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Statistical modeling in logistics
MMS075 

Lecture 7a – Training error vs test error, 
Validation set, K-fold cross-validation, LOOCV,

Ethical analysis of big data

Acknowledgement: Some of the figures in this presentation are taken from 
"An Introduction to Statistical Learning, with applications in R" (Springer, 2013) 
with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

These are new 

compared to

Lecture 6b
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Outline
• Training error vs test error

• Mean squared error

• Error rate for classification

• Overfitting

• Methods for estimating test error:
• Validation set approach

• K-fold cross-validation

• Leave-one-out cross-validation (LOOCV)

• Ethical analysis of big data
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Recommended resources

Reading in ISL: Sections 2.2.1, beginning of 2.2.3, and 5.1 for theory, 5.3.1-5.3.3 for R codes

The videos from the Statistical Learning course are available at this link. Relevant videos 
for the new material today:

• Assessing Model Accuracy and Bias-Variance Trade-off (10:04)

• Estimating Prediction Error and Validation Set Approach (14:01)

• K-fold Cross-Validation (13:33)

• Cross-Validation: The Right and Wrong Ways (10:07)

For the discussion of ethical analysis of big data:

• Zook M, Barocas S, boyd d, Crawford K, Keller E, Gangadharan SP, et al. (2017).  Ten simple rules 
for responsible big data research. PLoS Comput Biol 13(3): e1005399. 
https://doi.org/10.1371/journal.pcbi.1005399

http://faculty.marshall.usc.edu/gareth-james/ISL/
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about
https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/
https://www.youtube.com/watch?v=VusKAosxxyk
https://www.youtube.com/watch?v=_2ij6eaaSl0
https://www.youtube.com/watch?v=nZAM5OXrktY
https://www.youtube.com/watch?v=S06JpVoNaA0
https://doi.org/10.1371/journal.pcbi.1005399
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Training error vs test error
Mean squared error

Error rate for classification

Overfitting
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What is a good model?
• We have n observations in form of predictor-response pairs:

• Based (trained) on these observations, we define a model     
and hope that the model approximates the true connection 
between predictor and response, i.e. 

• Training mean squared error (training MSE) measures how 
well this holds for training points, i.e. measures quality of fit: 
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What do we really want?
• Why do we want a model with good quality of fit, i.e. small MSE?

• Why do we need a model at all? We KNOW the response values 
for the training set → why should we estimate them?

• Because we hope that the model gives useful information for new 
data (test data): if                                                  are new, previously 
unseen observations that were not used to train (i.e. define) the 
model, we want a model with small average prediction error

→We want to minimize 
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Training error vs test error
Mean squared error

Error rate for classification

Overfitting
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How to define error for classification?
• We have n observations in form of predictor-response pairs:

; the responses are categories

→ cannot use definition of MSE; what to take instead?

• Training error rate for a model     trained on the above 
observations is the proportion of mistakes our classifier 
makes when applying it on the training observations: 

: the predicted response classes by     for                               ; 

: predicted response class for observation i differs from observed; 
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Good classifier has low test error rate

• Analogously to regression, the training error rate is less important

• We want a small average error rate for new data (test data):                                                      
if                                              are new, previously unseen observations 
that were not used to train the model

→ want to minimize test error rate:

• We discuss regression henceforth, but classification is analogous
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Training error vs test error
Mean squared error

Error rate for classification

Overfitting
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Is it best to minimize training MSE?

• Model with a good fit on training data is a natural aim

• Overfitting: if model follows training points too closely & reproduces 
noise effects (i.e. pick up patterns caused by chance rather than a 
meaningful relationship) that may not be present in new data 

• This is caused by overly flexible models. Examples on next slides

• However, among models of given complexity (e.g. linear models), the 
one that fits training points best should be chosen
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How flexible model do we need in general?

Structure (shape) of points looks close to…

… a quadratic (or 
low-degree) curve 

… a cubic (or high-
degree) curve … a line

Source: Figures 2.9, 2.10 and 2.11 in ISL
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What do we expect?
• Flexibilility corresponding to general shape should work best:

• Less complex models cannot reproduce observed shape

• More complex models are too wiggly and can/will follow noise in data

• This was simulated data → we can create a large test set with the 
true distribution & check test error values for various models 

• Next slides show test MSE (red curves) and training MSE (grey 
curves) for models of different flexibility. 

