
Exercise solutions for exercise class 5b in MMS075, Feb 18, 2020 

As we did not finish all exercises in exercise class 5a, we start with the three remaining ones.  

 

NOTE: there was a mistake in the specification of exercise 6 from yesterday: all plus signs in 

the formulas in parts 6a and 6b should have been minus signs. (The formulas with plus signs 

are also correct and can be proved similarly, but they do not correspond to the desired 

properties of the odds and logit functions). This mistake has been corrected in the version 

provided below. 

 

1. For a probability value 0 < p < 1, the odds is defined as p/(1-p), and the logit (or log-odds) is 

defined as the logarithm of the odds, i.e. as logit(p)=log(p/(1-p)). Compute the odds and logit 

values for the following probabilities: 

a. p=0.1; Odds: 0.1/0.9 = 0.111. Log-odds: log(0.111) = -2.198 

b. p=0.3; Odds: 0.3/0.7 = 0.429. Log-odds: log(0.429) = -0.846 

c. p=0.5; Odds: 0.5/0.5 = 1.         Log-odds: log(1) = 0 

d. p=0.7; Odds: 0.7/0.3 = 2.333. Log-odds: log(2.333) = 0.847 

e. p=0.9. Odds: 0.9/0.1 = 9.         Log-odds: log(9) = 2.197 

 

Note that the log-odds are negative for p<0.5 and positive for p>0.5. Note also that  

logit(0.5-x)= (-1)*logit(0.5+x). This is because the odds for these values are reciprocals of 

each other. 

 

NOTE2: When using your calculator to compute the log-odds values, you need to use the ln 

button! As mentioned in the lecture and in the ISL book, log will be used to denote 

logarithm with base e (as it is most common in the scientific literature); however, on 

calculators, this corresponds to the ln button, while the log button is used for logarithm with 

base 10. This is unfortunate and confusing, but you still need to remember this, otherwise 

you get wrong results. 

 

2. Show that the odds and logit functions are increasing in p, i.e., show that: 

a. if p2>p1, then p2/(1-p2) > p1/(1-p1); 

Showing that p2/(1-p2) > p1/(1-p1) is equivalent to showing the same inequality with 

both sides multiplied by (1-p1)(1-p2). Doing this multiplication on both sides gives 

that we need to show p2(1-p1) > p1(1-p2). Getting rid of the parentheses, we need to 

show that p2-p2p1 > p1-p1p2. This inequality indeed holds whenever p2>p1 (because 

the product of p1 and p2 cancels).     

 

b. if p2>p1, then log(p2/(1-p2)) > log(p1/(1-p1))! 

If p2>p1, then we know from part a) that p2/(1-p2) > p1/(1-p1). We also know that log 

is an increasing function, so the log of the greater value p2/(1-p2) will indeed be 

greater than the log of the smaller value p1/(1-p1). 

 

3. Express the value of p from the value of the logit function; that is, assuming that we have 

log(p/(1-p)) = y, express p as a function of y! 

 
Multiplying the latest equation by 1-p, we get that: 



 
We can express p from the latest equation by noting that the left side is p(1+exp(y)): 

 
 

4. Consider the logistic regression model predicting the probability of credit card default based 

on balance, as discussed in the lecture: 

 
Instead of the observed value of 0.0055, describe a correct interpretation of the following 

coefficient estimates in terms of log-odds, odds and probability: 

a. 1.1; This coefficient value would mean that $1 increase in balance would increase 

the log-odds of default by 1.1. As exp(1.1) = 3.004, a $1 increase of balance would 

correspond to a threefold increase in the odds of default. (Note that this would be 

an extreme consequence of a $1 change in balance, so it is not surprising that the 

actual coefficient estimate is much smaller than 1.1.) The probability of default 

would increase when increasing the balance value.  

b. -1.1; A $1 increase in balance would decrease the log-odds of default by 1.1. As we 

have exp(-1.1) = 0.333, a unit increase of balance would decrease the odds of 

default to a third of its original value. The probability of default would decrease 

when increasing the balance value.  

c. 0. This coefficient value indicates no change in the log-odds of default when 

changing the balance value. As exp(0)=1, increasing the balance would not have any 

effect on the odds or probability of default. 

 

5. Consider the same logistic regression model as in part 4, this time with the correct 

coefficient estimates. We have seen in the lecture that the probability of default can be 

estimated from this model as follows: 

 
Using this formula, estimate the probability of default for the following balance values: 

a. $1500; Predicted probability of default: 0.083, i.e. 8.3%. This follows from the 

following computation: 

  
b. $2000; Predicted probability of default: 0.587, i.e. 58.7%. 

c. $2500. Predicted probability of default: 0.957, i.e. 95.7%. 

Which balance value gives the highest probability of default? Could you answer this question 

before computing the estimates? 

The balance of $2500, i.e. the highest balance considered gives the highest probability of 

default. This is clear in advance from the interpretation of coefficients: as the coefficient of 

balance is positive, we have that each increase of balance is associated with an increased 

probability of default. 

 

6. Relate the results of exercise 5 to Figure 4.1 in ISL, see below. Which plot(s) would help most 

in correctly anticipating the results before doing the computation?  

 



  
 

The Income vs Default box plots do not help with exercise 5, because those predictions are 

concerned with balance, and not income, as a predictor. 

The Balance vs Default box plots are somewhat informative: up to Balance=1000, there are 

hardly any individuals defaulted, hence the probability of default should be very low for such 

cases. For values of Balance>=2500, there are only defaulted cases, so the probability of 

default must be very high for such values. However, the implications of the box plots for 

Balance values between 1000 and 2500 strongly depend on the case count in each category. 

The sample contains way more people with Default=”No” that with Default=”Yes”; this is 

why we have only about 60% default probability for Balance=2000 even though it looks like 

there are very few not defaulted cases at this balance value while about 25% of defaulted 

individuals have balance values >=2000. We will look more at this together in Lecture 6. 

When looking at the scatter plot, we would expect that at any given value of balance (i.e. 

along any vertical line in the plot), the share of defaulted cases (orange crosses) among all 

points with the same balance should be close to the probability of default. Therefore, based 

on the scatter plot, we could anticipate approximately 50% default probability at 

balance=1500, around 90% default probability at balance=2000 and very close to 100% 

default probability at balance=2500. The predicted probabilities in exercise 5 are much lower 

than that. In fact, the scatter plot presented here is misleading, and the reason will be 

discussed at the next lecture. (If you are curious about the reason, read page 128 carefully 

and you may find it somewhere hidden in the text.) 

 

7. Feedback quiz (optional): Go to www.menti.com and use the code 32 21 69. 

http://www.menti.com/

