
 
 
 

Kristian Lindgren 
 
 
 

Information Theory for 
Complex Systems 

 
An information perspective on complexity in 
dynamical systems, physics, and chemistry 
 
January 20, 2014 
 
 
 
 
 
 
 
 
 
Complex systems group 
Department of Energy and Environment 
Chalmers University of Technology 





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Complexity and information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Information theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Information and Shannon entropy . . . . . . . . . . . . . . . . . . 6
2.1.2 Relative information, relative entropy, or

Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Maximum entropy formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The Bose-Einstein distribution . . . . . . . . . . . . . . . . . . . . . 15
2.3 Generalisation of entropies to a continuous state-space . . . . . . 16
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Information theory for lattice systems . . . . . . . . . . . . . . . . . . . . 21
3.1 Symbol sequences and information . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Probabilistic description of a symbol sequence . . . . . . . . 23
3.1.2 Quantifying disorder in a symbol sequence . . . . . . . . . . . 25
3.1.3 Quantifying order and correlations in a symbol sequence 27

3.2 Markov processes and hidden Markov models . . . . . . . . . . . . . . 30
3.2.1 Markov processes and entropy . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Hidden Markov models and entropy . . . . . . . . . . . . . . . . 32
3.2.3 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Measuring complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Correlation complexity for Markov processes and

hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Extensions to higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Cellular automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Cellular automata – a class of discrete dynamical systems . . . 47
4.2 Elementary Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



vi Contents

4.3 Information theory for Cellular Automata . . . . . . . . . . . . . . . . . 52
4.3.1 Deterministic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Almost reversible rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Rules with noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Examples of information-theoretic properties in the evolution
of simple CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Analysis of CA time evolution using Hidden Markov models . 62
4.6 Local information detecting patterns in CA time evolution . . . 65
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Physics and information theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1 Basic thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Intensive and extensive variables . . . . . . . . . . . . . . . . . . . 73
5.2 Work and information—an extended example . . . . . . . . . . . . . . 74
5.3 From information theory to statistical mechanics and

thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Comparing two different Gibbs distributions . . . . . . . . . 79
5.3.2 Information and free energy in non-equilibrium

concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Microscopic and macroscopic entropy . . . . . . . . . . . . . . . . . . . . . 83
5.5 Information theory for spin systems . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Example: The one-dimensional Ising model . . . . . . . . . . 86
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Geometric information theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1 Information decomposition with respect to position and

resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.1 Resolution dependent probability density . . . . . . . . . . . . 92
6.1.2 Examples on resolution dependent probability densities 94
6.1.3 Connection between resolution and diffusion . . . . . . . . . 95
6.1.4 Decomposition of information . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Fractals patterns, dimension, and information . . . . . . . . . . . . . . 97
6.2.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Fractal dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Dimension and information . . . . . . . . . . . . . . . . . . . . . . . . 101

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Pattern formation in chemical systems . . . . . . . . . . . . . . . . . . . . 105
7.1 Information analysis of chemical pattern formation . . . . . . . . . 107

7.1.1 Chemical and spatial information . . . . . . . . . . . . . . . . . . . 107
7.1.2 Decomposition of spatial information in a chemical

pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1.3 Reaction-diffusion dynamics . . . . . . . . . . . . . . . . . . . . . . . 111
7.1.4 Flows of information in a closed chemical systems . . . . 112



Contents vii

7.1.5 A continuity equation for information in the case of a
closed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.6 A continuity equation for information in the case of
an open system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Application to the self-replicating spots dynamics . . . . . . . . . . . 117
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Chaos and information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1 Basic dynamical systems concepts . . . . . . . . . . . . . . . . . . . . . . . . 122

8.1.1 Iterated maps, fixed points, and periodic orbits . . . . . . . 122
8.1.2 Probability densities and measures on the state space . 122
8.1.3 Lyapunov exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.1.4 The Lyapunov exponent as an information flow from

”micro” to ”macro” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.2 Dynamical systems entropy and information flow . . . . . . . . . . . 125

8.2.1 Extended example of a generating partition for a
skew roof map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.2 An example of a partition that is not generating . . . . . 130
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137





Chapter 1
Introduction

1.1 Complexity and information

The term ”complex systems” has become a unifying concept for research and
studies of large multi-component systems in many disciplines like physics,
chemistry, biology, social science, computer science, economics and geogra-
phy. The fact that systems composed of a large number of simple components
can exhibit complex phenomena is exemplified in all these areas: the second
law of thermodynamics (as a statistical result of large physical systems),
self-organising systems (in the form of chemical reaction-diffusion systems),
neural networks, evolution of cooperation, cellular automata (as an example
of an abstract class of computational systems), economic systems of inter-
acting trading agents, urban growth and traffic systems. During the past
three decades the area of complex systems has grown tremendously, lead-
ing to a large number of scientific journals. An important factor has been the
fast development of computers, allowing for cheap and powerful experimental
laboratories of complex systems models.

A complex system usually involves a large number of components. These
components may be simple, both in terms of their internal characteristics and
in the way they interact. Still, when the system is observed over longer time
and length scales, there may be phenomena that are not easily understood
in terms of the simple components and their interactions.

There is no universal definition of a complex system, but there are sev-
eral features that researchers usually consider, like those mentioned above,
when they say that a system is complex. One important scientific question
is whether these and other characteristics of the systems can be quantified.
This is one of the aims with this book – to provide a set of tools that can be
used to give a quantitative description of a complex system for a variety of
different situations.

In order to analyse systems composed of many components, statistical
methods serve as important tools. Within physics, this approach is taken in
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2 1 Introduction

statistical mechanics. Information theory is a branch of probability theory
that has a mathematical basis that is equivalent to foundations of statistical
mechanics, and information theory also provides concepts and methods that
are useful in order to analyse structure, disorder, randomness, etc in models
of complex systems.

Information-theoretic concepts can be applied on the macro-level of a sys-
tem, for example, in order to describe the spatial structure formed in a chem-
ical self-organising system. The connection between information theory and
statistical mechanics makes it possible to relate such an analysis to the ther-
modynamical properties and limitations of the system.

Information theory may also be applied on the micro-level in physical (and
other) systems, for example in spin system models and other more abstract
models for statistical mechanics. In this lecture series we shall show and
illustrate how information-theoretic quantities can be related to statistical
mechanics and thermodynamics properties, and in this way we may illustrate,
in an information-theoretic perspective, complex phenomena like the second
law of thermodynamics.

The concept of information has many meanings. For a historical survey
and a discussion of its use in different scientific disciplines, see Capurro and
Hjørland [2003]. During the 20th century information has often been asso-
ciated with knowledge, or transmission of knowledge. The introduction of
information as a quantity in science and engineering was associated with the
development of communication technology. Harry Nyquist and Ralph Hart-
ley were pioneers in the 1920’s and they published papers in the context of
telegraph speed and ”information” transmission, offering the first quantita-
tive definition of information [Nyquist, 1924, Hartley, 1928]. Their ideas were
based on the observation that such a quantitative measure should be propor-
tional to the logarithm of the number of choices or possibilities there is for
composing the message.

This basic quantity was then generalised by Claude Shannon and Warren
Weaver when they presented the information theory that serves as the basis
for the field today [Shannon and Weaver, 1949]. This generalisation is based
on a probabilistic or statistical description of the system under study. The
basic concepts will be discussed in detail in Chapter 2.

