
Computer lab 7 in MMS075, March 5, 2020 

 

1. This exercise shows how to compute training MSE, how to estimate test MSE by cross-

validation and how test error can be used for variable selection. We will work with the 

Advertising dataset which can be downloaded from http://faculty.marshall.usc.edu/gareth-

james/ISL/data.html and imported in RStudio as usual. After downloading it, we remove the 

index variable X in the first column so that it won’t be distracting:  

Advertising=Advertising[,-1] 

  

We attach the dataset so that we don’t need to write “Advertising$” when referring to its 

variables: 

attach(Advertising) 

 

Let us first consider a simple linear regression model, with TV as the only predictor. We 

would usually define this model using the lm function. However, it will be important later 

that we define the model using the glm function this time. We will check that glm gives the 

same results as lm for linear regression models, by looking at the model summaries: 

AdModel1lm=lm(sales~TV) 

AdModel1=glm(sales~TV) 

summary(AdModel1lm) 

summary(AdModel1) 

 

Note: lm stands for linear model, glm stands for generalized linear model 

 

We now compute the training mean squared error for this model, which is the mean of the 

squared differences between the predictions and the observations for the training set: 

Predictions1=predict(AdModel1,data=Advertising) 

PredictionErrors1=sales-Predictions1 

SquaredErrors1=PredictionErrors1^2 

mean(SquaredErrors1) 

 

Alternatively, one can compute the training MSE in one line: 

mean((sales-predict(AdModel1,data=Advertising))^2) 

 

We have now computed training MSE for one specific model. However, we may want to 

consider other models as well, with one or more predictors. Furthermore, we have seen 

before that interaction terms between TV and radio may also be of interest. We now look at 

all possible models predicting sales, including those with an interaction term between TV 

and radio, and compute training MSE for each one of them. We first define the models: 

AdModel1=glm(sales~TV) 

AdModel2=glm(sales~radio) 

AdModel3=glm(sales~newspaper) 

AdModel4=glm(sales~TV+radio) 

AdModel5=glm(sales~TV+newspaper) 

AdModel6=glm(sales~radio+newspaper) 

AdModel7=glm(sales~TV+radio+newspaper) 

AdModel8=glm(sales~TV*radio) 

http://faculty.marshall.usc.edu/gareth-james/ISL/data.html
http://faculty.marshall.usc.edu/gareth-james/ISL/data.html


AdModel9=glm(sales~TV*radio+newspaper) 

 

Note: as before, TV*radio is a shorthand for TV:radio+TV+radio, i.e. to include the 

interaction term between TV and radio as well as the main terms TV and radio. 

 

It will be convenient to store the results in a variable called TrainingMSE. We create first a 

variable with 0 values and then fill it with meaningful values: 

TrainingMSE=rep(0,9) 

 

Note: as there are 9 models, we know that we will need to store 9 training MSE values. 

Therefore, we create a variable TrainingMSE that has 9 places available. The simplest way to 

create such a variable is with the rep command, as above; this command fills each of the 9 

places with 0 values. It does not matter at all whether we are using 0 values or some other 

number, because we will overwrite each of these initial values with the next lines below. 

Therefore, for example, rep(1,9) would work equally well instead of rep(0,9). 

 

TrainingMSE[1]=mean((sales-predict(AdModel1,data=Advertising))^2) 

TrainingMSE[2]=mean((sales-predict(AdModel2,data=Advertising))^2) 

TrainingMSE[3]=mean((sales-predict(AdModel3,data=Advertising))^2) 

TrainingMSE[4]=mean((sales-predict(AdModel4,data=Advertising))^2) 

TrainingMSE[5]=mean((sales-predict(AdModel5,data=Advertising))^2) 

TrainingMSE[6]=mean((sales-predict(AdModel6,data=Advertising))^2) 

TrainingMSE[7]=mean((sales-predict(AdModel7,data=Advertising))^2) 

TrainingMSE[8]=mean((sales-predict(AdModel8,data=Advertising))^2) 

TrainingMSE[9]=mean((sales-predict(AdModel9,data=Advertising))^2) 

 

We can now check the results and check which model gives the lowest training MSE value:  

TrainingMSE 

which.min(TrainingMSE) 

 

However, instead of a model with low training MSE, we rather want a model with low test 

MSE! We do not have new data points to test our models with, hence we can only estimate 

test MSE. Below we compute the estimates for test MSE using Leave-One-Out Cross-

Validation (LOOCV) and 5-fold cross-validation.  

