
Computer lab 4 in MMS075, Feb 12, 2020 

Solutions in terms of an R code example and detailed explanations 

 

1. We can start the lab by removing all variables that we could possibly find from earlier 

sessions to ensure that we can start from scratch and previously defined variables do not 

interfere with new code that we may want to enter. We can do that in two ways; either 

using a command: 

rm(list=ls()) 

or by clicking the tiny broom icon in RStudio (see picture below). 

 
 

We can do this later at any time when we feel that we want to start from scratch. 

 

2. As usual, download the advertising example in ISL from 

http://faculty.marshall.usc.edu/gareth-james/ISL/data.html and save it on the Desktop (i.e. 

in a computer-specific folder). Import the by using the menu in RStudio choosing File > 

Import Dataset > From Text (base)… 

 

This time, we will not change the name of the dataset while importing it, which means that it 

will be called Advertising.  

 

3. We can ask for a summary of the data which gives us some basic measures for each variable:  

summary(Advertising) 

Which variable has the largest mean and median values? Which value has the widest range 

of values? 

TV has the larges mean and median (which are directly given in the output) as well as the 

widest range of values. The range is the difference between the maximum and minimum 

values; this can be computed using the summary output or using the following command: 

max(Advertising$TV)-min(Advertising$TV) 

 

4. When interpreting the summary, it may have been distracting that it included the index 

variable X. Therefore, we first remove that variable, ask for a summary again and also ask for 

a visualization of the data using “pairs”:  

Advertising=Advertising[,-1] 

summary(Advertising) 

pairs(Advertising) 

 

The command “pairs” has created scatter plots for each pair of variables in the dataset. Do 

all predictors seem to be linearly related to the response “sales”? Do you see any signs of 

nonlinear relationship? 

The bottom row of the plot shows the scatter plots with each predictor on the x-axis and the 

response, sales, on the y-axis. The plot sales vs TV looks a bit curvy for small values of TV. 

http://faculty.marshall.usc.edu/gareth-james/ISL/data.html


Note that the plots below and above the diagonal are reflections of each other across the 

line y=x, because they show the same set of points, but with the x and y axes switched. 

Note also that the scatter plots between two predictor variables can also be useful; for 

example, if there is strong correlation between two predictors, we may spot that by looking 

at the scatter plots.   

 

5. During the lecture, we have seen that interaction terms are relevant for predicting sales, and 

we now learn how to include interaction terms in linear regression in R. We first attach the 

dataset so the we can avoid writing “Advertising$” when referring to variables in this data 

frame: 

attach(Advertising)  

 

We then look at the model with TV and radio as predictors and specify that we want to 

include their interaction term as well: 

AdModelInt=lm(sales~TV+radio+TV:radio) 

 

Note: I named this model as AdModelInt because it models the effect of ads and includes an 

interaction term. You should feel free to choose another name that you like more – all you 

need to do is to change AdModelInt in the command line above with the name that you 

choose. You just need to remember to use that name in all subsequent command lines when 

you refer to this model. 

 

We can look at the summary of the model and see that it indeed includes the interaction 

term: 

summary(AdModelInt) 

 

Let us now try another command to define a model and look at the summary: 

AdModelInt2=lm(sales~TV*radio) 

summary(AdModelInt2) 

 

Check that this output is exactly the same as the one above. It should be, because TV*radio 

is a shorthand for “include TV, radio and their interaction term”, i.e. it does exactly the same 

thing as writing TV+radio+TV:radio. 

 

Now, however, we do not need two identical models, so we remove the one that we defined 

later: 

rm(AdModelInt2) 

 

6. Revisit exercise 2 from yesterday, with the addition of quantifying uncertainty: using 

AdModelInt, predict the number of sold units and specify confidence and prediction 

intervals for the following advertisement budget distributions: 

a) TV budget: $0, radio budget: $100 000; 

We will need to use the “predict” function for this on the model AdModelInt and we 

need to put the values that we want to get the predictions for into a data frame. 