It should be noted that the information concept that is presented in this
book is a very specific one, related to a probabilistic description of the system
that is studied or related to how such a description is changed when the
knowledge about the system is changed. This means that what is quantified
is related to the description of the system rather than the system itself. One
can choose a description that hides a lot of detail and in that case may get a
different information quantity compared to the fully described system.

Another point that needs to be stressed is that the information we consider
has no direct connection to meaning. This is stated in Shannon’s first paper
presenting the theory [Shannon, 1948]:
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”... the fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another point.
Frequently the messages have meaning; that is they refer to or are correlated
according to some system with certain physical or conceptual entities. These
semantic aspects of communication are irrelevant to the engineering problem.
The significant aspect is that the actual message is one selected from a set of
possible messages.”

The information-theoretic basis developed in this book was first presented
in a series of papers and a book in the 1980’s [Eriksson et al., 1987, Eriksson
and Lindgren, 1987, Lindgren, 1987, Lindgren and Nordahl, 1988, Lindgren,
1988] along with some further development more recently [Lindgren et al.,
2004, Helvik et al., 2007]. Originally, the application areas considered were
more broad, but here we focus on a few complex systems related areas: cellular
automata, spin systems, chemical pattern formation, and chaotic systems.

The book is organised as follows. In Chapter 2 the basic concepts in in-
formation theory is presented along with the maximum entropy principle.
Chapter 3 presents the application of the concept to symbol sequences, or,
more general, lattice systems in one or more dimensions. In Chapter 4 this
is applied to the simple class of discrete dynamical system called Cellular
Automata (CA). Information theory provides several tools in which the dy-
namics and the patterns generated can be studied. We will primarily focus
on one-dimensional CA using the information theory for symbol sequences.
In Chapter 5, some connections between the information-theoretic quantities
and physics (statistical mechanics and thermodynamics) is presented. This
relation makes it possible to connect some of the information-theoretic quan-
tities describing a system with the thermodynamic laws that put constraints
on the dynamics of the system.

To be able to analyse spatially extended patterns in continuous space, we
develop geometric information theory in Chapter 6. These concepts can, for
example, be applied to images to identify at what length scales and at what
positions information is located. This also includes applications to fractal
patterns and the concept of dimension. In Chapter 7 the geometric informa-
tion theory is applied to pattern formation in chemical systems, where the
system is described as a set of concentration profiles for the different chemi-
cals involved. We derive a continuity equation for information that describes
how free energy that drives the pattern formation process flows into the sys-
tem and is aggregated at certain positions and length scale when information
in the chemical pattern is built up. In Chapter 8 we give an information-
theoretic perspective on chaotic dynamical systems. We show how the sensi-
tivity to small fluctuations can be seen as an information flow from ”micro”
to ”macro”.

Each Chapter contains a set of problems of varying degree of difficulty.
Many of these have been taken from exam problems given during the his-
tory of the course, which started in 1990, offered at the Masters level in the
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Engineering physics programme and later in the Complex adaptive systems
programme at Chalmers.



Chapter 2
Information theory

Abstract The basic concepts of information are presented. These are all
based on a probabilistic description of the system that is observed or charac-
terised. The quantities information, entropy, and relative information are the
key concepts that will be used throughout the book. The maximum entropy
formalism is presented — a method that, given some knowledge about a sys-
tem, determines an unbiased probabilistic description of that system. Several
examples and problems exploring the basic concepts are also given.

2.1 Basic concepts

A quantitative measure of information was presented in Bell System Technical
Journal already 1928 by Ralph Hartley [1928], but already before that, Harry
Nyquist [1924] had brought up the issue in the same journal. Hartley showed,
in his paper on signal transmission, that the information content IH in a
message consisting of n characters, each of them chosen from an alphabet
of N different symbols, should be proportional to the length n multiplied
by some function of the size of the alphabet, f(N), so that IH = nf(N).
The functional form can be derived from the argument that if the message is
coded using an alphabet of different size N ′ resulting in another length n′,
then the information content should not change, IH = n′f(N ′).

For example, if the new alphabet has N ′ =N2, then the length is reduced
to n′=n/2 (obtained by replacing pairs of symbols from the old alphabet with
single symbols from the new one), and the information is IH = n/2f(N2) =
nf(N). The function f that preserves the information content is logK , where
K is an arbitrary base of the logarithm. Different K just results in a scaling
of the information content. We will usually use the logarithm of base 2, which
we denote by log, resulting in an information quantity in binary units, or bits,

IH(n,N) = n logN , (2.1)

5



6 2 Information theory

and the information per symbol is then

IH(N) = logN . (2.2)

This means that a binary alphabet, e.g., {0,1}, has an information content
of IH = log2 = 1 (bit) per symbol, as expected. Later on, when we apply
information theory to physical and chemical systems we will switch to the
natural logarithm of base e, which we denote by ln, resulting in the ”natural”
information unit, sometimes referred to as a ”nat”.

2.1.1 Information and Shannon entropy

A generalization of this information concept was not developed before 1948,
when Shannon presented the information theory still used today. The con-
cepts of information was after that also applied to other areas in science,
including physics, see, e.g., Brillouin [1956] and Jaynes [1957], which will
be discussed in a later Chapter. For a deeper and more mathematical in-
troduction to information theory, that also make the connections to coding
theory more explicit, there are several good books one can consult, see, e.g.,
Khinchin [1957], Cover and Thomas [1991].

Shannon considered a situation in which symbols from the alphabet are
drawn (or appear) with different probabilities. Initially is is assumed that
symbols are not correlated. One then finds that the reasonable way to define
the information I(p) that is gained by observing a symbol (or more generally
an event) that has an a priori probability p to occur is

I(p) = log 1
p

. (2.3)

When a person makes an observation, for example reads the next character
in a text or takes a look at the watch, information is received. How much
information that is gained from the observation depends on how unexpected
the event was. We see that an unexpected or less probable event (small p)
corresponds to a high information value, but if we are told something that
we already know (p= 1) the received information is zero.

This definition is a generalization of Hartley’s information quantity in
that it distinguishes between events of different probabilities. If the event
is an observation of one character drawn from an alphabet consisting of N
symbols, where all are assumed to be equally probable, then the probability
is p= 1/N and the information is I(p) = logN = IH(N).

When one does not have full information about the state of a certain
system, one may associate a probability to each possible state. This means
that the state of system is described by a probability distribution. This is
one of the basic ideas in statistical mechanics, where one does not know the
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exact state (microstate) of a physical system but describes it as a probability
distribution (macrostate) over the possible microstates. Such a probability
distribution is denoted

P = {pi}ni=1 (2.4)

where pi denotes the probability for state i, and n is the number of possible
states the system can take. The probabilities should be non-negative and
normalized

pi ≥ 0 , (2.5)
n∑
i=1

pi = 1 . (2.6)

When one observes a system and learns about its exact state the amount
of gained information depends on which state is observed, as is stated in
Eq. (2.3). Therefore one can characterise the system by the average or ex-
pected information one gets when the system is observed. This expectation
value is calculated on the basis of the probability distribution P that de-
scribes the system, and the expected information is called the entropy, S, of
the (unobserved) system:

S[P ] =
〈

log 1
pi

〉
=

n∑
i=1

pi log 1
pi

. (2.7)

(We define 0 log0 = 0, in case any of the pi is zero.) This entropy is usually
referred to as the Shannon entropy. It is left as an exercise to show that 0≤
S[P ]≤ logn. The entropy is the expected gain of information when we observe
a system characterised by a probability distribution P over its possible states.
One can also say that the entropy quantifies the lack of knowledge about
the system (before the exact state of the system is observed). Sometimes
this is also said to quantify the disorder of the system. This interpretation
will become more clear in later Chapters, both when we discuss entropies in
symbol sequences and when we apply the information concept to physical
and chemical systems.

