{2} + \sum_{j=1}^{n} ||\frac{\partial u}{\partial x_{j}}||_{L_{2}(\Omega)}^{2} + \sum_{i,j=1}^{n} ||\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}||_{L_{2}(\Omega)}^{2} \right)^{1/2},$$

$$|u|_{H^2(\Omega)} := \Big(\sum_{i,j=1}^n ||\frac{\partial u}{\partial x_i \partial x_j}||_{L_2(\Omega)}^2\Big)^{1/2}.$$

Basic Inequalities

Definition: p and q, 1 < p, $q < \infty$ are conjugate exponents if 1/p + 1/q = 1. **Minkowski and Hölder Inequalities**:

$$||u+v||_{L_{\rho}(\Omega)} \leq ||u||_{L_{\rho}(\Omega)} + ||v||_{L_{\rho}(\Omega)}, \qquad (\mathsf{Minkowski}) \tag{10}$$

If $u \in L_p(\Omega)$, $v \in L_q(\Omega)$ and 1/p + 1/q = 1, then

$$\int_{\Omega} u(x)v(x) \, dx \le ||u||_{L_{p}(\Omega)} ||v||_{L_{q}(\Omega)} \qquad (\mathsf{H\"older}) \tag{11}$$

Poincaré inequality: (*u*, solution of a homogeneous Dirichlet problem) $u, |\nabla u| \in L_2(\Omega), \Omega \subset \mathbb{R}^d$ (bdd). Then, $\exists C_{\Omega}$, independent of *u* such that

$$\|u\| \le C_{\Omega} \|\nabla u\|. \tag{12}$$

Trace inequality: Let $u \in W_p^1(\Omega)$, then $\exists C$ constant such that, for $1 \leq p \leq \infty$,

$$||u||_{L_{\rho}(\partial\Omega)} \le C||u||_{L_{\rho}(\Omega)}^{1-1/p}||u||_{W_{\rho}^{1}(\Omega)}^{1/p}.$$
(13)

In particular for p = 2 we have that

$$||u||_{L_{2}(\partial\Omega)}^{2} \leq C||u||_{L_{2}(\Omega)}||u||_{H^{1}(\Omega)}.$$
(14)

Gronwall's lemma

Suppose that u is a non-negative continuous function such that

$$arphi(t) \leq lpha(t) - \int_0^t eta(s) arphi(s) \, ds, \qquad t > 0,$$

(a) If β is nonnegative then

$$arphi(t) \leq lpha(t) + \int_0^t lpha(s)eta(s) \exp\left(\int_s^t eta(r) \, dr
ight) ds, \qquad t>0.$$

(b) If, in addition, α is non-decreasing, then

$$\varphi(t) \leq \alpha(t) \exp\Big(\int_0^t \beta(s) \, ds\Big).$$

Boundary value problem

u(x): displacement of the bar at a point $x \in I = (0, 1)$

- a(x): modulus of elasticity
- f(x): load function.

Then u satisfies the boundary value problem:

$$(BVP)_1 \qquad \begin{cases} -\left(a(x)u'(x)\right)' = f(x), & 0 < x < 1, \\ u(0) = u(1) = 0. \end{cases}$$
(15)

Equation (15) is modelling also the stationary heat flux derived in Chapter 1. Assume a(x) is continuous in (0,1) and bounded for $0 \le x \le 1$. Let $v, v' \in L_2(0,1)$, and recall the L_2 -based Sobolev space: *Hilbert space*

$$H_0^1(0,1) = \Big\{ v : \int_0^1 (v(x)^2 + v'(x)^2) dx < \infty, \quad v(0) = v(1) = 0 \Big\}.$$
 (16)

As a consequence of Poincaré inequality $H_0^1(0,1)$ is identically defined as

$$H_0^1(0,1) = \Big\{ v : \int_0^1 v'(x)^2 \, dx < \infty, \quad v(0) = v(1) = 0 \Big\}.$$
 (17)

Variational Formulation (VF)

Multiply $(BVP)_1$ by a test function $v \in H_0^1(0,1)$ and integrate over (0,1):

$$-\int_0^1 (a(x)u'(x))'v(x)dx = \int_0^1 f(x)v(x)dx.$$
 (18)

Integration by parts yields

$$-\left[a(x)u'(x)v(x)\right]_{0}^{1}+\int_{0}^{1}a(x)u'(x)v'(x)dx=\int_{0}^{1}f(x)v(x)dx.$$
 (19)