Let’s do this first. We usually create a data frame called newdata, but that’s just a 

name; I will now use a different name when creating the data frame: 

WeWantThePredictionFor = data.frame(TV=0,radio=100) 



Having the data frame available, we can use the predict function, with 

interval=”confidence” for confidence interval (which gives an interval for the 

average sales value with this advertisement budget, i.e. if the management decides 

to use this budget for many products, this is what they can expect for their average 

sales) and interval=”predict” for prediction interval (which gives an interval for a 

specific case, e.g. if the management now decides to use this advertisement for a 

specific product, then this interval gives an idea of what they can expect about the 

sales of that product). 

 
These outputs give the same estimate on the value of 9.636 on the sales variable, 

with a 95% confidence interval of 8.267 ≤ sales ≤ 11.005 and a wider prediction 

interval of 7.326 ≤ sales ≤ 11.946. Remembering that the variable sales corresponds 

to 1000 sold units, we predict 9636 sold units with this advertisement budget, with a 

confidence interval of 8267 ≤ sold units ≤ 11005 and a prediction interval of  

7326 ≤ sold units ≤ 11946. 

 

Note: instead of first creating a data frame variable and using that variable within 

the predict function, we could also have specified within predict the data frame that 

we want the predictions for; using the two lines below gives the same outputs: 

predict(AdModelInt,data.frame(TV=0,radio=100), interval="confidence") 

predict(AdModelInt,data.frame(TV=0,radio=100), interval="predict") 

  

Note2: The estimated numbers of sold units here and in the other parts of this 

exercise differ slightly from the answers provided in “Exercise class 4 - exercises with 

solutions.pdf”. What is the reason for this difference? Think about this and if you are 

not sure, ask me!  

 

b) TV budget: $100 000, radio budget: $0; 

predict(AdModelInt,data.frame(TV=100,radio=0), interval="confidence") 

predict(AdModelInt,data.frame(TV=100,radio=0), interval="predict") 

Based on the output from these commands, we predict 8660 sold units with this 

advertisement budget, with a confidence interval of 8385 ≤ sold units ≤ 8936 and a 

prediction interval of 6779 ≤ sold units ≤ 10514. 

 

c) TV budget: $50 000, radio budget: $50 000; 

predict(AdModelInt,data.frame(TV=50,radio=50), interval="confidence") 

predict(AdModelInt,data.frame(TV=50,radio=50), interval="predict") 

Based on the output from these commands, we predict 11865 sold units with this 

advertisement budget, with a confidence interval of 11454 ≤ sold units ≤ 12275 and 

a prediction interval of 9959 ≤ sold units ≤ 13770. 

 

d) TV budget: $50 000, radio budget: $50 000, newspaper budget: $30 000. 



We can either directly note that newspaper budget is not used in the model and 

therefore there won’t be any difference compared to part c), or we can include a 

newspaper term in the defined data frame that won’t be used by R anyway: 

predict(AdModelInt,data.frame(TV=50,radio=50,newspaper=30), 

interval="confidence") 

predict(AdModelInt,data.frame(TV=50,radio=50,newspaper=30), 

interval="predict") 

gives the exact same output as the commands in part c). 

 

Furthermore, estimate the effect of: 

e) $1000 increase of TV advertisement on sold units if the radio budget is $10 000; 

We will make two separate predictions, both with radio=10 and changing the value 

of the TV variable by 1 between the predictions. Taking their difference will quantify 

the effect of increasing TV advertisement budget for the given radio budget. 

FirstPredictorValues=data.frame(TV=0,radio=10) 

SecondPredictorValues=data.frame(TV=1,radio=10) 

predict(AdModelInt, SecondPredictorValues)-predict(AdModelInt, 

FirstPredictorValues) 

This gives a difference of 0.03 in the prediction of the sales variable; therefore, the 

effect of $1000 increase of TV advertisement on sold units at a radio budget of 

$10 000 is an increase of 30 units. 

 

f) $1000 increase of TV advertisement on sold units if the radio budget is $100 000; 

FirstPredictorValues=data.frame(TV=0,radio=100) 

SecondPredictorValues=data.frame(TV=1,radio=100) 

predict(AdModelInt, SecondPredictorValues)-predict(AdModelInt, 

FirstPredictorValues) 

This gives a difference of 0.128 in the prediction of the sales variable; therefore, the 

effect of $1000 increase of TV advertisement on sold units at a radio budget of 

$10 000 is an increase of 128 units. 