2.1.1.1 Entropy and coding – an extended example

Consider a stochastic process that generates random sequences of the symbols
’a’, ’b’, ’c’, and ’d’, for example ’bcaabada...’. Suppose, to start with, that it
is unknown with which probabilities the symbols are generated. Then the
best guess is to assign probabilities 1/4 for each of the events, and that
subsequent symbols are independent. The information gained in any of the
possible observations of a single symbol is then log4 = 2 (bits). This seems
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Fig. 2.1 For a system with two possible states (n = 2), with the probabilities p and
1− p, the entropy S(p) = S[{p,1− p}], or the lack of knowledge, is at maximum when
both states are equally probable (p = 1/2). This means that we have no clue on which
state we will find the system in when observing it. If we know that the system is in a
certain state (p= 0 or p= 1), then the entropy is zero.

reasonable since we can simply code the four symbols with the binary code
words ’00’, ’01’, ’10’, and ’11’, respectively.

Suppose again that symbols are generated independently of each other but
that they are generated by the probabilities p(a) = 1/2, p(b) = 1/4, p(c) = 1/8,
and , p(d) = 1/8, and that this is known a priori by the observer.

When observing a symbol, the amount of information one gets, according
to Eq. (2.1), depends on the symbol. When observing an ’a’ we get 1 bit, but
a ’d’ would give us 3 bits. The expectation value of the information we get
from an observation is the weighted average of the information from the four
possible events, which is the entropy of Eq. (2.7),

S = 1/2 + 1/4 ·2 + 1/8 ·3 + 1/8 ·3 = 7/4. (2.8)

We find that the entropy is now reduced, compared to the case with uniform
probabilities, since we now have some prior knowledge about the probabilities
with which symbols occur. This also means that, by making a better code
compared to the trivial one mentioned above, one could compress a message
or a sequence of symbols in which the frequencies follow these probabilities.
If we for example use the code words ’0’ for a, ’10’ for b, ’110’ for c, and
’111’ for d, we note that the average code word length decreases from 2 to S
above. The knowledge of the frequencies of the four symbols has allowed us
to compress the message from 2 bits per symbol to 1.75 bits per symbol. The
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trick lies in the fact that we have used a code word length (bits in the code
word) that equals to the information gained if the corresponding symbol is
observed. So, common symbols that carry little information should be given
short code words and vice versa.

2.1.1.2 Entropy as an additive quantity

The entropy of a system composed by independent parts equals the sum of
the entropies of the parts. The independency means that the probability for
a certain microstate of the whole system equals the product of the probabil-
ities of the corresponding microstates of the parts. Assume that the system
consists of two subsystems, characterised by the probability distributions

Q= {qi}ni=1,R= {rj}mj=1 (2.9)

with qi and rj representing probabilities for states i and j in the two subsys-
tems, respectively. The whole system is characterised by

P = {qirj}n,m
i=1,j=1 (2.10)

The entropy can be written

S[P ] =
n∑
i=1

m∑
j=1

qirj log 1
qirj

=
n∑
i=1

qi log 1
qi

+
m∑
j=1

rj log 1
rj

=

= S[Q] +S[R] , (2.11)

where we have used the normalisation, i.e., that
∑
i qi =

∑
j rj = 1. This shows

that, when the subsystems are independent, the entropy of the whole system
equals the sum of entorpies of its subsystems.

2.1.2 Relative information, relative entropy, or
Kullback-Leibler divergence

Often when we make an observation we do not receive full information of the
system. The exact state of the system was possibly not revealed, but based on
the observation, we may be able to replace our original, a priori, distribution
P (0) with a new one P . How much information have we gained form this?
There are (at least) two approaches for discussing this.

First, we may consider how the ”lack of knowledge” of the system has
changed. That is quantified by the difference in entropies between the a pri-
ori and the new distribution, S[P (0)]−S[P ]. This is a quantity, though, that
can be negative, which would give the picture that the ”gained information” is
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negative. This could happen if we a priori have a skew distribution but learn
that a uniform distribution is correct. The entropy difference does indeed
capture the difference in knowledge about the system before and after ob-
servation, but one usually would say that learning the ”correct” distribution
is associated with a gain in information. The problem here is connected to
the average (or the expectation value) that is calculated in the entropy, and
we are comparing quantities using different probabilities for the averaging
procedure.

Therefore, in the second approach, we use the new distribution P for
the average of both the a priori and the new lack of knowledge. In order
to quantify how much information we have gained from the observation,
we calculate the decrease in our lack of knowledge of the system. Before
the observation, we thought that p(0)

i described the probabilities, but when
calculating the expectation value of that lack of knowledge before observation
S(0), we should use the new probabilities for the weights,

S(0) =
n∑
i=1

pi log 1
p

(0)
i

. (2.12)

We here assume that whenever a state i is assumed to be impossible in
the a priori situation, p(0)

i = 0, then this state is also impossible in the new
probability distribution, pi = 0.

The lack of knowledge after the observation is the ordinary entropy S, as
in Eq. (2.5). The information gained in the observation, the relative informa-
tion K[P (0);P ], when the a priori distribution P (0) is replaced by the new
distribution P , is then

K[P (0);P ] = S(0)−S =

=
n∑
i=1

pi log pi

p
(0)
i

. (2.13)

Here we define 0 · log(0/0) = 0. This quantity is also called the Kullback-Leibler
divergence [Kullback and Leibler, 1951] or the relative entropy between the
distributions P (0) and P . This quantity fulfills the inequality

K[P (0);P ]≥ 0 (2.14)

with equality only when the two distributions are identical. This means that
the information gained by an observation leading to a change in probabilistic
description of the system is always positive. The relative information is 0 only
when the a priori description is identical to the new one.

Proof: Consider the function g(x) = x−1− lnx≥ 0. By adding and subtract-
ing 1, the expression for the relative information may be rewritten as an
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average over g(p(0)
i /pi), after transforming from log of base 2 to base e,

K[P (0);P ] = 1
ln2

n∑
i=1

pi ln
pi

p
(0)
i

= 1
ln2

n∑
i=1

pi

(
p

(0)
i

pi
−1− ln

p
(0)
i

pi

)
=

= 1
ln2

n∑
i=1

pi g

(
p

(0)
i

pi

)
≥ 0, (2.15)

which proves the inequality. It is also clear that equality requires that p(0)
i = pi

for all i.

