
Computer lab 7 in MMS075, March 5, 2020

1. This exercise shows how to compute training MSE, how to estimate test MSE by cross-

validation and how test error can be used for variable selection. We will work with the

Advertising dataset which can be downloaded from http://faculty.marshall.usc.edu/gareth-

james/ISL/data.html and imported in RStudio as usual. After downloading it, we remove the

index variable X in the first column so that it won’t be distracting:

Advertising=Advertising[,-1]

We attach the dataset so that we don’t need to write “Advertising$” when referring to its

variables:

attach(Advertising)

Let us first consider a simple linear regression model, with TV as the only predictor. We

would usually define this model using the lm function. However, it will be important later

that we define the model using the glm function this time. We will check that glm gives the

same results as lm for linear regression models, by looking at the model summaries:

AdModel1lm=lm(sales~TV)

AdModel1=glm(sales~TV)

summary(AdModel1lm)

summary(AdModel1)

We now compute the training mean squared error for this model, which is the mean of the

squared differences between the predictions and the observations for the training set:

Predictions1=predict(AdModel1,data=Advertising)

PredictionErrors1=sales-Predictions1

SquaredErrors1=PredictionErrors1^2

mean(SquaredErrors1)

Alternatively, one can compute the training MSE in one line:

mean((sales-predict(AdModel1,data=Advertising))^2)

We have now computed training MSE for one specific model. However, we may want to

consider other models as well, with one or more predictors. Furthermore, we have seen

before that interaction terms between TV and radio may also be of interest. We now look at

all possible models predicting sales, including those with an interaction term between TV

and radio, and compute training MSE for each one of them. We first define the models:

AdModel1=glm(sales~TV)

AdModel2=glm(sales~radio)

AdModel3=glm(sales~newspaper)

AdModel4=glm(sales~TV+radio)

AdModel5=glm(sales~TV+newspaper)

AdModel6=glm(sales~radio+newspaper)

AdModel7=glm(sales~TV+radio+newspaper)

AdModel8=glm(sales~TV*radio)

AdModel9=glm(sales~TV*radio+newspaper)

http://faculty.marshall.usc.edu/gareth-james/ISL/data.html
http://faculty.marshall.usc.edu/gareth-james/ISL/data.html

It will be convenient to store the results in a variable called TrainingMSE. We create first a

variable with 0 values and then fill it with meaningful values:

TrainingMSE=rep(0,9)

TrainingMSE[1]=mean((sales-predict(AdModel1,data=Advertising))^2)

TrainingMSE[2]=mean((sales-predict(AdModel2,data=Advertising))^2)

TrainingMSE[3]=mean((sales-predict(AdModel3,data=Advertising))^2)

TrainingMSE[4]=mean((sales-predict(AdModel4,data=Advertising))^2)

TrainingMSE[5]=mean((sales-predict(AdModel5,data=Advertising))^2)

TrainingMSE[6]=mean((sales-predict(AdModel6,data=Advertising))^2)

TrainingMSE[7]=mean((sales-predict(AdModel7,data=Advertising))^2)

TrainingMSE[8]=mean((sales-predict(AdModel8,data=Advertising))^2)

TrainingMSE[9]=mean((sales-predict(AdModel9,data=Advertising))^2)

We can now check the results and check which model gives the lowest training MSE value:

TrainingMSE

which.min(TrainingMSE)

However, instead of a model with low training MSE, we rather want a model with low test

MSE! We do not have new data points to test our models with, hence we can only estimate

test MSE. Below we compute the estimates for test MSE using Leave-One-Out Cross-

Validation (LOOCV) and 5-fold cross-validation.

Doing LOOCV is easy in R, using the cv.glm function in the boot library. However, this

function can only take models created with glm as an argument; that is why it was important

to define the models using glm instead of lm at the beginning.

library(boot)

LOOCVAdModel1=cv.glm(AdModel1,data=Advertising)

LOOCVTestMSE1=LOOCVAdModel1$delta[1]

You might want to understand why the last command line was necessary. The cv.glm

function will return a list, which has an argument called delta, which contains two numbers,

and the first such number is the test error estimate discussed in the lecture. The other

arguments are only needed for those who want to have a very detailed understanding of the

cross-validation process and results – for our purposes, checking only the first number in

delta is perfectly sufficient.