 

Doing LOOCV is easy in R, using the cv.glm function in the boot library. However, this 

function can only take models created with glm as an argument; that is why it was important 

to define the models using glm instead of lm at the beginning.  

library(boot) 

LOOCVAdModel1=cv.glm(AdModel1,data=Advertising) 

LOOCVTestMSE1=LOOCVAdModel1$delta[1] 

 

Note: the value of the variable LOOCVTestMSE1 is the LOOCV estimate for the test error of 

Model 1. 

 

You might want to understand why the last command line was necessary. The cv.glm 

function will return a list, which has an argument called delta, which contains two numbers, 

and the first such number is the test error estimate discussed in the lecture. The other 



arguments are only needed for those who want to have a very detailed understanding of the 

cross-validation process and results – for our purposes, checking only the first number in 

delta is perfectly sufficient. 

 

Doing 5-fold cross-validation is equally simple. Remember that in this case, the results 

depend somewhat on how the 5 folds are defined; therefore, we do it twice to see the 

difference. The selection of folds is a random process and we set seed for the random 

number generator to ensure that our results will be reproducible: 

set.seed(1) 

CV5AdModel1Seed1=cv.glm(AdModel1,data=Advertising,K=5) 

CV5TestMSE1Seed1=CV5AdModel1Seed1$delta[1] 

 

set.seed(2) 

CV5AdModel1Seed2=cv.glm(AdModel1,data=Advertising,K=5) 

CV5TestMSE1Seed2=CV5AdModel1Seed2$delta[1] 

 

Note: Each of the values CV5TestMSE1Seed1 and CV5TestMSE1Seed2 is a 5-fold CV 

estimate for the test error of Model 1. As the 5-fold CV process involves some randomness, 

it is not surprising that these estimates are slightly different. 

 

Compare the three estimated test errors for AdModel1 with each other (i.e. the estimate 

from LOOCV and the two estimates from 10-fold CV using different seeds) and also with the 

corresponding training error!  

 

NOTE: the text here is misleading, because we have been using 5-fold CV so far with 

different seeds, not 10-fold CV. 

 

The three test error estimates are as follows: 

 
 

We see that these values are very close to each other, but they are all slightly different. They 

can also be compared to the training MSE for Model 1, which is the first element of the 

TrainingMSE variable: 

 
 

Having the training MSE of Model 1 at 10.51, we see that all three training error estimates 

are higher than the training MSE. 

 

Set the seed of the random number generator to 1 for reproducibility, compute test error 

estimates for each of the 9 models considered using 10-fold cross-validation and store the 

results in a variable called TestMSE. Which model gives the lowest estimated test MSE? Is 

this in line with our earlier conclusions during the course that newspaper is not a significant 

predictor, but it is important to include the interaction term between TV and radio? 

set.seed(1) 

CV10AdModel1=cv.glm(AdModel1,data=Advertising,K=10) 

CV10AdModel2=cv.glm(AdModel2,data=Advertising,K=10) 



CV10AdModel3=cv.glm(AdModel3,data=Advertising,K=10) 

CV10AdModel4=cv.glm(AdModel4,data=Advertising,K=10) 

CV10AdModel5=cv.glm(AdModel5,data=Advertising,K=10) 

CV10AdModel6=cv.glm(AdModel6,data=Advertising,K=10) 

CV10AdModel7=cv.glm(AdModel7,data=Advertising,K=10) 