2.1.2.1 Coding example of relative information

The relative information can be given a coding interpretation as follows.
Assume that we have an a priori probability distribution P (0) over 4 symbols,
{a, b, c, d} as in the coding example above, and that a stochastic process
generate an uncorrelated sequence of those symbols. With the probability
distribution as before, P (0) = {1/2,1/4,1/8,1/8}, we have that the sequence
can be ideally compressed from the uncoded 2 bits per symbol in average to
S[P (0)] = 7/4 bits per symbol. If the distribution of the symbols changes, e.g.,
to P (0) = {1/2,1/8,1/4,1/8}, but if we would still use the a priori codes, the
average code word length would be

∑
{a,b,c,d} pi log(1/p(0)

i ) = 15/8 bits. Of
course, an optimal code would give the same as before, but since we are using
the wrong code with respect to the distribution, we get a less compressed code
(15/8 vs. 14/8 bits). This difference is also what the relative information
quantifies, by definition. The relative information is thus a measure on the
information compression we can get by switching from the wrong to the
correct description of the system. In this example, we note that S[P (0)] =
S[P ], since the new (correct) one is just a permutation of the previous one.

2.1.2.2 The concavity of entropy

We shall now use inequality (2.14) to prove that the entropy is a concave func-
tion. For the entropy function this means that, if P and Q are two probability
distributions (both over n possible states), then the entropy of any weighted
average of these is larger than, or equal to, the corresponding weighted aver-
age of their respective entropies,

S[a ·P + (1−a) ·Q]≥ a ·S[P ] + (1−a) ·S[Q] , (2.16)

where a and (1−a) are the weight factors (0 ≤ a ≤ 1). The probabilities in
the distributions are denoted pi and qi, respectively. The proof is



12 2 Information theory

S[a ·P + (1−a) ·Q]− (a ·S[P ] + (1−a) ·S[Q]) =

=
n∑
i=1

(api+ (1−a)qi) log 1
api+ (1−a)qi

−

n∑
i=1

(
api log 1

pi
+ (1−a)qi log 1

qi

)
=

= a

n∑
i=1

pi log pi
api+ (1−a)qi

+ (1−a)
n∑
i=1

qi log qi
api+ (1−a)qi

=

= aK[a ·P + (1−a) ·Q;P ] + (1−a)K[a ·P + (1−a) ·Q;Q]≥ 0. (2.17)

The non-negative property of the relative information will be used in several
proofs for inequalities involving different entropy quantities in later chapters.

2.2 Maximum entropy formalism

Even if we do not know exactly the state (microstate) of a certain system, we
may have some information on its state. In a physical system, we could, for
example, have knowledge about the average energy or the number of particles.
Statistical physics is based on the idea that, with such limited information
on the state of the system, we make an estimate of the probabilities for the
possible microstates. Usually, there are, though, an infinite number of possible
probability distributions that are consistent with the known properties of the
system in study. The question is then: How should we choose the probability
distribution describing our system?

Here it is reasonable to use the concept of entropy, since it can be inter-
preted as our lack of information on the state of the system. When assigning
a probability distribution for the system, we should not use a probability
distribution that represent more knowledge than what we already have. For
example, when assigning probabilities for the outcome of a roll of a six-sided
dice, we say that all probabilities are equal and 1/6. This corresponds to the
situation of maximum entropy, or maximum lack of knowledge. In general we
may have some knowledge about the system that implies that this maximum
entropy level is not correct. There may be constraints that our knowledge
implies which leads to limitations on how the different probabilities can be
varied.

Therefore, we choose, among the probability distributions that are consis-
tent with the known system properties, the distribution that maximizes the
entropy. The probability distribution is in this way derived from a maximiza-
tion problem with constraints. This method assures that we do not include
any more knowledge, in the description of the system, than we already have.



2.2 Maximum entropy formalism 13

This is the basic idea behind the maximum entropy principle [Levine and
Tribus, 1979], which also can be called the principle of minimal bias.

Let us assume that we shall derive a probability distribution P = {pi}
describing a system for which we know that the following r averages (or
expectation values) hold,

〈fk〉=
n∑
i=1

pifk(i) = Fk , (2.18)

for k = 1, ...,r. This means that we have r functions fk(i),k = 1, ...,r, of the
microstates i, and we know the expectation values, Fk, of these functions.
Such a function f could, for example, give the energy of microstate i, or the
number of particles found in microstate i, etc. It is now more convenient to
work with information based on the natural logarithm (ln). The maximum
entropy principle states that we should choose the probability distribution
that maximizes the entropy under these conditions:

Choose P = {pi}ni=1 so that

the entropy S[P ] =
n∑
i=1

pi ln
1
pi

is maximized, (2.19)

subject to constraints 〈fk〉= Fk , (k = 1, ...,r)

and the normalization condition
n∑
i=1

pi = 1 .

We solve this general problem by using the Lagrangian formalism. Therefore,
we define the Lagrange function

L(p1,...,pn,λ1, ...,λr,µ) =

= S[P ] +
r∑

k=1
λk

(
Fk−

n∑
i=1

pifk(i)
)

+ (µ−1)
(

1−
n∑
i=1

pi

)
, (2.20)

where we have introduced Lagrange multipliers (or variables) λk, for the r
constraints, and (µ−1) for the normalization constraint. (Here we have cho-
sen µ−1, instead of just µ, because it makes the expressions in the derivation
a little simpler.) The optimization problem is now solved by finding the P ,λk,
and µ that give zeroes in the corresponding partial derivatives of L. (Note
that, the idea with the Lagrangian formalism is that the constraints are equiv-
alent to the conditions that the partial derivatives of L with respect to the
Lagrange variables are 0.)
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Derivation of L with respect to pj results in

∂L

∂pj
=− lnpj−1−

r∑
k=1

λkfk(j)−µ+ 1 , (2.21)

which together with the optimization requirement ∂L/∂pj = 0 gives

pj = exp
(
−µ−

r∑
k=1

λkfk(j)
)

= exp(−µ−λ · f(j)) (2.22)

where we have introduced a vector notation for the Lagrange variables,
λ= (λ1, ...,λr), and for f(j) = (f1(j), ...,fr(j)). A probability distribution of
this form is called a Gibbs distribution. The values on the Lagrangian vari-
ables λ and µ can be derived from the constraints in Eq. (2.19). Note that
the distribution automatically fulfills pj ≥ 0. The normalization condition∑
j pj = 1 determines µ as a function of λ,

µ(λ) = logZ(λ) (2.23)

where Z(λ) denotes the state sum,

Z(λ) =
n∑
j=1

exp(−λ · f(j)) . (2.24)

Finally, the Lagrange variables λ are determined by the other constraints,
Eq. (2.18), which, by use of Eq. (2.23), can be expressed as

∂µ

∂λk
= 1
Z(λ)

n∑
j=1

(−fk(j))exp(λ · f(j)) =−
n∑
j=1

fk(j)pj =−Fk , (2.25)

for k = 1, ...,r. By introducing a vector notation also for constraint values,
F = (F1, ...,Fr), this can be written

∂µ

∂λ
=−F . (2.26)

The maximum entropy value can be expressed in terms of the Lagrange
variables as

S[P ] = µ+λ ·F . (2.27)

(The derivation is left as an exercise.) In the next Section, we illustrate the
formalism with an example of a simple Gibbs distribution in physics.
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2.2.1 The Bose-Einstein distribution

Suppose that we have a system composed of a number of particles, where
the unknown microstate of the system is described by the exact number of
particles n, with n being an integer (n ≥ 0). Let us assume that we have
the knowledge that the expected number of particles in this type of system
is N , for example from measurements on a large number of such systems.
If this is all we know, the only constraint apart from normalization is that
the expected number of particles equals N . If pn is the probability that the
microstate is composed by n particles, this constraint can be written