Since v(0) = v(1) = 0 we obtain the variational formulation for the problem (15): Find $u \in H_0^1(0, 1)$ such that

$$(VF)_{1} \qquad \int_{0}^{1} a(x)u'(x)v'(x)dx = \int_{0}^{1} f(x)v(x)dx, \quad \forall v \in H_{0}^{1}.$$
(20)

Thus, we have shown that if u satisfies $(BVP)_1$, then u satisfies $(VF)_1$:

$$(BVP)_1 \Longrightarrow (VF)_1.$$

We shall show the reverse implication is also true, i.e., $(VF)_1 \Longrightarrow (BVP)_1$. Math Tools: TMA372, MMG800, MVE455

The minimization Problem

For problem (15), we formulate yet another equivalent problem:

Find $u \in H_0^1$: $F(u) \leq F(w), \forall w \in H_0^1$,

$$(MP)_1 \qquad F(w) = \frac{1}{2} \int_0^1 a(w')^2 dx \qquad - \int_0^1 fw dx. \qquad (21)$$

Internal (elastic) energy Load potential

This means that the solution u minimizes the energy functional F(w).

Theorem

$$(BVP)_1$$
 " \iff " $(VF)_1 \iff (MP)_1$.

Recall that " \iff " is a conditional equivalence, requiring *u* to be twice differentiable, for the reverse implication.

An Abstract Framework

Consider the simple one-dimensional boundary value problem:

$$(BVP): -u''(x) = f(x), 0 < x < 1 u(0) = u(1) = 0, (22)$$

Let $V = \mathcal{H}_0^1$ and define

$$a(u,v) := (u,v) := \int_0^1 u'(x)v'(x)dx,$$
(23)

then (\cdot, \cdot) is symmetric, i.e. (u, v) = (v, u), bilinear, and positive definite:

$$(u, u) \ge 0$$
, and $(u, u) = 0 \iff u \equiv 0$.

Further, for $f \in L_2(0,1)$, let

$$\ell(\mathbf{v}) = \int_0^1 f \mathbf{v} \, d\mathbf{x}, \qquad \forall \mathbf{v} \in \mathcal{H}_0^1, \tag{24}$$

Then our (VF) can be restated as : Find $u \in \mathcal{H}_0^1$ such that

$$a(u,v) = \ell(v), \quad \forall v \in \mathcal{H}_0^1.$$
 (25)

General form, Hilbers spce, coercivity

Generalizing the above (e.g. to a Hilbert space defined below), to a bilinear form $a(\cdot, \cdot)$, and a linear form $L(\cdot)$, we get the abstract problem: Find $u \in V$, such that

$$a(u,v) = L(v) \quad \forall v \in V.$$
 (26)

Definition. A linear space V (vector space) with the norm $\|\cdot\|$ is called *complete* if every Cauchy sequence in V is convergent.

Definition.A Hilbert space is a complete linear space with a scalar product.

Definition. Let $\|\cdot\|_V$ be a norm corresponding to a scalar product $(\cdot, \cdot)_V$ defined on $V \times V$. Then the bilinear form $a(\cdot, \cdot)$ is called *coercive* (*V-elliptic*), and $a(\cdot, \cdot)$ and $L(\cdot)$ are continuous, if there are constants c_i , i = 1, 2, 3 such that:

$$\begin{aligned} a(v,v) \ge c_1 \|v\|_V^2, & \forall v \in V \quad \text{(coercivity)} \end{aligned} \tag{27} \\ |a(u,v)| \le c_2 \|u\|_V \|v\|_V, & \forall u, v \in V \quad (a \text{ is bounded}) \\ |L(v)| \le c_3 \|v\|_V, & \forall v \in V \quad (L \text{ is bounded}). \end{aligned} \tag{28}$$

Existence, Uniqueness; Riesz and Lax-Milgram Theorem

Recalling

$$(u,v) = \int_0^1 u'(x)v'(x)dx$$
 and $\ell(v) = \int_0^1 f(x)v(x)dx$,

we may redefine variational formulation (VF) and minimization problem (MP) in an abstract form as (V) and (M):

(V) Find $u \in \mathcal{H}_0^1$, such that $(u, v) = \ell(v)$ for all $v \in \mathcal{H}_0^1$

(M) Find $u \in \mathcal{H}_0^1$, such that $F(u) = \min_{v \in \mathcal{H}_0^1} F(v)$ $F(v) = \frac{1}{2} \|v\|^2 - \ell(v)$.

Riesz and Lax-Milgram Theorem:

There exists a unique solution for the, equivalent, problems (V) and (M).