Exercise class 1, exercise 1, parts c) and e)

András Bálint, andras.balint@chalmers.se

January 22, 2020

Use "least squares coefficient estimates" in the formula sheet. Compute the sample means first:
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{4} x_{i}}{4}=\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}=\frac{70+30+10+90}{4}=50$,
$\bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}=\frac{\sum_{i=1}^{4} y_{i}}{4}=\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}=\frac{20+60+100+20}{4}=50$.
Having these available allows computation of the least squares slope:
$\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)^{2}}=$
$=\frac{\left(x_{1}-\bar{x}\right)\left(y_{1}-\bar{y}\right)+\left(x_{2}-\bar{x}\right)\left(y_{2}-\bar{y}\right)+\left(x_{3}-\bar{x}\right)\left(y_{3}-\bar{y}\right)+\left(x_{4}-\bar{x}\right)\left(y_{4}-\bar{y}\right)}{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\left(x_{3}-\bar{x}\right)^{2}+\left(x_{4}-\bar{x}\right)^{2}}$
$=\frac{(70-50)(20-50)+(30-50)(60-50)+(10-50)(100-50)+(90-50)(20-50)}{(70-50)^{2}+(30-50)^{2}+(10-50)^{2}+(90-50)^{2}}$
$=\frac{-600-200-2000-1200}{400+400+1600+1600}=-1$.
Now we are ready to estimate the intercept as well:
$\hat{\beta_{0}}=\bar{y}-\hat{\beta_{1}} \bar{x}=50-(-1) \times 50=100$.
For the confidence intervals, we will need the standard errors $\mathrm{SE}\left(\hat{\beta_{0}}\right)$ and $\mathrm{SE}\left(\hat{\beta_{0}}\right)$ which in turn requires the standard residual error. That is computed using the residual sum of squares; to get that, we first compute the residuals. As the residuals are the difference between the observed and predicted values, we need to compute them as follows:
$e_{1}=y_{1}-\hat{y}_{1}=y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}=20-100-((-1) \times 70)=-10 ;$
$e_{2}=y_{2}-\hat{y}_{2}=y_{2}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{2}=60-100-((-1) \times 30)=-10$;
$e_{3}=y_{3}-\hat{y}_{3}=y_{3}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{3}=100-100-((-1) \times 10)=10$;
$e_{4}=y_{4}-\hat{y}_{4}=y_{4}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{4}=20-100-((-1) \times 90)=10$.
(Note: in the output from R , the residuals are reordered by x, hence we get the same residual values, but in a different order.)

Having the residuals available allows the computation of the residual sum of squares, the standard residual error and the standard error of the coefficient estimates:
$\mathrm{RSS}=e_{1}^{2}+e_{2}^{2}+\ldots+e_{n}^{2}=e_{1}^{2}+e_{2}^{2}+e_{3}^{2}+e_{4}^{2}=(-10)^{2}+(-10)^{2}+10^{2}+10^{2}=400$, $\mathrm{RSE}=\sqrt{\frac{1}{n-2} \mathrm{RSS}}=\sqrt{\frac{1}{2} 400}=14.1421$,
$\operatorname{SE}\left(\hat{\beta}_{0}\right)=\operatorname{RSE} \times \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=$
$=14.1421 \times \sqrt{\frac{1}{4}+\frac{50^{2}}{(70-50)^{2}+(30-50)^{2}+(10-50)^{2}+(90-50)^{2}}}=13.2288$
$\mathrm{SE}\left(\hat{\beta_{1}}\right)=\operatorname{RSE} \times \sqrt{\frac{1}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=$
$=14.1421 \times \sqrt{\frac{1}{(70-50)^{2}+(30-50)^{2}+(10-50)^{2}+(90-50)^{2}}}=0.2236$.
Therefore, the confidence intervals for the coefficients using the simplified formulas are as follows:
$\hat{\beta_{0}} \pm 2 \cdot \mathrm{SE}\left(\hat{\beta}_{0}\right)=100 \pm 2 \cdot 13.2288$, i.e. the interval [73.5425, 126.4575];
$\hat{\beta_{1}} \pm 2 \cdot \mathrm{SE}\left(\hat{\beta_{1}}\right)=-1 \pm 2 \cdot 0.2236$, i.e. the interval $[-1.4472,-0.5528]$.
Note: for such a small sample, the simplified intervals are NOT good enough. For the precise confidence intervals, 2 should be replaced by the 97.5% quantile of the t distribution with $n-2$ degrees of freedom, i.e. in this case the t distribution with $\mathrm{df}=2$. Tables or computers help us to find out that this value is 4.3027 , i.e. much larger than 2. The precise confidence intervals for coefficients are therefore:
$\hat{\beta_{0}} \pm 4.3027 \cdot \operatorname{SE}\left(\hat{\beta_{0}}\right)=100 \pm 4.3027 \cdot 13.2288$, i.e. the interval $[43.0804,156.9196] ;$
$\hat{\beta_{1}} \pm 4.3027 \cdot \operatorname{SE}\left(\hat{\beta_{1}}\right)=-1 \pm 4.3027 \cdot 0.2236$, i.e. the interval $[-1.9621,-0.0379]$.
The proportion of variability in completion time explained by the number of employees assigned to the project can be computed by using the formula for R^{2} in the formula sheet (and remembering that we have computed RSS above):
$R^{2}=1-\frac{\mathrm{RSS}}{\operatorname{TSS}}=1-\frac{\mathrm{RSS}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{\mathrm{RSS}}{\left(y_{1}-\bar{y}\right)^{2}+\left(y_{2}-\bar{y}\right)^{2}+\left(y_{3}-\bar{y}\right)^{2}+\left(y_{4}-\bar{y}\right)^{2}}=$
$=1-\frac{4001}{(20-50)^{2}+(60-50)^{2}+(100-50)^{2}+(20-50)^{2}}=0.9091$

