Lecture plan 2020

TIF150, Information theory for complex systems

Week 1

Monday 20 January 15:15-17:00
Introductory meeting. Course overview. Basic information-theoretic concepts.

Wednesday 22 January 10:00-11:45

1. We discuss the introductory puzzle in an information theoretic perspective.
2. Information theory: Relative information or Kullback-Leibler divergence, the maximum entropy formalism, Gibbs distributions. (Continuous state space.)

Friday 24 January 13:15-15:00
Examples and exercises - basic concepts. (Susanne)

Week 2

Monday 27 January 15:15-17:00

Information theory: lattice systems, entropies of symbol sequences. Decomposition of information in entropy and redundancy. Decomposition of redundancy into contributions from density information and correlation of different lengths.

Wednesday 29 January 10:00-11:45
Lattice systems, continued. Symbol sequences generated by finite automata.

Friday 31 February 13:15-15:00
Examples and exercises - symbol sequences. (Susanne)

Week 3

Monday 3 February 15:15-17:00
Complexity measures. Two-dimensional systems.

Friday 7 February 13:15-15:00
Introduction to Cellular automata; entropy law.

Week 4

Monday 10 February 15:15-17:00
Cellular Automata.

Wednesday 12 February 10:00-11:45
Examples and exercises - Cellular Automata. (Rasmus)

Friday 14 February 13:15-15:00
Examples and exercises - Cellular Automata. (Susanne)

Week 5

Monday 17 February 15:15-17:00
Information theory and Physics; statistical mechanics.

Wednesday 19 February 10:00-11:45
Information theory and Physics - spin systems.

Friday 21 February 13:15-15:00
Examples and exercises - Spin systems. (Rasmus/Susanne)

Week 6

Wednesday 26 February 10:00-11:45
Chaotic systems.

Friday 28 March 13:15-15:00
Chaotic systems, continued.

Week 7

Wednesday 4 March 10:00-11:45
Examples and exercises - Chaotic systems. (Susanne)

Friday 6 March 13:15-15:00
Geometric information theory, fractals.

Week 8

Wednesday 11 March 10:00-11:45
Self-organizing systems - flows of information.

Friday 13 March 13:15-15:00
Examples from previous exams. (Susanne)