 

g) $1000 increase of radio advertisement on sold units if the TV budget is $50 000. 

FirstPredictorValues=data.frame(TV=50,radio=0) 

SecondPredictorValues=data.frame(TV=50,radio=1) 

predict(AdModelInt, SecondPredictorValues)-predict(AdModelInt, 

FirstPredictorValues) 

This gives a difference of 0.083 in the prediction of the sales variable; therefore, the 

effect of $1000 increase of radio advertisement on sold units at a TV budget of 

$50 000 is an increase of 83 units. 

 

Finally, predict the number of sold units for: 

TV budget: $50 000, radio budget: $51 000. 

predict(AdModelInt,data.frame(TV=50,radio=51)) 

gives 11.948 as a prediction of the sales variable, which corresponds to a prediction of 11948 

sold units. We could also get this by summing the prediction of 11865 for TV budget: $50 

000, radio budget: $50 000 computed in part c) and the increase of 83 units as the estimated 

effect of $1000 increase in radio advertisement on sold units at a TV budget of $50 000 

computed in part g). 



 

7. We now want to look at potential problems with this model. As the starting point, we can 

use the default graphs provided by R for linear models: 

plot(AdModelInt) 

 

This command will show you 4 different plots and you need to press Enter to switch 

between them. If you want to see them all together, you can divide the plotting screen as 

we did last time, using the “par(mfrow=c(2,2))” command before plotting the model. 

par(mfrow=c(2,2)) 

plot(AdModelInt) 

 

The first plot shown is the residual plot, having the predicted values on the x-axis and the 

residuals on the y-axis. The last one showing standardized residuals vs leverage is used for 

identifying high leverage points.  

 

Now, before going further with plotting, it makes sense to switch back to the usual plotting 

screen so that we get one larger plot each time instead of four smaller plots. Previously, with 

par(mfrow=c(2,2)), we asked R to divide the plotting screen in two vertical and two 

horizontal parts. If we want to have a single plot, we need one vertical part and one 

horizontal part. Therefore, to switch back, we can type:  

par(mfrow=c(1,1)) 

 

From now on, any new plots will be shown as a single, big plot, as we will soon see below. 

 

For finding outliers, we prefer to look at studentized residuals that are very similar to 

standardized residuals but are not the same thing. Therefore, we produce a studentized 

residual plot as follows: 

plot(predict(AdModelInt),rstudent(AdModelInt), xlab=”Predicted sales (1000 

units)”,ylab=”Studentized residuals”,cex=1.5,pch=20)  

 

Note: in the studentized residual plot, we have the predicted values for all observations in 

the data on the x-axis, and the studentized residuals for all observations in the data on the y-

axis. This is why we can just use the model name in predict: without specifying the data 

frame that it should give predictions for, it will give the predicted values for all observations 

that the model was created with. Similarly, rstudent with only as the name of the model as 

argument will return the studentized residuals for all observations that the model was 

created with. Consequently, predict(AdModelInt) and rstudent(AdModelInt) return vectors 

of the same size which can then be plotted against each other. The other arguments of the 

function just make the plot look better: xlab and ylab specify the axis labels, cex determines 

the size of plotted points (size 1 is the default, and cex=1.5 results in 50% bigger points) and 

pch determines the point type to be plotted – it can take values 1, 2, …, 20, and you should 

experiment with this to find the point type that you like most. 

 

If we include lines at y-values of -3 and 3, that will make it even easier to spot outliers: 

abline(-3,0,lty="dashed",col="red") 

abline(3,0,lty="dashed",col="red") 

 



Note: this makes sense, because points with studentized residuals below -3 or above +3 

indicate large deviation from the prediction, which is what being an outlier means. Why 

exactly these values? The studentized residuals result from dividing the residuals by their 

estimated standard error, so they should have approximately a t distribution. If the degree 

of freedom is sufficiently large, then the t distribution is very close to standard normal. For 

standard normal distribution, 99% of values are between -3 and +3, hence those that are 

outside this interval indeed indicate large deviations. 

 

Note2: The argument “lty” means line type, and “col” means color. 