CV10AdModel8=cv.glm(AdModel8,data=Advertising,K=10) 

CV10AdModel9=cv.glm(AdModel9,data=Advertising,K=10) 

TestMSE=rep(0,9) 

TestMSE[1]=CV10AdModel1$delta[1] 

TestMSE[2]=CV10AdModel2$delta[1] 

TestMSE[3]=CV10AdModel3$delta[1] 

TestMSE[4]=CV10AdModel4$delta[1] 

TestMSE[5]=CV10AdModel5$delta[1] 

TestMSE[6]=CV10AdModel6$delta[1] 

TestMSE[7]=CV10AdModel7$delta[1] 

TestMSE[8]=CV10AdModel8$delta[1] 

TestMSE[9]=CV10AdModel9$delta[1] 

which.min(TestMSE) 

 

These command lines give that model 8 has the lowest estimated test MSE. This model 

includes TV, radio and their interaction term TV:radio, but does not include the newspaper 

variable. Therefore, in this case, model selection based on cross-validation estimate of test 

error gives the same model as the one we got earlier by investigating p-values.  

 

If you believe that it would go fast, repeat this procedure after setting a different seed, e.g. 

set.seed(2), and compute also the LOOCV-based test error estimates for all 9 models, and 

check which model is best according to the different test error estimates. However, if you 

feel that this would take too much time, proceed to the next exercise instead to ensure that 

you will have enough time for the other exercises as well. 

 

set.seed(2) 

CV10AdModel1=cv.glm(AdModel1,data=Advertising,K=10) 

CV10AdModel2=cv.glm(AdModel2,data=Advertising,K=10) 

CV10AdModel3=cv.glm(AdModel3,data=Advertising,K=10) 

CV10AdModel4=cv.glm(AdModel4,data=Advertising,K=10) 

CV10AdModel5=cv.glm(AdModel5,data=Advertising,K=10) 

CV10AdModel6=cv.glm(AdModel6,data=Advertising,K=10) 

CV10AdModel7=cv.glm(AdModel7,data=Advertising,K=10) 

CV10AdModel8=cv.glm(AdModel8,data=Advertising,K=10) 

CV10AdModel9=cv.glm(AdModel9,data=Advertising,K=10) 

TestMSE=rep(0,9) 

TestMSE[1]=CV10AdModel1$delta[1] 

TestMSE[2]=CV10AdModel2$delta[1] 

TestMSE[3]=CV10AdModel3$delta[1] 

TestMSE[4]=CV10AdModel4$delta[1] 

TestMSE[5]=CV10AdModel5$delta[1] 

TestMSE[6]=CV10AdModel6$delta[1] 

TestMSE[7]=CV10AdModel7$delta[1] 



TestMSE[8]=CV10AdModel8$delta[1] 

TestMSE[9]=CV10AdModel9$delta[1] 

which.min(TestMSE) 

 

If we use 2 as the seed for the random number generator, we get slightly different results. 

The small differences in the estimates lead to a slightly different conclusion that model 9 is 

the best; this model includes TV, radio and their interaction term TV:radio, as well as the 

newspaper variable. Note, however, that the test MSE estimates are very similar for models 

8 and 9, as shown in the output below: 

  
As there is only very small difference between the error estimates, it can also make sense to 

choose the simpler Model 8 (with less predictors) as the model for further analysis. 

 

The LOOCV test error estimates can be computed as follows:  

LOOCVAdModel1=cv.glm(AdModel1,data=Advertising) 

LOOCVAdModel2=cv.glm(AdModel2,data=Advertising) 

LOOCVAdModel3=cv.glm(AdModel3,data=Advertising) 

LOOCVAdModel4=cv.glm(AdModel4,data=Advertising) 

LOOCVAdModel5=cv.glm(AdModel5,data=Advertising) 

LOOCVAdModel6=cv.glm(AdModel6,data=Advertising) 

LOOCVAdModel7=cv.glm(AdModel7,data=Advertising) 