• Training MSE always decreases with larger flexibility; test MSE is 
U-shaped, as anticipated, indicating a trade-off
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Test error curves by model complexity (1)

Source: Figure 2.9 in ISL

Cannot capture the curvy  

trend in true relationship

Follows random effects

beyond general trend

Seems sufficiently, but

not overly flexible

Black curve: non-linear 

true relationship
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Test error curves by model complexity (2)

Source: Figure 2.10 in ISL

Black curve: almost linear 

true relationship
Linear regression is

already quite good here

Slightly non-linear model

with low flexibility is best

High flexibility model

is overfitting
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Test error curves by model complexity (3)

Source: Figure 2.11 in ISL

Linear regression has 

poor performance here

Model with moderate

flexibility works best

High flexibility model

is slightly overfitting

Black curve: highly non-linear 

true relationship
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Simulated data is uncommon

• If data are simulated → as much test data can be produced as 
needed → we can have a full understanding of test error

• This is not a usual case! We typically have only one set of 
observations – how can we then estimate test error?

• Three methods are discussed in the next slides 
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Methods estimating test error
Validation set approach

K-fold cross-validation

LOOCV
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Validation set approch: basic idea
• Reserve some part of observations that will not be used in model building

• This set of points (called hold out set or validation set) is unseen by 
the model while the model is defined → it can play the role of test data to 
see how well the model can predict unseen points

• The set that was used for model definition (e.g. get coefficient estimates) 
is the training set

Validation set approach, source: Figure 5.1 in ISL, labels added

All observations

Training set Validation set
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Recall mpg vs horsepower models

Linear model

Quadratic model 
(degree 2 polynomial)

High-degree model 
(degree 10 polynomial)

Plots and p-values suggest:

- Quadratic model is better than linear

- High-degree model may be overfitting  

What can we conclude 
with the validation set 
approach?
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Validation set error estimates
1. Divide the observations into a training set and a validation set

2. Using the points in the training set, fit a linear, quadratic and higher 
degree models

3. Using the points in the validation set, compute MSE for all these 
models and plot the error estimates:

Source: Figure 5.2 in ISL

Detailed example for 1,2 and 10 degrees is

shown on the next slides
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Step 1: Divide the observations

All observations

One possible split into a 
training set (blue points) and a 
test set (brown points)
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Step 2: Consider points in the training set 
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Step 2: Fit models on the training set (1)
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Step 2: Fit models on the training set (2)
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Step 2: Fit models on the training set (3)

Training MSE is lowest 

for most flexible model

What really matters is

not this, but test MSE
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The models are defined – how good are they?
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Step 3: Test models on the validation set
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Step 3: Validation set MSE is error estimate

With this split of points, the

test MSE for quadratic model

is lowest of the three
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Issue with validation set approach

• Results depend on how the division of observations into 
training set and validation set was made 

→Validation set estimate of test error is highly variable

Note: while the value of the MSE varies wildly, 

all divisions show some similar patterns: 

• Degree 2 polynomial is better than degree 1 

(i.e. quadratic model is better than linear)

• No large difference between error estimates 

for different degrees when using ≥2 degrees

→ These results support using quadratic model

Validation set test error estimates with 

10 different splits, source: Figure 5.2 in ISL

(if more complex model gives little gain, then

choose simpler one for interpretability)
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Methods estimating test error
Validation set approach

K-fold cross-validation

LOOCV
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K-fold cross-validation: basic idea 

• Divide the n observations into K equal parts (as equal as possible)

• Consider K different models, considering each part once as 
validation set and the other K-1 parts combined as training set 

All observations

Model 1

Model 2

Model 3

Model 4

Model 5

These observations are in:
• Validation set in Model 1
• Training set in Model 2
• Training set in Model 3
• Training set in Model 4
• Training set in Model 5

5-fold CV, source: Figure 5.5 in ISL, labels added
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K-fold CV error estimates for mpg example

1. Divide the observations into K equal sets

2. Changing the role of training set as shown on previous slide, fit a 
linear, quadratic and higher degree models K times 

3. Compute MSE for each of the K linear models, K quadratic 
models, K higher degree models on the corresponding validation 
set (which is different for each of the K models)

4. Plot the average of the K error estimates, for each type of model 
(e.g. average of the K mean squared error values for linear models 
gives the MSE estimate at degree = 1 on next slide)
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Less variablility in test error estimate

• Results depend somewhat on how the K folds were defined

• However, the variability in the estimate of test error is much 
smaller than it was with the validation set approach

In this case, the same patterns are even clearer:
• Degree 2 polynomial is better than degree 1 

(i.e. quadratic model is better than linear)
• No large difference between error estimates 

for different degrees when using ≥2 degrees

→ 10-fold CV supports quadratic model

10-fold CV test error estimates with 

10 different splits, source: Figure 5.4 in ISL
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Methods estimating test error
Validation set approach

K-fold cross-validation

LOOCV
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Special case: n-fold CV, called LOOCV

• What happens if we use n folds? 