 

We may also want to produce our own residual plot and leverage plot as well: 

plot(predict(AdModelInt),residuals(AdModelInt), xlab="Predicted sales (1000 

units)",ylab="Residuals",cex=1.5,pch=20) 

plot(hatvalues(AdModelInt),rstudent(AdModelInt), xlab="Leverage",ylab="Studentized 

residuals",cex=1.5,pch=20) 

 

Note: the creation of the residual plot is analogous to the creation of the studentized 

residual plot described above, except that “residuals” is used for the y-axis instead of 

“rstudent”.  

 

For the leverage plot, the x-axis contains the values of the leverage statistic for each 

observation, i.e. the measure of how unusual predictor values belong to this point. These 

can be accessed by the “hatvalues” function (and the corresponding formula for simple 

linear regression is equation (3.37) in ISL). 

 

It is nice to set a threshold for how large the leverage statistic should be to justify calling an 

observation a high leverage point. In Bruce, P. & Bruce, A. (2017), Practical Statistics for Data 

Scientists, points with leverage above 2(p+1)/n are called high leverage points. In this case, 

p=3, because we have TV, radio and their interaction term as predictors, and n=200, because 

there were 200 observations in Advertising, hence the threshold is 0.04. We can draw a 

vertical line to indicate this: 

abline(v=2*(3+1)/200,lty="dashed",col="blue")    

 

Furthermore, if we want to spot high leverage points and outliers in the same graph, we can 

note that we have studentized residuals on the y-axis, so points with y-axis values below -3 

or above +3 are outliers. We can include two horizontal lines to indicate this: 

abline(-3,0,lty="dashed",col="red") 

abline(3,0,lty="dashed",col="red") 

 

This plot shows that in this case, there are two outliers of which one is also a high leverage 

point. 

 

Give titles to these figures by using the title(“…”) command! 

This command always makes a title for the plot that was created last. Therefore, if we want 

to set a title for both of these figures, we need to re-create the first one, set a title, re-create 

the second one and set the title for that one. To make sure that we see both of them, we 

will split the plotting screen in two horizontal parts; however, we set it back to the usual 

one-part structure at the end to make it better for future plots. 



par(mfrow=c(2,1)) 

plot(predict(AdModelInt),residuals(AdModelInt), xlab="Predicted sales (1000 

units)",ylab="Residuals",cex=1.5,pch=20) 

title("Residual plot") 

plot(hatvalues(AdModelInt),rstudent(AdModelInt), xlab="Leverage",ylab="Studentized 

residuals",cex=1.5,pch=20) 

abline(v=2*(3+1)/200,lty="dashed",col="blue") 

abline(-3,0,lty="dashed",col="red") 

abline(3,0,lty="dashed",col="red") 

title("Studentized residuals vs Leverage") 

par(mfrow=c(1,1)) 

 

8. Revisit Exercise 14 on page 125 of ISL that was considered at the end of the exercise class 

yesterday. If you produce the required plots and summaries yourself instead of using the 

ones provided by me, then you will get a much better understanding of the relevant 

concepts. Additionally, you can experiment with other options and check whatever you find 

interesting about that model. 

We start with the set.seed command that allows us to get the same random numbers each 

time we run the code below (this way we can get reproducible results that we can discuss, 

otherwise the results would differ slightly each time and maybe we would not see the 

intended interesting behavior). 

set.seed(1) 

 

We then generate 100 random numbers between 0 and 1 and include them in a variable 

called x1: 

x1=runif(100) 

 

We then generate another predictor called x2 which is takes half of the value of x1, plus a 

random normal error term divided by 10: 

x2=0.5*x1+rnorm(100)/10 

 

Finally, we make a response variable y as a linear combination of x1 and x2 plus a random 

normal error term: 

y=2+2*x1+0.3*x2+rnorm(100) 

 

(a): What we did here is that we defined a linear model where we KNOW the true 

coefficients, because we created them: 

 
We will see in the other parts how well the true coefficients are approximated by the 

estimated coefficients. 

 

(b): The correlation can be checked using the “cor” command, and we can also plot them 

against each other: 

cor(x1,x2) 

plot(x1,x2) 

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html


These variables are strongly correlated with each other, which is not surprising considering 

that, except for some small random error, x2 is constant times x1. 