Doing 5-fold cross-validation is equally simple. Remember that in this case, the results

depend somewhat on how the 5 folds are defined; therefore, we do it twice to see the

difference. The selection of folds is a random process and we set seed for the random

number generator to ensure that our results will be reproducible:

set.seed(1)

CV5AdModel1Seed1=cv.glm(AdModel1,data=Advertising,K=5)

CV5TestMSE1Seed1=CV5AdModel1Seed1$delta[1]

set.seed(2)

CV5AdModel1Seed2=cv.glm(AdModel1,data=Advertising,K=5)

CV5TestMSE1Seed2=CV5AdModel1Seed2$delta[1]

Compare the three estimated test errors for AdModel1 with each other (i.e. the estimate

from LOOCV and the two estimates from 10-fold CV using different seeds) and also with the

corresponding training error!

Set the seed of the random number generator to 1 for reproducibility, compute test error

estimates for each of the 9 models considered using 10-fold cross-validation and store the

results in a variable called TestMSE. Which model gives the lowest estimated test MSE? Is

this in line with our earlier conclusions during the course that newspaper is not a significant

predictor, but it is important to include the interaction term between TV and radio?

If you believe that it would go fast, repeat this procedure after setting a different seed, e.g.

set.seed(2), and compute also the LOOCV-based test error estimates for all 9 models, and

check which model is best according to the different test error estimates. However, if you

feel that this would take too much time, proceed to the next exercise instead to ensure that

you will have enough time for the other exercises as well.

2. As indicated in Computer lab 6, we consider parts of Exercise 11 in Section 4.7 of ISL (pages

171-172), which considers models to predict whether the mileage per gallon value of a car is

above or below the median mpg value, based on the Auto dataset in the ISLR library.

The first step is to ensure access to the data by loading ISLR and easy reference to the

variables by attaching the Auto dataset:

library(ISLR)

attach(Auto)

We need to determine the median value for mpg which can be done by writing

median(mpg). As we want to refer to this value later, it is a good idea to create a variable

that we will call MedMPG that contains this value:

MedMPG=median(mpg)

The next step is to create the requested binary variable mpg01 taking value 1 for a car if its

mpg value is above the median mpg and 0 otherwise. This can be very easily done using the

ifelse function that is very similar to “IF” in Excel: a logical statement is specified in its first

argument (i.e. something is stated that can be true or false), the second argument specifies

what happens if the statement is true, and the third argument specifies what happens if the

statement is false. In this case, we need a comparison for each row in Auto between the

mpg value and MedMPG, and if the value is greater, we insert a 1, otherwise 0 to the

appropriate place of the mpg01 vector. All this is done by the following command line:

mpg01=ifelse(mpg>MedMPG,1,0)

Note: There is also an alternative way to define mpg01 in two steps, as follows: we first

create a vector that contains only 0’s and has the same length as mpg in the Auto dataset. In

the second step, we set value 1 at those indices that correspond to cars having mpg value

above MedMPG. We need two command lines for this:

mpg01=rep(0,length(mpg))

mpg01[mpg>MedMPG]=1

Next, we add the newly defined vector to the Auto dataset and look at the data:

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html

Auto$mpg01=mpg01

View(Auto)

Checking the resulting data set helps to see whether mpg01 is indeed taking the appropriate

values. For example, rows 1-14 have mpg values under 20 while the median value MedMPG

is 22.75; therefore, the mpg01 value in these rows should be 0. Conversely, rows 19-24 have

mpg values above 24, hence these are all above the median value and should have an

mpg01 value of 1.

For part b), asking us to create various plots for identifying potentially relevant predictors of

mpg01, we can first create scatter plots for all pairs of variables in the Auto data frame:

pairs(Auto)

Looking at the bottom row shows scatter plots with values of other variables on the x-axis

and mpg01 on the y-axis. Which variables that make a separation between 0 and 1 values of

mpg01? Intuitively, those variables that make a separation should be considered as

predictors of mpg01.

3. The variables identified above may potentially be useful in predicting mpg01. Are there any

others? We can check that by looking at the box plots of the other variables versus mpg01.

We can first try to use the same command as we used in Computer lab 6 for creating the box

plots; for example, for the year variable:

plot(year~mpg01)

Interestingly, this command does not produce a box plot here but rather a scatter plot. Why

is that? Because R treats mpg01 as a numerical variable that happened to have 0 and 1

values (but, for example, its next value could be 0.2 or any other number), rather than a

categorical variable that can only have these two values! To get the usual box plots that are

generated for categorical variables, we need to help R to know that it should treat mpg01 as

a categorical variable, or, in other words, as a factor. This can be done by using the as.factor

function, and the following command creates the desired box plots:

plot(year~as.factor(mpg01))

Add some axis labels and possibly some colors to this box plot to make it look nicer!