LOOCVAdModel8=cv.glm(AdModel8,data=Advertising) 

LOOCVAdModel9=cv.glm(AdModel9,data=Advertising) 

LOOCVTestMSE=rep(0,9) 

LOOCVTestMSE[1]=LOOCVAdModel1$delta[1] 

LOOCVTestMSE[2]=LOOCVAdModel2$delta[1] 

LOOCVTestMSE[3]=LOOCVAdModel3$delta[1] 

LOOCVTestMSE[4]=LOOCVAdModel4$delta[1] 

LOOCVTestMSE[5]=LOOCVAdModel5$delta[1] 

LOOCVTestMSE[6]=LOOCVAdModel6$delta[1] 

LOOCVTestMSE[7]=LOOCVAdModel7$delta[1] 

LOOCVTestMSE[8]=LOOCVAdModel8$delta[1] 

LOOCVTestMSE[9]=LOOCVAdModel9$delta[1] 

which.min(LOOCVTestMSE) 

 

This process gives the lowest LOOCV test error estimate for Model 8. This is in line with the 

10-fold CV result with seed 1, and also this model was the second best option for 10-fold CV 

with seed 2. Therefore, it would be reasonable to use this model for further analysis. 

 

2. As indicated in Computer lab 6, we consider parts of Exercise 11 in Section 4.7 of ISL (pages 

171-172), which considers models to predict whether the mileage per gallon value of a car is 

above or below the median mpg value, based on the Auto dataset in the ISLR library. 

 

The first step is to ensure access to the data by loading ISLR and easy reference to the 

variables by attaching the Auto dataset: 

library(ISLR) 

attach(Auto) 

 

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html


We need to determine the median value for mpg which can be done by writing 

median(mpg). As we want to refer to this value later, it is a good idea to create a variable 

that we will call MedMPG that contains this value: 

MedMPG=median(mpg) 

 

The next step is to create the requested binary variable mpg01 taking value 1 for a car if its 

mpg value is above the median mpg and 0 otherwise. This can be very easily done using the 

ifelse function that is very similar to “IF” in Excel: a logical statement is specified in its first 

argument (i.e. something is stated that can be true or false), the second argument specifies 

what happens if the statement is true, and the third argument specifies what happens if the 

statement is false. In this case, we need a comparison for each row in Auto between the 

mpg value and MedMPG, and if the value is greater, we insert a 1, otherwise 0 to the 

appropriate place of the mpg01 vector. All this is done by the following command line: 

mpg01=ifelse(mpg>MedMPG,1,0)  

 

Note: There is also an alternative way to define mpg01 in two steps, as follows: we first 

create a vector that contains only 0’s and has the same length as mpg in the Auto dataset. In 

the second step, we set value 1 at those indices that correspond to cars having mpg value 

above MedMPG. We need two command lines for this: 

mpg01=rep(0,length(mpg)) 

mpg01[mpg>MedMPG]=1 

 

Next, we add the newly defined vector to the Auto dataset and look at the data: 

Auto$mpg01=mpg01 

View(Auto) 

Checking the resulting data set helps to see whether mpg01 is indeed taking the appropriate 

values. For example, rows 1-14 have mpg values under 20 while the median value MedMPG 

is 22.75; therefore, the mpg01 value in these rows should be 0. Conversely, rows 19-24 have 

mpg values above 24, hence these are all above the median value and should have an 

mpg01 value of 1. 

 

For part b), asking us to create various plots for identifying potentially relevant predictors of 

mpg01, we can first create scatter plots for all pairs of variables in the Auto data frame: 

pairs(Auto) 

 

Looking at the bottom row shows scatter plots with values of other variables on the x-axis 

and mpg01 on the y-axis. Which variables that make a separation between 0 and 1 values of 

mpg01? Intuitively, those variables that make a separation should be considered as 

predictors of mpg01.  

 

3. The variables identified above may potentially be useful in predicting mpg01. Are there any 

others? We can check that by looking at the box plots of the other variables versus mpg01. 