∞∑
n=0

pnn=N . (2.28)

Let λ1 be the Lagrange variable for this constraint and µ the variable for the
normalization constraint. The state sum, Eq. (2.24), can then be written

Z(λ1) =
∞∑
n=0

e−λ1n = 1
1−e−λ1

(2.29)

By using Eq. (2.25), we find that

∂µ

∂λ1
= ∂

∂λ1
ln 1

1−e−λ1
=− e−λ1

1−e−λ1
=−N (2.30)

which can be used to determine λ1,

λ1 = ln N + 1
N

(2.31)

and then µ can be derived,

µ= logZ(λ1) = ln(N + 1) . (2.32)

The Gibbs distribution is then recognized as the Bose-Einstein distribution,

pn = Nn

(N + 1)n+1 . (2.33)

This means that if we know that the expectation value of the number of
particles in the system is N , then the least biased probability distribution
we can assign for the number of particles in the system is given by pn in
Eq. (2.33).
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2.3 Generalisation of entropies to a continuous
state-space

The information-theoretic terminology can be generalized to a continuous
state-space. Then we assume that we have a probability density p(x) over
this state space, and we suppose that x = (x1, ...,xD) is a vector in a D-
dimensional Euclidean space E. This could, for example, mean that we do
not know the exact position of a particle, but that we describe the position
of the particle as a probability density over this space. (To be complete, we
should also introduce a density of states function, but here we assume that to
be identical to 1, and therefore we omit it in the expressions.) The probability
to find the particle in a certain volume V is then written

p(V ) =
∫
V

dxp(x) (2.34)

The probability density is non-negative, 0 ≤ p(x), but has no upper bound.
Normalization requires that integration over the whole space results in unity,∫

E
dxp(x) = 1 . (2.35)

In analogy with Eq. (2.7), we can now define the entropy S as

S[p] =
∫
E

dxp(x) log 1
p(x) . (2.36)

Like in the discrete case, we can also define a relative information (or
a Kullback-Leibler divergence), assuming an a priori probability density
p(0)(x), as a quantification of the information gained when replacing the
a priori distribution with a new one p(x),

K[p(0);p] =
∫
E

dxp(x) log p(x)
p(0)(x)

≥ 0 . (2.37)

It is assumed that p(x) = 0 whenever p(0)(x) = 0, and we define 0 · log(0/0) =
0. One can show that this relative information is non-negative, as in the
discrete case. This does not hold for the entropy in Eq. (2.36), though, see
Problem 2.11.

In later Chapters, we shall use a continuous state-space in the analysis
of, for example, spatial structure in chemical systems, in which we represent
the spatial concentration distributions of chemical components by probability
densities.
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Problems

2.1. Weighing balls.
You have 12 balls, all have the same weight except one that deviates. By
using a balance three times you should be able to find the deviating ball, and
tell whether it is lighter or heavier. The task is to find this procedure.

To get started, you may consider the more easy problem, in which you have
nine balls, of which you know that one is heavier but the others identical.
Show how to find the heavy one in two measurements using a balance!

2.2. Balance information
Suppose that you have four balls that all look the same, two of equal heavier
weight and two of equal lighter weight. Assuming this knowledge, what is the
uncertainty of the system. How many measurements using a balance would
theoretically be needed in order to sort out which are the heavier and which
are the lighter ones? Is there a procedure that accomplishes this?

2.3. Measurment information
Suppose you are to measure the voltage between two points in a circuit, and
that you know the value to be anywhere in the range from 0 to 0.5 V (no
value is more likely than any other). At your disposal is a Volt meter, showing
two significant digits in that range. What is your relative information when
you have read the result?

2.4. Relative information of a Gaussian
What is the relative information between two Gaussian distributions, with
widths b1 and b2, respectively? Show that this quantity is always non-
negative.

2.5. Information in production error
For a mechanical component to fit in a certain technical system, it is re-
quired that its length x fulfils L−d ≤ x ≤ L+d. In the production of these
components the resulting lengths are normal (Gaussian) distributed, with an
average of L and a standard deviation of σ = d/2. If we take a new (not yet
tested) component and find that it does not fulfill the requirements, what is
the relative information?

2.6. A two-step observation
The expected information gain you get when observing the result of throwing
a six-sided dice, does not change if you make the observation in two steps.
If you first learn whether the result is odd or even, and after that learn the
exact outcome, the expectation value of the sum of these two information
gains is the same as the expected information gain of the direct observation.
Show that this results does not depend on the assumption that all outcomes
are equally probable, i.e., that this holds for any probability distribution over
the outcomes of the dice.
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2.7. Maximum entropy
A system is described by a probability distribution over three states, char-
acterised by the energies 0, 1, and 2, respectively. If the expectation value of
the energy is 1, what probability distribution should we assign according to
the maximum entropy principle?

2.8. Information and decay
Consider a radioactive atom with decay constant λ, so that the probability
for the atom to remain after time t is e−λt. At time 0 the atom has not
decayed. After a certain time t = 1/λ the atom is observed again, and it is
found to remain in its original state. What is the relative information from
that observation?

Now we wait until t = 2/λ and observe the atom again. This time it has
decayed. What is our information gain in this observation?

2.9. Maximizing expected information
Consider again, as in the previous problem, a radioactive atom with decay
constant λ. How should we plan to time our measurements if we would like
to maximise our expected information gain per observation?

2.10. Maximum entropy of a composite system
A system is composed by n subsystems that each has two possible states, kj ∈
{0,1}, (j= 1, ...,n), which gives 2n states for the whole system. LetK =

∑
j kj ,

and assume that we know that the average of this function is 〈K〉= na, where
0≤ a≤ 1. What is a microstate in this system? What probability distribution
over microstates should we choose to describe the system?

2.11. Entropy of Gaussian
What is the entropy of a Gaussian distribution with a width (standard devi-
ation) b? How can this result be interpreted?

2.12. Monty Hall Problem
Behind 1 of 3 closed doors is a prize. You pick one of the doors. Monty opens
one of the other doors behind which he knows there is no prize. You are given
the choice of sticking with your choice or switching to the other unopened
door. Should you switch? What are your chances of winning if you do?

Analyse this in information-theoretic terms. What is your initial uncer-
tainty? How much information do you get when Monty opens a door? How
does your probabilistic description change? What is the relative information
between your a priori knowledge and the situation after Monty has opened
the door?

2.13. Balance information again
You have n balls, all have the same weight except one that deviates.
a) Use an information-theoretic approach to show that it is not always pos-
sible to find the deviating one for n= 14 balls.
b) Show that this is not always possible for n = 13 balls unless one is not
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required to tell whether the deviating one is heavier or lighter.
c) Tricky: Construct a procedure that finds one ball out of 39 in four balance
measurements

2.14. Mathematical requirements for entropy
The quantity S[P ] that we have used for entropy of a distribution P =
{p1,p2, ...,pn} over microstates (1,2, ...,n) is the only quantity fulfilling the
following four conditions: (i) S is symmetric with respect to the probabilities,
(ii) S is a continuous function of the probabilities, (iii) The information ob-
tained when one gets to know the outcome of two equally probable events is
1 bit, and finally (iv): The expected gain of information is the same for (I)
an immediate observation of the microstate as for (II) a two step observation
in which one distinguishes between, say, state 1 and state 2 only if a first
observation rejects the other states.