 

(c) Fitting a least squares regression to predict y using x1 and x2 can be done with the lm 

command, and we can check the summary of the model: 

summary(lm(y~x1+x2)) 

 

This gives the estimated coefficients, so we can learn the following: 

 
 

We can reject the null hypothesis 

 
because the p-value for the t-test of the significance of x1 is 0.0487 < 0.05. This means that, 

even in the presence of x2 in the model, x1 is a significant predictor of the response y. 

 

We cannot reject the null hypothesis 

   
because the p-value for the t-test of the significance of x2 is 0.3752 > 0.05. This means that 

in the presence of x1 in the model, x2 is not a significant predictor of the response y. 

 

(d) Fitting a least squares regression to predict y using only x1 can be done with the lm 

command, and we can check the summary of the model: 

summary(lm(y~x1)) 

In this case, the estimated coefficient of 1.97 for x1 is reasonably close to the true 

coefficient 2. We can reject the null hypothesis 

 
because the p-value for the t-test of the significance of x1 is 0.00000266, which is very small 

compared to the threshold of 0.05. This means that if we do not include other variables in 

the model, then x1 is a highly significant predictor of the response y. 

 

(e) Fitting a least squares regression to predict y using only x2 can be done with the lm 

command, and we can check the summary of the model: 

summary(lm(y~x2)) 

In this case, the estimated coefficient of 2.9 for x2 is way higher than its true coefficient 0.3. 

We can reject the null hypothesis 

 
because the p-value for the t-test of the significance of x2 is 0.0000137, which is very small 

compared to the threshold of 0.05. This means that if we do not include other variables in 

the model, then x2 is a highly significant predictor of the response y. 

 

(f) The results do not contradict each other, because different questions are addressed in 

the different parts. In (d) and (e) we see that the variables alone help predicting the 

response. However, the much higher p-values in (c) indicate that once we have one of x1 or 

x2 in the model, the addition of the other one helps substantially less to predict y. This is not 



so surprising given that the two variables are strongly correlated, so by knowing the value of 

one variable, we already know a lot about the value of the other variable, and adding the 

other variable to the model would not provide so much extra information that could be used 

to predict y.  

 

(g) We add the mis-measured observation as instructed: 

x1=c(x1,0.1) 

x2=c(x2,0.8) 

y=c(y,6) 

 

Note that this code means: redefine the variable x1 to be the concatenation of x1 and a new 

value, 0.1. Then redefine x2 as the concatenation of x2 and 0.8. Finally, redefine y as the 

concatenation of y and a new value 6. In other words, we have extended the length of each 

variable by 1 and from a model perspective, we have added an observation to the ones so 

far that has an x1 value of 0.1 and an x2 value of 0.8, and a response value of 6.   

 

After adding the new observations, we can check how the models have changed by again 

fitting the models and looking at their summaries one by one. Let’s start with the two-

predictor model: 

TwoModel=lm(y~x1+x2) 

summary(TwoModel) 

 

Checking the output shows that adding the extra observation has substantially changed the 

results. The new estimated coefficient of x2 is much higher than its coefficient in the original 

model and x2 has become significant (at p-value=0.00614). Conversely, the new estimated 

coefficient of x1 is much smaller than the original one and in the new model, x1 is not 

significant anymore in the presence of x2 (p-value=0.3646). There are no big changes in the 

overall significance of the model. 

 

Now we check the one-predictor model with x1: 

x1Model=lm(y~x1) 

summary(x1Model) 

 

We see that the coefficient of x1 has slightly decreased, the R2 value has decreased from 

0.21 to 0.16, but x1 is still a highly significant predictor of y when it is considered alone. 

 

We also check the one-predictor model with x2: 

x2Model=lm(y~x2) 

summary(x2Model) 

 

Compared to the original model, the coefficient of x2 has slightly increased, the R2 value has 

increased from 0.18 to 0.21 and x2 is a highly significant predictor of y when it is considered 

alone. 