We can first try to use the same command as we used in Computer lab 6 for creating the box 

plots; for example, for the year variable: 

plot(year~mpg01) 

 

Interestingly, this command does not produce a box plot here but rather a scatter plot. Why 

is that? Because R treats mpg01 as a numerical variable that happened to have 0 and 1 



values (but, for example, its next value could be 0.2 or any other number), rather than a 

categorical variable that can only have these two values! To get the usual box plots that are 

generated for categorical variables, we need to help R to know that it should treat mpg01 as 

a categorical variable, or, in other words, as a factor. This can be done by using the as.factor 

function, and the following command creates the desired box plots: 

plot(year~as.factor(mpg01)) 

 

Add some axis labels and possibly some colors to this box plot to make it look nicer! 

One example is as follows: 

plot(year~as.factor(mpg01),xlab="Miles per gallon above median?",col=c("red","green")) 

 

If we preferred to write “No” and “Yes” on the x-axis instead of using 0 or 1, we can first 

draw the plot and suppress the original labels by adding the argument xaxt="n" and then 

adding our custom labels using the axis function: 

plot(year~as.factor(mpg01),xlab="Miles per gallon above median?", col=c("red","green"), 

xaxt="n")  

axis(side=1,at=c(1,2), labels=c("No","Yes")) 

 

We can also check how this is shown when viewing the data frame. We add a new variable 

Largempg to Auto that contains the same values as mpg01 and is treated as a factor: 

Auto$Largempg=as.factor(mpg01) 

View(Auto) 

 

Do you see any difference between how the values for mpg01 and Largempg are displayed? 

The numbers in the column mpg01 are aligned to the right – this shows that they are treated 

as numbers. The same values in the column Largempg are aligned to the left – this shows 

that these values are treated as factors, not as numbers. 

 

Note also that being a factor was an issue only because mpg01 was defined as 1 or 0 

depending on the value of mpg; had it been defined to take "Yes" or "No" instead, R would 

immediately have recognized it as a categorical variable.  

 

4. After this detour, we can try to create the box plots for the other variables as follows: 

plot(cylinders~as.factor(mpg01)) 

plot(year~as.factor(mpg01)) 

plot(origin~as.factor(mpg01)) 

plot(name~as.factor(mpg01)) 

 

The last plot using name as a predictor is showing too many names values to be useful and 

does not show evidence that the name would be a good predictor of mpg01. For the plot 

with origin, it is worth noting that origin is a categorical value that is coded as 1, 2 or 3, so 

we get a more meaningful plot if we ask R to treat both mpg01 and origin as factors: 

plot(as.factor(origin)~as.factor(mpg01)) 

 

Based on all plots created in this exercise, it is reasonable to believe that each variable 

except for name may help in predicting mpg01 values. We can check this by fitting single-

variable logistic regression models with response mpg01, and looking at the summaries of 

these models; for example, we can consider the following command: 



summary(glm(mpg01~year,family="binomial",data=Auto))  

 

Note, however, that several of the predictors are strongly correlated with each other. For 

example, the scatter plots generated by the pairs(Auto) command suggest correlation 

between horsepower and displacement or horsepower and weight. Therefore, some 

variables may appear important in predicting mpg01 only because they are correlated with a 

predictor that may indeed be important. Therefore, for a better understanding of how to 

predict mpg01, we need to consider multivariate models. Furthermore, as we noted that 

higher degrees of horsepower were relevant for predicting the value of mpg, we may expect 

that higher degrees of this variable should be considered as predictors of mpg01 as well. 