Express the last condition (iv) in mathematical terms, i.e., express the
entropy S as a sum of two entropies from two measurements as described in
(II). Show that this expression holds for the Shannon entropy, Eq. (2.7).

2.15. Information loss by aggregation
Consider a picture composed of black and white dots, or pixels, in a two-
dimensional square lattice of sizeN ·N . At the finest resolution, we see exactly
where the pixels are and we have full information. Assume that the resolution
is made worse (by a factor of two in length scale) so that instead of seeing
single pixels, we can only distinguish (N/2) · (N/2) cells, where each cell
contains the aggregated information from 2 ·2 = 4 underlying pixels. At the
aggregated level, the cells can take the (observed) ”grey-scale” values 0, 1, 2,
3, or 4, corresponding to the number of black pixels that the cell was formed
from.

This type of aggregation leads to a loss of information. The loss may vary
(locally) depending on the local structure (local densities). Discuss briefly
how this works.

If one assumes that the original picture is completely ”random”, with equal
probabilities for black and white pixels, how much information (entropy) do
we loose in average (per original pixel) when we aggregate?

2.16. Balance information
Maximum entropy of particle velocities. Consider a system of uncorrelated
particles moving on a one-dimensional lattice. Each particle can have velocity
−2,−1,0,+1, or +2. The only knowledge you have is that the average velocity
is 0 and that the average square velocity is 1, i.e., 〈v〉= 0 and 〈v2〉= 1. Use
the maximum entropy principle to determine the probability distribution over
the different velocities.





Chapter 3
Information theory for lattice systems

Abstract The basic information-theoretic concepts of entropy and relative
information are applied to symbol sequences. This leads to a decomposition
of the information per symbol in a sequence into two terms: the redundant or
”ordered” part of the information content and a disordered part, the entropy.
The first term quantifies information in correlations between symbols while
the second part quantifies the randomness of the sequence. The formalism
is exemplified with applications to symbol sequences generated by Markov
processes and Hidden Markov models. The concept of effective measure com-
plexity as a quantification of complexity in a symbol sequence is presented
and discussed. The chapter ends with a presentation on how the formalism
can be generalised to two-dimensional patterns of symbols.

3.1 Symbol sequences and information

Information theory was developed for the application to signals or sequences
of symbols. Suppose that we want to examine the information content in a
symbol sequence, composed of the characters ”0” and ”1”. The information
carried per symbol a priori is 1 bit. This information quantity can be de-
composed in two terms, an entropy term that quantifies the disorder of the
system and another information quantity that quantifies the order in the sys-
tem. The ordered information is usually called the redundancy (superfluous
information) of the text or symbol sequence. Order here may, for example,
mean that there is a higher chance to make a correct guess of the next charac-
ter, if we may take into account preceding characters. This order depends on
correlations between symbols in the sequence. The disordered information is
the entropy of the symbol sequence, and it quantifies the uncertainty that re-
mains (in average), when all correlations have been taken into account before
observing the next character. Thus this is an average uncertainty (or ”lack-of
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knowledge”) measure per character in the sequence. It is in the entropy part
of the text where we can transmit information between author and reader.

Analysis of written texts has for a long time been a popular application
of information-theoretic concepts, not the least because of the possibilities
to automatically generate texts using a computer program. Randomly gener-
ated texts, based on correlation statistics, were present already in Shannon’s
original paper [Shannon, 1948]. As we have discussed above, the redundancy
in a symbol sequence corresponds to the ordered part of the information
content. The disordered information, the entropy, corresponds to the remain-
ing uncertainty, when one is guessing the next character in the text, taking
into account all correlations. A language with, say, 32 characters (including
”space” and some punctuation marks, but without using capital letters) has
a maximum entropy value (when correlations are not included) per character
that is log 32, or 5 bits, but the real entropy is usually much lower. In English
about 4 bits are redundant, and only 1 bit is entropy.

How correlations contribute to the structure of the text can be illustrated
by random generation of texts, using different correlation lengths. First one
needs a large text (or a number of texts), from which statistics is collected
on sequences of characters. The statistics from about a thousand lines of
poetry may be sufficient to make the computer seem like an author. If the
source for the statistics is only one text written by one author the generated
text will not only show the characteristics of the language used, but also the
characteristics of the author, as well as features of the story chosen.

Based on statistics from a source text, we form conditional probabilities,
p(xn|x1, ...,xn−1), expressing the probability for the next character xn given
the n−1 preceding ones, x1, ...,xn−1. Using these probabilities, we randomly
generate characters, one by one. The longer correlation one decides to include
(larger n), the longer preceding sequence is taken into account when calculat-
ing the probability. In the following six examples we go from a generated text
using only density information to texts with correlations over block lengths
two to six:

1. Tdory d neAeeeko,hs wieadad ittid eIa c i lodhign un a a svmb i ee’
kwrdmn.

2. Le hoin. whan theoaromies out thengachilathedrid be we frergied ate k y
wee ’ e the sle! se at te thenegeplid whe tly titou hinyougea g l fo nd

3. ’Weed. Thed to dre you and a dennie. A le men eark yous, the sle nown
ithe haved saindy. If - it to to it dre to gre. I wall much. ’Give th pal yould
the it going, youldn’t thave away, justove mouble so goink steace, ’If take
we’re do mennie.

4. I can light,’ George tried in you and fire.’ ’Nothen it and I want yourse,
George some other ther. There’s if his hand rolledad ther hisky, ’I little
amonely we’re we’re with him the rain.

5. ’I...I’m not running.’ The ranch, work on the time. Do you because you get
somethings spready told you just him by heat to coloured rabbits. That’s
going grew it’s like a whisky, place.
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6. Million mice because it two men we’ll sit by the future. We’ll steal it.
’Aren’t got it. ’About the fire slowly hand. ’I want, George,’ he asked
nervoulsly: ’That’s fine. Say it too hard forget other.

Already in the case with correlation of two or three, it is quite clear what the
language is. When correlation is increased, more of the words are correctly
generated, and at the length of six, one may guess from what story the text
is taken.

In the following sections, we present a formalism that can be used to
analyze disorder and correlations in symbol sequences. We also extend the
formalism to two dimensions. In later Chapters, we use this formalism to
analyse states (in the form of symbol sequences) in the time evolution of
discrete dynamical systems (cellular automata). In the Chapter on chaotic
systems, we illustrate how the formalism can be applied to symbol sequences
generated by dynamical systems in order to characterize the dynamics.

3.1.1 Probabilistic description of a symbol sequence

Like in the previous Chapter, our definitions on information quantities in
symbol sequences depend on the probabilistic description of the system. The
formalism builds on the work by Shannon [1948] and it was developed by
Eriksson and Lindgren [1987] and Eriksson et al. [1987]. Let us assume that
the system under study consists of an infinite sequence of symbols, in which
each symbol is taken from some finite alphabet Λ. In general, the system
can be a set of such sequences, an ensemble of possible realizations. We also
assume that the system is translation invariant, so that the probability for
finding a certain finite sequence of symbols at a certain position in the system
does not depend on the position, but only on what other symbols that we
may already have observed. In this type of system, we may form probability
distributions over sets of finite sub-sequences of symbols, one for each length
n (with n= 1,2,3, ... ).