 

To address the question of whether the new point is an outlier and/or a high leverage point 

in each model, we could construct the studentized residuals vs leverage graphs like we did in 

Exercise 7 for each model and we could see whether there are any outliers or high leverage 



points. Instead, we just check the studentized residual value and the leverage statistic for 

the newly added point which is observation 101 in the rstudent and hatvalues vectors:  

rstudent(TwoModel)[101] 

hatvalues(TwoModel)[101] 

rstudent(x1Model)[101] 

hatvalues(x1Model)[101] 

rstudent(x2Model)[101] 

hatvalues(x2Model)[101] 

 

This gives that the new observation is an outlier in x1Model (with a studentized residual of 

3.44), but not in the other two models. 

 

The threshold for being a high leverage point in TwoModel is 2*(2+1) / 101 = 0.059 and for 

x1Model and x2Model it is 2*(1+1) / 101 = 0.04. This means that the new observation is a 

massive high leverage point in TwoModel (with leverage statistic of 0.41), not a high 

leverage value in x1Model (with leverage statistic of 0.033) and a high leverage value in 

x2Model (with leverage statistic of 0.1).  

 

To understand why this is so, we can plot x2 against x1 and color the new point red: 

plot(x1,x2,cex=2,pch=20) 

points(x1[101],x2[101],col="red",cex=2,pch=20) 

This plot shows that the new point does not have an unusual x1 value, has a somewhat 

unusual x2 value and a very unusual combination of (x1,x2) values.  

 

9. We check polynomial regression again, this time on a different dataset called Wage that is 

included in the ISLR library.  

library(ISLR) 

attach(Wage) 

For a better understanding of the underlying data, we ask for the description of this dataset: 

?Wage 

 

We want to investigate the dependence of wage on age, so we first plot these variables: 

plot(age,wage) 

 

It looks like wage does not linearly depend on age. We can try to get a better fit with 

polynomials. We could try to include different powers of age as predictors; the following 

examples, taken from Section 7.8.1 of ISL, consider polynomials of degree 4:   

fit=lm(wage~poly(age,4),data=Wage) 

 

This command created a regression model using a somewhat complex method (called 

orthogonal polynomial regression) to fit a polynomial of age of degree 4 on the 

observations. This is a good method and, in fact, has certain statistical and numerical 

advantages compared to the polynomial regression method as presented in the lecture; see, 

for example, this question in a statistical forum. However, the results are difficult to 

interpret. We will see below that the results from this method and the polynomial 

regression that uses age, (age)2, (age)3 and (age)4 as predictors, called raw polynomial 

regression, are essentially identical in this example. Generally, unless you often need to use 

polynomial regression and need a detailed understanding of the matter, I recommend that 

https://stats.stackexchange.com/questions/258307/raw-or-orthogonal-polynomial-regression


you use raw polynomial regression (which will be presented below) to ensure a proper 

understanding of the model and the results. 

 

coef(summary(fit)) 

fit2=lm(wage~poly(age,4,raw=T),data=Wage) 

 

Including the argument “raw=T” which could also be written as “raw=TRUE” instructs R to fit 

a raw polynomial regression model using simply age, (age)2, (age)3 and (age)4 as predictors 

rather than fitting an orthogonal polynomial regression that one would get without using 

this argument or by writing “raw=FALSE”. 

 

coef(summary(fit2)) 

fit2a=lm(wage~age+I(age^2)+I(age^3)+I(age^4),data=Wage) 

coef(fit2a) 

 

Defining the model fit2a where age, (age)2, (age)3 and (age)4 are explicitly specified as 

predictors and comparing the coefficients with those of fit2 can help to convince us that fit2 

is indeed exactly the same model as fit2a and is just a more convenient way of writing the 

same thing.  

 

Compare the results from the different outputs! The difference comes from the different 

ways of defining the predictors. The models fit2 and fit2a really use age, age^2, age^3 and 

age^4 as predictors while fit defines a degree 4 polynomial of age in a slightly different way. 

 

Make an even more detailed comparison by looking at the full summaries: 

summary(fit) 

summary(fit2) 

 

You will see that the general properties of the models are exactly the same. We will see that 

they also give the same predictions; copy the code below to make a nice plot using the first 

model: 

 

Note: From this point on, we will slightly deviate from the code given in ISL. The reason for 

this is that the models defined above are called fit, fit2 and fit2a and in the code below we 

will need to use the $fit attributes of predictions which has caused confusion in the class. 

