
Exercise solutions for exercise class 3 in MMS075, Feb 5, 2020 

 
1. We first consider the last exercise from the previous class, with an extra hint at the bottom 

of the text: 
An analyst has used a multiple linear regression model to predict the sales of products in 
development using the novelty value of the product, its relevance to the market (both on a 
scale of 0-100 with large values corresponding to more novel and more relevant products) 
and the advertisement costs in 1000$. However, under serious time pressure while 
preparing a report summarizing the results, the analyst forgets to copy-paste all relevant 
information to the report. The resulting table looks like this: 
 

Parameters Std. Error t value Pr(>|t|) 
(Intercept) 37.7015 0.798 0.432 
Novelty 0.3469 5.139 2.33e-05*** 
Relevance 0.3997 21.646 < 2e-16*** 
Advertisements 0.3782 16.277 3.75e-15*** 

  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 53.08 on 26 degrees of freedom 
Multiple R-squared:  0.9648, Adjusted R-squared:  0.9607  
F-statistic: 237.5 on 3 and 26 DF,  p-value: < 2.2e-16 
 
Fed up with the work conditions, the analyst resigns soon after preparing the report and 
starts a trip around the world without leaving any contact information. However, the 
management immediately needs to decide the advertisement strategy for three new 
products, product ‘A’ with Novelty = 90, Relevance = 20, product ‘B’ with Novelty = 30, 
Relevance = 40 and product ‘C’ with Novelty = 70, Relevance = 80.  

a) Does it make sense to use the multiple linear regression model to decide the 
advertisement budget? 
Yes, the very low p-value for the F-test for model significance (see the last row of the 
R output) and the very high value for R-squared suggest that this model may be 
relevant for making predictions and can explain almost all (96%) variability  in 
product sales. 
 

b) Can we specify the estimates and approximate confidence intervals for each 
predictor? 
Considering that the t-values are computed by dividing the estimated coefficients by 
their respective standard error, basic algebra helps to get back the estimates by 
multiplying the t value and Std. Error column entries. For example, for the intercept: 

 
therefore, we have that  

 
Similarly, the estimate for the coefficient of Novelty is 0.3469*5.139=1.783, the 
coefficient of Relevance is 0.3997*21.646=8.652, the coefficient of Advertisements 
is 0.3782*16.277=6.156. 



The coefficient estimates and standard errors can be used to get the confidence 
intervals, and the simple formula with “2” instead of the 97.5% quantile of the t 
distribution can be used for sample sizes of approximately at least 30. In this case, 
the sample size is exactly 30, as we can see from the 26 degrees of freedom – recall 
that df = n-p-1 and here we have p=3 predictors, so 26 = n-3-1 gives that n=30. 
Therefore, the 95% confidence intervals are as follows: 

 
 

c) At what advertisement budget could we expect to sell 1000 units of each product? 
As we have computed the coefficient estimates in part b), we have the following 
equation for predicting sales values: 

 
In part c), we know that we are aiming at a prediction of 1000 sold units, so we can 
write 1000 on the left side of the equation. Considering product A, the novelty and 
relevance values are given to us as Novelty = 90, Relevance = 20, so we can plug 
these numbers in the right side of the equation. Therefore, for product A, the 
prediction equation looks like this: 

 
In this equation, Advertisements is the only unknown, so we can solve it with basic 
algebra: 

 
This gives the required Advertisements value for product A, in 1000 dollars. 
For products B and C, we need to do exactly the same computation, except that we 
plug in different values for Novelty and Relevance. Therefore, the necessary 
advertisement budgets for those products, in 1000 dollars, are: 

 
This helps us to see that product C requires the smallest financial investment while 
product A requires the largest financial investment to expect 1000 sold units. 

Answer as many questions as you can, based on the presented information!  

Hint: think about the way that t-values are computed from coefficient estimates and 
standard errors. The corresponding formula will allow you to reconstruct the estimated 
coefficients from the t-value and standard error columns. Once you have those available, 
this exercise will be similar to the exercises in the previous class. 

 
2. As in the lecture, model how the cost of transporting goods from Sweden depends on 

distance by linear regression and consider also a destination variable with four possible 
levels: EU, US, China, Other.  
 

a) Fill the value taken by the three dummy variables representing the destinations with 
EU as baseline for some specific destinations given in the table. 