• In each of the n models in n-fold cross-validation: 

• The training set contains n-1 observations

• The validation set is a single observation
Leave-One-Out CV

Each fold consists of 1 observation

All observations

LOOCV, source: Figure 5.5 in ISL, labels added

Model 1

Model 2

Model 3

Model n
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No variablility in test error estimate

• Only one way to do LOOCV: n steps, leave one observation 
out in each step, take average MSE → no variability in test 
error estimate

Same patterns again:
• Degree 2 polynomial is better than degree 1 

(i.e. quadratic model is better than linear)
• No large difference between error estimates 

for different degrees when using ≥2 degrees

→ LOOCV also supports quadratic model

Leave-one-out cross-validation test 

error estimates, source: Figure 5.4 in ISL
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Ethical analysis of big data
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How to do analysis in an ethical way?

• Recommendations are made in the following article: 

Zook M, Barocas S, boyd d, Crawford K, Keller E, Gangadharan 
SP, et al. (2017) Ten simple rules for responsible big data research. 
PLoS Comput Biol 13(3): e1005399. 
https://doi.org/10.1371/journal.pcbi.1005399

• For a full understading, read the article. Here: some highlights 
are given, with some own edits and additions

• Ethical aspects addressed in Assignment 3, but not in the exam

https://doi.org/10.1371/journal.pcbi.1005399
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Data are people and can do harm

• Start with the assumption that all data are people until 
proven otherwise

• Apparently neutral data can lead to discrimination: 
categorization based on zip codes resulted in less access 
to Amazon Prime same-day delivery service for African-
Americans in United States cities*

* Ingold D, Spencer S. Amazon Doesn’t Consider the Race of Its Customers. Should It? Bloomberg.com, 21 April 2016.

http://www.bloomberg.com/graphics/2016-amazon-same-day/. Accessed 12 June 2016

http://www.bloomberg.com/graphics/2016-amazon-same-day/
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Privacy is more than a binary value

• Breaches of privacy are key means by which big data research 
can do harm

• Privacy is contextual* and situational** (e.g. just because 
something has been shared publicly does not mean any 
subsequent use would be unproblematic)

• Marketing based on search patterns have been perceived by 
some to be “creepy” or even outright breaches of privacy

* Nissenbaum H. Privacy in context: Technology, policy, and the integrity of social life. Stanford University Press; 2009.

** Marwick AE. boyd d. Networked privacy: How teenagers negotiate context in social media. New Media & Society. 2014:1461444814543995.
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Guard against data re-identification

• It is problematic to assume that data cannot be re-identified.

• When datasets thought to be anonymized are combined with 
other variables, it may result in unexpected re-identification

• Birthdate, gender, and zip code can identify people today*, but 
even seemingly harmless factors like battery usage may aid 
personal identification tomorrow**

*Sweeney L. k-anonymity: A model for protecting privacy.  International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 2002;10(05):557–70.

** Michalevsky Y, Schulman A, Veerapandian GA, Boneh D, Nakibly G. Powerspy: Location tracking using mobile device power analysis. 

In 24th USENIX Security Symposium (USENIX Security 15) 2015 (pp. 785–800).
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Context & multiple meanings

Context affects every stage: 

• data acquisition 

• data cleaning

• interpretation of findings 

• dissemination of the results

Context and evolution of data
needs to be documented

Multiple meanings and uses:

• interpretation of those (re)using 
your data may differ from your own

• consider & describe potential 
multiple meanings (e.g. for models 
with confounding!)

• use clear & high quality figures*

→ Do not overstate clarity, acknowledge multiple meanings and uses

→ Document strengths & weaknesses of data and analysis

* See e.g. the following article for recommendations: Rougier, N.P., Droetboom, M., Bourne, P.E. (2014). Ten Simple Rules for Better Figures. PLoS Comput Biol. 

10(9): e1003833, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161295/

:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4161295/
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Discuss tough, ethical 
choices

• Make grappling with ethical 
questions part of standard 
workflow

• Ethics is often about finding a 
good or better, but not 
perfect, answer

Make code of conduct

• Address issues that might 
be ignored until they blow 
up

• Make researchers and 
representatives of 
affected communities 
active contributors 

Auditability

• Plan for & welcome audits of 
big data practices

• Explicit about decisions →
understandability and 
replicability

Long-term strategy