Generally, using “fit” and its variants seems like bad practice to me and I would recommend 

using more specific names for the models we create. Therefore, new model names have 

been defined below and the code has been rewritten to include the new model names. 

Additionally, we simplify the code to avoid the usage of the “cbind” and “matlines” 

functions, because one can perfectly well make the plot without those with a code that may 

be easier to interpret. However, if you are interested in the details of using these functions, 

type ?cbind and ?matlines for more information. 

 

OrthModel=fit 

RawModel=fit2 

RawModel2=fit2a 

rm(fit)  

rm(fit2)  



rm(fit2a)  

 

agelims=range(age) 

This command defined a vector called agelims that includes the minimum and maximum 

values of age in the data. 

 

age.grid=seq(from=agelims[1],to=agelims[2]) 

This command created a variable called age.grid as a sequence of numbers from the 

minimum age to the maximum age, i.e. 18, 19, 20, …, 79, 80. 

 

preds=predict(OrthModel,data.frame(age=age.grid),se=TRUE) 

Here we make predictions using OrthModel for all age values in age.grid and ask for 

standard errors as well. 

 

par(mfrow=c(1,2),mar=c(4.5,4.5,1,1),oma=c(0,0,4,0)) 

The mar and oma arguments are used to control the margins of the subplots. 

 

plot(age,wage,xlim=agelims,cex=.5,col="darkgrey") 

In this command, the argument xlim sets the range of values to be plotted on the x-axis. 

 

title("Degree-4 Polynomial",outer=T) 

Here, the outer=T argument specifies that the title is applied to all subplots together in the 

plotting screen. 

 

Now we plot the estimates as well as the confidence interval limits: 

lines(age.grid,preds$fit,lwd=2,col="blue") 

lines(age.grid,preds$fit+2*preds$se.fit,lwd=1,lty=3,col="blue") 

lines(age.grid,preds$fit-2*preds$se.fit,lwd=1,lty=3,col="blue") 

 

Now try adding a similar plot using the second model (i.e. fit2)! 

This can be done by similar commands as above; note that the second model has been 

renamed from fit2 to RawModel. As agelims and age.grid is the same as before, we don’t 

need to repeat the corresponding lines. However, we want to make some new predictions, 

this time with RawModel: 

preds2=predict(RawModel,data.frame(age=age.grid),se=TRUE) 

 

The plotting screen is already split in two parts, so we don’t need to repeat the par(mfrow= 

… ) command here. However, we again need to plot the wage vs age points for the new plot: 

plot(age,wage,xlim=agelims,cex=.5,col="darkgrey") 

 

As we already have a title that applies to the whole plot, we don’t need to repeat that 

command either. Therefore, all that is left is to plot the prediction curve and the confidence 

interval limits for the new predictions: 

lines(age.grid,preds$fit,lwd=2,col="blue") 

lines(age.grid,preds$fit+2*preds$se.fit,lwd=1,lty=3,col="blue") 

lines(age.grid,preds$fit-2*preds$se.fit,lwd=1,lty=3,col="blue") 

 



The plots created this way look identical, so RawModel seems to work as well in this case as 

OrthModel. 

 

We can also check that the difference in predictions is essentially zero: 

max(abs(preds$fit-preds2$fit)) 

 

This command takes the difference of the fitted values in preds and preds2 (i.e. the 

prediction values for all age values using OrthModel and RawModel respectively), takes the 

absolute value of that difference (so that negative differences are made into positive) and 

asks for the maximum of the absolute values. In other words, this command quantifies the 

biggest possible difference between the predictions when using OrthModel and RawModel. 

As you see from the output, the largest difference in predictions is extremely small. 

 

10. If you are done with the previous exercises, do exercises 9 and 13 in Section 3.7 of ISL (pages 

122-125). The Auto dataset is included in the ISLR library, so it does not need to be 

downloaded separately. 

The solutions of these exercises are not provided here. Both exercises are similar to those 

whose solutions are discussed above, in particular Exercises 7-8 above. 

 

11. If you would like to ask something or give feedback, feel free to talk to me or enter your 

question/feedback at www.menti.com, using the code 69 36 52. 

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html
http://www.menti.com/