Here we will typically consider symbol sequences that are generated by a
stationary stochastic process, which implies the translation invariance of the
probabilities. Formally, the system can be described by an infinite sequence
of stochastic variables Xk,

X = (X0,X1,X2,X3, ...) (3.1)

and since it is stationary, probabilities for certain sub-sequences (x1,x2, ...,xn)
do not depend on position,

P (X1 = x1,X2 = x2, ...,Xn = xn) =
= P (X1+m = x1,X2+m = x2, ...,Xn+m = xn) (3.2)
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for all n,m, and any symbols xk ∈Λ. Therefore we can characterize our system
by a probability distribution Pn over symbol sequences of finite length n,

Pn = {pn(x1, ...,xn)}x1,...,xn∈Λn (3.3)

or shorter
Pn = {pn(σn)}σn∈Λn (3.4)

(We are using x,y,z etc as variables for single symbols and Greek letters
σ,α,β etc as variables for sequences of symbols.) The probabilities fulfill the
general requirements of being non-negative and normalized, Eq. (2.5) and
Eq. (2.6). Furthermore, there are conditions that relate probability distribu-
tions over lengths n and n+ 1, based on the fact that the distribution over
(n+ 1)-length sequences includes the distribution over n-length sequences.
Summation over first or last variable in an (n+ 1)-length probability results
in the corresponding n-length probability,

pn(x1, ...,xn) =
∑
x0∈Λ

pn+1(x0,x1, ...,xn) (3.5)

pn(x1, ...,xn) =
∑

xn+1∈Λ
pn+1(x1, ...,xn,xn+1) (3.6)

In the following, we will drop the subscript n of pn and in short write
p(x1...xn) or p(σn), if it is clear which length that is considered.

We usually assume that the stochastic process that generates the sequences
of symbols is ergodic. This means that, almost always, we can get the right
statistics from a single (infinitely long) sequence of symbols in the ensemble.
The ergodic theorem, see, e.g., Gray [2009], states that the calculation of an
average 〈f〉 of a function f based on the probabilities p(x1...xn) results in
the same as an average based on following the individual symbol sequence
(s1,s2,s3, ...),∑

x1...xn∈Λn

p(x1, ...,xn)f(x1, ...,xn) =

= lim
T→∞

1
T

T∑
k=1

f(sk,sk+1, ...,sk+n−1) (3.7)

The implication of the ergodicity property of a system is that we may consider
one outcome of the stochastic process, a specific infinite symbols sequence,
and that we may make an internal statistical analysis of it in order to de-
termine a number of information-theoretic properties. Viewed as a physical
system, a specific symbol sequence would correspond to a specific microstate.
This would then make it possible to quantify entropy and order of a single
microstate. In statistical physics, this is not the common perspective since
one associates the system with the macrostate, or the probability distribution
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over the possible microstates. We shall return to this view in the Chapter on
physics and information theory.

3.1.2 Quantifying disorder in a symbol sequence

Let us assume that we have an infinite sequence of symbols (or an ensemble of
such sequences), characterized by probabilities for finite length sub-sequences.
Our a priori knowledge of the system only reflects that each symbol belongs
to a certain alphabet Λ, that contains |Λ|= ν different characters. Our initial
uncertainty (or lack of knowledge) per symbol is then S = logν. By succes-
sively adding probability distributions for sequences of increasing length Pn
(with n= 1,2, ...), we may take correlations into account to reduce our uncer-
tainty of the next symbol in the sequence. The entropy that still may remain
when we include all lengths (n→∞) is the Shannon entropy of the symbol
sequence, or for short the entropy of the symbol sequence. In some contexts
this is called the measure entropy or the entropy rate of the stochastic process
(to be discussed in the Chapter on chaotic systems).

There are two approaches we can take in order to quantify the randomness
per symbol: (i) we can take the entropy of the n-length sequences and divide
with the length, or (ii) we can quantify the average uncertainty (entropy) of
the next symbol, given that we look at all preceding symbols to form the
conditional probability for the next. The first approach is straightforward,
and is usually used as a definition of the entropy per symbol, s. We then need
the entropy of n-length subsequences, the block entropy , Sm,

Sm = S[Pm] =
∑

x1...xm

p(x1...xm) log 1
p(x1...xm) . (3.8)

which are based on the m-length distributions Pm (for all m). The entropy
per symbol s is then defined by

s= lim
m→∞

1
m
Sm . (3.9)

The second approach (ii) is based on a procedure in which we form conditional
probabilities of the next symbol given preceding ones. This approach will also
give us tools to quantify how much information that is found in correlations
over certain distances in the sequence. This can be derived from the fact
that when we extend the preceding sequence that is used to determine the
conditional probability for the next symbol, we improve this probabilistic
description. The information gained by this improvement, which is based on
correlations that are brought in when extending the preceding sequence, can
be quantified by the relative information.



26 3 Information theory for lattice systems

The conditional probability p(x2|x1) for the next symbol, x2, given a pre-
ceding one, x1, is defined by the probability distributions of 2-length and
1-length sequences, since

p(x2|x1) = p(x1 and x2)
p(x1) = p(x1x2)

p(x1) , (3.10)

where x1x2 denotes the pair of the corresponding symbols. In general, the
conditional probability p(xm|x1...xm−1) for a symbol xm given that we know
the preceding m−1 symbols (x1...xm−1), is defined by

p(xm|x1...xm−1) = p(x1...xm−1xm)
p(x1...xm−1) . (3.11)

This conditional probability is now used to quantify the average uncertainty
hm for the next symbol given a preceding sequence of m−1 symbols,

hm =
〈
S[p(Xm|x1...xm−1)]

〉
=

=
〈∑
xm

p(xm|x1...xm−1) log 1
p(xm|x1...xm−1)

〉
=

=
∑

x1...xm−1

p(x1...xm−1)
∑
xm

p(xm|x1...xm−1) log 1
p(xm|x1...xm−1) =

=
∑

x1...xm−1xm

p(x1...xm−1xm) log p(x1...xm−1)
p(x1...xm−1xm) , (3.12)

where we have used the definition of conditional probability, Eq. (3.11). This
expression can be rewritten using the block entropies, Eq. (3.8),

hm =
∑

x1...xm

p(x1...xm−1xm)
(

log 1
p(x1...xm−1xm) − log 1

p(x1...xm−1)

)
=

= Sm−Sm−1 = ∆Sm , (3.13)

where we have used Eq. (3.6). We note that since entropies are non-negative,
∆Sm ≥ 0, the block entropy is an increasing function of block length m. If all
correlations (of arbitrary length) to preceding symbols are taken into account
when forming the entropy of the conditional probability, then this approach
should quantify the entropy of the sequence, s, as it was defined by Eq. (3.9),

lim
m→∞

hm = lim
m→∞

∆Sm = lim
m→∞

1
m
Sm = s . (3.14)

The second equality, reflecting that both approaches, (i) and (ii), give the
same result, will be graphically illustrated from the properties of the block
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entropies, Sm, in the next Section, while a more formal proof is left as an
exercise.