 
Destination    
Cape Town 0 0 1 
Stockholm 0 0 0 
Sydney 0 0 1 
Shanghai 0 1 0 
New York 1 0 0 
London 0 0 1 

 
Note that destinations in the EU have all-0 rows for the relevant dummy variables, 
because EU was chosen as the baseline level. Note also that since the end of last 
week, London is no longer in the EU, hence it has become an “Other” destination.  
 

b) What does it mean if   ? 
It means that the destination is not in the Other category. Since we consider four 
possible levels of this variable, EU, US, China and Other, not being in Other means 
that the destination is in the EU, US or China. 
 

c) Without computing the coefficients or software use, what kind of results do you 
expect to get? Which coefficients will be positive and which ones will be negative? 
Which coefficient do you expect to be largest and the smallest? 
The coefficient of a dummy variable corresponding to a destination – like US – 
means the extra cost of transporting to the US compared to the baseline level, EU, 
assuming the same distance. Considering that we have advantageous trade rules 
within the EU, it is reasonable to assume that transporting to either US, China or 
other non-EU destinations would entail extra costs compared to transporting within 
the EU, so it is reasonable to expect that all coefficients will be positive.  
Trying to guess which coefficient would be largest and smallest is way more difficult, 
because it depends on the rules and regulations of trade (e.g. taxes) between EU 
and China, respectively EU and US. Additionally, the “Other” category includes 
everything from Australia to Norway, so it is very difficult to know what to expect for 
that category and also to interpret the result.  
 

d) How do your answers to part c) change if we re-define the model using US as 
baseline and defining dummy variables ,  and  ? 
In that case, all comparisons are made against the baseline level of transporting to 
US. Recall that we expected that transporting to US would be more expensive than 
transporting to the EU. Therefore, compared to the US baseline level, EU transports 
should be cheaper, hence the coefficient of EU should be negative. To predict the 
sign or size of the other coefficients, more detailed knowledge would be needed 
about trade rules to China versus US.  
 

e) Is the classification of destinations with the four levels specified above the best way 
to model the dependence? If not, how could it be refined? 
The suggested classification is probably too crude. For example, it would make sense 
to separate at least Norway, the UK and Switzerland from the Other category, 
because there are special rules in place with these countries.    

 



3. The R outputs after the exercise descriptions (see next page) belong to an analysis of all 
possible combinations of predictors being used for explaining wages based on education, 
experience and sex, based on data from the United States from 1976 to 1982 (from the R 
library called Ecdat). The format of the variables is as follows: 

• exper: experience in years; 
• sex: a factor with levels (male,female); 
• school: years of schooling; 
• wage: wage (in 1980 \$) per hour. 

We would like to understand the most relevant way of modelling. Therefore, perform the 
following data selection procedures based on the R outputs: 

a) Backward selection; 
Here we start with the all-variable model: 

 
 
Since all variables in this model have very small p-values, we stop here and do not 
remove any variable. We conclude that the model selected by backward selection is 
the three-variable model, with coefficients as specified in the output above. 
 

b) Forward selection; 
We start with the null model (step 0) and consider each one-variable model. We 
conclude that the model with school gives the highest R2 value and school is a 
significant predictor in this model. Therefore, the model after the first update is this: 
 

 
 
Now we consider all two-variable models in which one of the predictors is school. 
There are two such models, school+exper and school+sex. The one with school+sex 
gives a highest R2 value and sex is a significant predictor in this model. Therefore, the 
model after the second update is this: 
 

 
 
Finally, we consider all three-variable models that include school and sex as 
predictors. There is only one such model, namely the three-variable model in which 
exper is added to school and sex. In this model, exper is highly significant, so we add 



it. There are no more variables to consider, so we stop and conclude that our final 
model using forward selection is this one: 
 

 
 
In other words, the final models from backward and forward variable selection agree 
for this dataset. 
 

c) Mixed selection; 
In this case, we follow the same path as the forward algorithm, but in each step, we 
do not only check whether the newly added variable is significant but also whether 
other variables have become non-significant as a result of the addition. However, we 
see that in each model after each update, all variables are highly significant. 
Therefore, the mixed selection algorithm uses exactly those steps and results in 
exactly the same final model as the forward selection algorithm in part b).   
 

d) Best subset selection. 
In this case, AIC is given for each model – we can simply check all AIC values and 
choose the model with the lowest AIC (because AIC is a measure that gives low 
values for good models). Looking at all outputs, we see that the AIC of AIC = 
16692.18 in the three-variable model is lower than any other AIC value. Therefore, 
even here, the best model is the one with three variables, exactly as in parts a)-c). 
 