We can also check how this is shown when viewing the data frame. We add a new variable

Largempg to Auto that contains the same values as mpg01 and is treated as a factor:

Auto$Largempg=as.factor(mpg01)

View(Auto)

Do you see any difference between how the values for mpg01 and Largempg are displayed?

Note also that being a factor was an issue only because mpg01 was defined as 1 or 0

depending on the value of mpg; had it been defined to take "Yes" or "No" instead, R would

immediately have recognized it as a categorical variable.

4. After this detour, we can try to create the box plots for the other variables as follows:

plot(cylinders~as.factor(mpg01))

plot(year~as.factor(mpg01))

plot(origin~as.factor(mpg01))

plot(name~as.factor(mpg01))

The last plot using name as a predictor is showing too many names values to be useful and

does not show evidence that the name would be a good predictor of mpg01. For the plot

with origin, it is worth noting that origin is a categorical value that is coded as 1, 2 or 3, so

we get a more meaningful plot if we ask R to treat both mpg01 and origin as factors:

plot(as.factor(origin)~as.factor(mpg01))

Based on all plots created in this exercise, it is reasonable to believe that each variable

except for name may help in predicting mpg01 values. We can check this by fitting single-

variable logistic regression models with response mpg01, and looking at the summaries of

these models; for example, we can consider the following command:

summary(glm(mpg01~year,family="binomial",data=Auto))

Note, however, that several of the predictors are strongly correlated with each other. For

example, the scatter plots generated by the pairs(Auto) command suggest correlation

between horsepower and displacement or horsepower and weight. Therefore, some

variables may appear important in predicting mpg01 only because they are correlated with a

predictor that may indeed be important. Therefore, for a better understanding of how to

predict mpg01, we need to consider multivariate models. Furthermore, as we noted that

higher degrees of horsepower were relevant for predicting the value of mpg, we may expect

that higher degrees of this variable should be considered as predictors of mpg01 as well.

5. As requested in part c), we split the data into a training set and a test set. For this, we check

how many observations there are by checking the length of the response vector:

length(mpg01)

We have seen that mpg01 contains 392 elements that we need to split. This could be done

in a non-random way as follows:

train=1:196

test=197:392

However, this is not so good, for many reasons. For example, it could happen that the

database is ordered in some way, for example by the mpg value; in that case, the first half

would contain all 0 values for mpg01 while the second half would contain essentially only

1’s. It is better to split the set randomly, as shown below. As usual, we set a seed for the

random number generator to ensure that we don’t get different outputs each time when we

run the code:

set.seed(1)

train=sample(392,196)

test=setdiff(1:392,train)

The second line chooses 196 random numbers from the set of all integers from 1 to 392. The

setdiff function in the last line takes the difference of all integers from 1 to 392 and the train

set, i.e. all numbers from 1 to 392 that are not included in train. This line is not essential –

when fitting models in further steps, it would be enough to use train for the training set and

-train to denote elements of the dataset that are not in train.

6. We proceed to part f) of the exercise, asking us to fit a logistic regression model on

observations in the training set using a good predictor identified in part b) and quantify the

test error for the validation set. For example, we can take year whose box plot showed a

clear difference between the year values of those cars with mpg below the median and

those with mpg above the median. Generally, one could include many more variables in this

model, but including year suffices for the demonstration of computing test error.

We fit the model using the subset argument of glm:

YearModelTrain=glm(mpg01~year,family="binomial",data=Auto,subset=train)

We can then make the predictions using the predict function, and classify those with

predicted probability >50% to have value 1:

YearModelTrain=glm(mpg01~year,family="binomial",data=Auto,subset=train)

Probs=predict(YearModelTrain,type="response",data=Auto)[test]

mpg01Prediction=rep(0,196)

mpg01Prediction[Probs>0.5]=1

Finally, we can look at a comparison with the mpg01 values in the test set to get an overview

of the correctness of predictions:

table(mpg01Prediction,mpg01[test])

The values in the diagonal indicate correct classifications, while the other classifications are

incorrect. The test error is therefore the sum of the values outside the diagonal divided by

the number of observations in the test set. What can you conclude about this predictor

based on this result?

7. For feedback related to this specific class, talk to me or use www.menti.com with the code

45 41 36. Also, please fill the course survey once it becomes available!

http://www.menti.com/