 

5. As requested in part c), we split the data into a training set and a test set. For this, we check 

how many observations there are by checking the length of the response vector: 

length(mpg01) 

 

We have seen that mpg01 contains 392 elements that we need to split. This could be done 

in a non-random way as follows: 

train=1:196 

test=197:392 

 

However, this is not so good, for many reasons. For example, it could happen that the 

database is ordered in some way, for example by the mpg value; in that case, the first half 

would contain all 0 values for mpg01 while the second half would contain essentially only 

1’s. It is better to split the set randomly, as shown below. As usual, we set a seed for the 

random number generator to ensure that we don’t get different outputs each time when we 

run the code: 

set.seed(1) 

train=sample(392,196) 

test=setdiff(1:392,train) 

 

The second line chooses 196 random numbers from the set of all integers from 1 to 392. The 

setdiff function in the last line takes the difference of all integers from 1 to 392 and the train 

set, i.e. all numbers from 1 to 392 that are not included in train. This line is not essential – 

when fitting models in further steps, it would be enough to use train for the training set and 

-train to denote elements of the dataset that are not in train.  

 

6. We proceed to part f) of the exercise, asking us to fit a logistic regression model on 

observations in the training set using a good predictor identified in part b) and quantify the 

test error for the validation set. For example, we can take year whose box plot showed a 

clear difference between the year values of those cars with mpg below the median and 

those with mpg above the median. Generally, one could include many more variables in this 

model, but including year suffices for the demonstration of computing test error. 

 

We fit the model using the subset argument of glm: 

YearModelTrain=glm(mpg01~year,family="binomial",data=Auto,subset=train) 

 

We can then make the predictions using the predict function, and classify those with 

predicted probability >50% to have value 1: 



YearModelTrain=glm(mpg01~year,family="binomial",data=Auto,subset=train) 

Probs=predict(YearModelTrain,type="response",data=Auto)[test] 

mpg01Prediction=rep(0,196) 

mpg01Prediction[Probs>0.5]=1  

 

NOTE: Unfortunately, there was a mistake in specifying the above code that made it work 

incorrectly. The second line, when making the prediction, should not contain data=Auto but 

rather just Auto in its third argument. The correct code is provided below: 

YearModelTrain=glm(mpg01~year,family="binomial",data=Auto,subset=train) 

Probs=predict(YearModelTrain,type="response",Auto)[test] 

mpg01Prediction=rep(0,196) 

mpg01Prediction[Probs>0.5]=1 

 

Finally, we can look at a comparison with the mpg01 values in the test set to get an overview 

of the correctness of predictions: 

table(mpg01Prediction,mpg01[test]) 

 

The values in the diagonal indicate correct classifications, while the other classifications are 

incorrect. The test error is therefore the sum of the values outside the diagonal divided by 

the number of observations in the test set. What can you conclude about this predictor 

based on this result? 

 

Note: the rows of this table represent the predicted mpg01 values, while the columns 

represent the observed mpg01 values in the test set. (Such a cross-tabulation of predicted vs 

observed values is called the confusion matrix or error matrix of the classification model; if 

you want to learn more about this and related concepts, see pages 145-149 in ISL.) The R 

output is given below: 

 
For example, the first row means that the model YearModelTrain predicted value 0 for 

mpg01 for 70+41 = 111 cars in the test dataset, and in 70 cases it was correct, because the 

actual mpg01 value was also 0, but in 41 cases the prediction was incorrect, because the 

actual mpg01 value was 1. As for the second row, YearModelTrain predicted value 1 for 

mpg01 for 23+62 = 85 cars in the test dataset, and in 23 cases this was wrong, because the 

actual mpg01 value was 0, but in 62 cases the prediction was correct, because the actual 

mpg01 value was indeed 1.  

 

This means that YearModelTrain predicted the correct mpg01 value 70+62=132 times and 

made a mistake for 23+41 = 64 cases in the test set. Therefore, its prediction error rate for 

the test set is 64/196 = 0.3265, i.e. 32.65%. We can conclude that using year as a predictor 

can help guessing whether a car has higher mpg value than the median mpg about 2 out of 3 

times on new data, and will lead to an incorrect guess about 1 out of 3 times. 

 

7. For feedback related to this specific class, talk to me or use www.menti.com with the code 

45 41 36. Also, please fill the course survey once it becomes available! 

http://www.menti.com/