Are there any differences between the final models chosen by these algorithms? Why? 
There are no differences. Looking at the three-variable model, we see that each variable has 
very low p-values, i.e. each variable has a significant relationship with the response even in 
the presence of all other variables. In this sense, it is not surprising that all algorithms 
preferred that model. 
 

4. In the solution document provided to the exercises in Exercise class 1 (i.e. Exercise class 1 - 
exercises with solutions.docx), confidence intervals and prediction intervals are provided for 
Exercise 8 in ISL (page 121), part a) - iv.  
The R code and output are given below: 
library(ISLR) 
attach(Auto) 
Ex8Model=lm(mpg~horsepower) 
newdata=data.frame(horsepower=98) 
predict(Ex8Model,newdata,interval="predict") 
       fit     lwr      upr 
1 24.46708 14.8094 34.12476 
predict(Ex8Model,newdata,interval="confidence") 
       fit      lwr      upr 
1 24.46708 23.97308 24.96108 
Therefore, the associated confidence interval is [23.97,24.96] and prediction interval is 
[14.8094 34.12476] 

a) Check which of the intervals is wider; 



The prediction interval is much wider, going from approximately 15 to 34, while the 
confidence interval is just the interval from 24 to 25. 

b) Check whether the prediction point estimate is in the midpoint of both intervals; 
The prediction point estimate is listed under “fit”. One can check that indeed, it 
equals (14.8094+34.12476)/2 as well as (23.97308+24.96108)/2 

c) Describe a correct interpretation of the confidence interval; 
The confidence interval is a range that is very likely to contain the miles per gallon 
value for an average car with horsepower=98.  

d) Describe a correct interpretation of the prediction interval. 
The prediction interval is a range that is very likely to contain the miles per gallon 
value for a specific car with horsepower=98 (which car may or may not be close to 
an average car with this horsepower value – hence, it is much harder to predict its 
corresponding mpg range than for the average).  

 
5. An analyst got a dataset containing about 1000 values of response y and corresponding 

values of explanatory variable x. The analyst decided to try both simple linear regression and 
polynomial regression including higher degrees of x to capture potential non-linear effects. 
The two resulting models are displayed overlaid on the scatterplot of x and y, see below. 

a) In your opinion, which model is better? 
Here, the question is a bit vague and can be understood in different ways. A very 
good answer pointed out that the linear regression model is easier to interpret, 
which is a big advantage. Another very good answer gave a correct assessment of 
parts b) and c) (see below) and concluded that the model that would give better 
predictions for new data should be preferred. 
 

b) Which of the two models would give a better fit with the observations? 
It is the polynomial regression of degree 27 (i.e. the red curve). That contains all 
polynomials up to degree 27 including the linear model (which has degree 1) and 
chooses the model that is closest to the observations. Therefore, this model gives 
at least as good fit on the observations as the linear model.  
 

c) Which of the two models would give better predictions for new data? 
It seems unlikely that new data would require all the wiggles that are produced by 
the red curve. It seems more like a case of overfitting, where the model tried to 
follow the random error in the training set, and we would expect that it would not 
do very well on a test set, i.e. on new data. Therefore, we expect that the linear 
model, i.e. the blue curve would give better predictions for new data. 
 

d) Can any specific problems with one of the models be pointed out? 
The red curve looks especially problematic (unnecessarily curvy) around the ends 
of the x-range, i.e. between 0 and 0.5, respectively between 9 and 10. This is often 
the case with too complex models, especially higher degree polynomials, that their 
behavior is bad around the ends of the prediction range. 



 
 

6. Feedback quiz (optional): Go to www.menti.com and use the code 14 71 24. 
 
 
 

R outputs to use for Exercise 3: 

Null model: 

 

AIC = 17154.72 

 

One-predictor models: 

http://www.menti.com/


 
AIC = 17148.02 
 

 
AIC = 17050.46 
 

 

 



AIC = 16882.77 
 

Two-variable models: 

 
AIC = 17049.68 
 

 
AIC = 16842.67 
 



 

AIC = 16717.69 

 

 

Three-variable model 

 
AIC = 16692.18 
 