3.1.3 Quantifying order and correlations in a symbol
sequence

To quantify the information in correlations of length m, suppose that we
have an a priori conditional distribution P (0)(Xm|x2...xm−1) for a symbol
xm, given that a specific preceding sequence (x2...xm−1) is known. Then we
are interested in the information we get when we observe the symbol x1, one
step further away, and use that to change our probability description of the
symbol xm to P (Xm|x1x2...xm−1), see Figure 3.1. The conditional probabil-
ities in P (0) can not include any correlations of length m (stretching over a
sequence of length m), but that is possible in the new distribution P . The
relative information between P (0) and P is then a measure of the correlation
information of length m when a specific preceding sequence (x1x2...xm−1) is
observed,

K[P (0);P ] =
∑
xm

p(xm|x1x2...xm−1) log p(xm|x1x2...xm−1)
p(xm|x2...xm−1) (3.15)

If we now take the average over all possible preceding sequences (x1x2...xm−1),
we get an expression for the average information content in correlations of
length m, the correlation information km. This quantity can be rewritten in
the form of a relative information quantity,

km =
∑

x1...xm−1

p(x1...xm−1)K[P (0);P ] = (3.16)

=
∑

x1...xm−1

p(x1...xm−1)
∑
xm

p(xm|x1x2...xm−1) log p(xm|x1x2...xm−1)
p(xm|x2...xm−1) ,

and we note that this quantity is non-negative, km ≥ 0, since it is an based
on relative information. This can be rewritten as follows, using the definition
of conditional probability, Eq. (3.11), and block entropy, Eq. (3.8),

km =
∑

x1...xm−1

p(x1...xm−1)
∑
xm

p(x1...xm)
p(x1...xm−1) log p(x1...xm)p(x2...xm−1)

p(x1...xm−1)p(x2...xm) =

=−Sm+ 2Sm−1−Sm−2 =−∆Sm+ ∆Sm−1 =
=−∆2Sm ≥ 0 , (3.17)
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Fig. 3.1 Extending the preceding block of symbols from (x2...xm−1) to (x1x2...xm−1)
allows for longer correlations to be used in the guess of next symbol xm.

for m= 2,3, etc. Here we define S0 = 0, for Eq. (3.17) to be consistent with
Eqs. (3.15)-(3.16).

The non-negativity of the relative information thus implies that ∆2Sm≤ 0.
This means that the block entropy, Sm, has a positive but decreasing increase
with block length m, as is illustrated in Figure 3.2. From this figure, we can
also understand that Sm/m approaches ∆Sm in the limit m→∞, as stated
in Eq. (3.13).

Fig. 3.2 The block entropy Sn is an increasing function of length n. The increase is
decreasing, ∆Sn decreases by n, implying ∆2Sn ≤ 0. This second difference in the block
entropy can be interpreted as the information in correlations kn over block length n.

Let us also introduce an information quantity that measures the difference
in character frequency from a uniform distribution. This is a contribution to
the redundant information that is not captured in any correltaions. As an a



3.1 Symbol sequences and information 29

priori distribution we use the completely ”uninformed” uniform distribution
P

(0)
1 that assigns equal probabilities p(0)

1 = 1/ν, to all symbols x1 in Λ. The
density information k1 can then be written as the relative information be-
tween the a priori uniform distribution and the observed single distribution
P1,

k1 =K[P (0)
1 ;P1] =

∑
x1

p(x1) log p(x1)
1/ν = logν−S1 . (3.18)

We have thus defined a number of information quantities that capture the
redundant (non-random or ”ordered”) information in the system – the density
information k1 and the series of correlation information contributions kn
(n= 2,3, ...). Let us combine all these into an information quantity, the total
correlation information kcorr,

kcorr =
∞∑
m=1

km = (logν−S1) + (−S0 + 2S1−S2) +

+(−S1 + 2S2−S3) +
+(−S2 + 2S3−S4) +

... (3.19)
+(−Sm−2 + 2Sm−1−Sm) +

... =
= logν− lim

m→∞
(Sm+1−Sm) = logν−s .

This is the redundant information in the system, expressed as an average
per symbol. The entropy per symbol of the system, s, is a measure of the
uncertainty that remains when all correlations, including deviation in symbol
frequencies from uniformity, have been taken into account.

From this we can conclude, that the total entropy per symbol of logν,
which is the maximum entropy per symbol, can be decomposed in two terms,
the redundancy kcorr and the entropy s,

Smax = logν = (logν−s) +s= kcorr +s , (3.20)

where the correlation information has one term expressing density informa-
tion, k1, and a series of terms, km, quantifying information in correlations of
different lengths,

kcorr = k1 +
∞∑
m=2

km (3.21)

The interpretation of these quantities in terms of coding theory is the follow-
ing. If a text contains redundancy this can be removed in order to compress
the text by using a coding procedure, replacing characters in an appropriate
way. In the case of an optimal code, the compressed sequence may have a
length of Ls/ logν if the original length is L.
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3.2 Markov processes and hidden Markov models

3.2.1 Markov processes and entropy

Some of the symbol sequences analysed in later Chapters are the direct result
of a simple Markov processes, i.e., processes in which the probability for the
next state (or symbol) is fully determined by the preceding state (or symbol).
This means that the conditional probability distribution P (Zn|z1...zn−1) over
the next symbol zn, given a preceding sequence of symbols, converges already
for n = 2. The entropy s of the process is then given already by ∆S2, see
Eqs. (3.12)-(3.13),

s= lim
n→∞

∑
z1...zn−1

p(z1...zn−1)
∑
zn

p(zn|z1...zn−1) log 1
p(zn|z1...zn−1) =

=
∑
zn−1

p(zn−1)
∑
zn

p(zn|zn−1) log 1
p(zn|zn−1) = ∆S2 . (3.22)

A Markov process can be described as a finite automaton with N internal
states zi (with i= 1, ...N , and zi belonging to the alphabet Λ) corresponding
to the symbols generated. The process changes internal state according to
transition probabilities, Pij , denoting the probability to move to state j from
state i. An example of such an automaton is given in the figure below. The
internal states (the possible symbols) are a, b, and c. Let us assume in
this example that, when there is a choice for the transition from a state, all
possible transitions from that state are equally probable. Here this means
that Paa = Pac = Pba = Pbc = 1/2, Pcb = 1, and Pab = Pca = Pcc = Pbb = 0.

Fig. 3.3 Example of finite state automaton representing a Markov process.

To calculate the entropy of the process (or the symbol sequence), we need
p(z), which is the probability distribution over the internal states (or, equiva-
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lently, the stationary probability distribution over the internal states). Since
the (stationary) probability p(z) to be in a certain state z must equal the
sum over the probabilities of possible preceding states w weighted with the
transition probabilities to state z, we can determine p(z) by the

p(z) =
∑
w

p(w)Pwz , (3.23)

for all z ∈ Λ, together with the normalization constraint
∑
z p(z) = 1. Note

that the transition probabilities Pzw equals the conditional probabilities
p(w|z), which means that the entropy s can be written

s=
∑
z

p(z)
∑
w

Pzw log 1
Pzw

. (3.24)

In the example above, the stationary distribution over the states is found
by solving Eqs. (3.23), replacing, e.g., the last one with the normalization
constraint,

p(a) = 1
2 p(a) + 1

2 p(b)

p(b) = p(c) (3.25)
p(c) = 1−p(a)−p(b)

and one finds that p(a) = p(b) = p(c) = 1/3. The term −Pzw logPzw only
contributes to the entropy in Eq. (3.24) when z is a or b, so the resulting
entropy then turns out to be s = 2/3 (bits). One way to view this is that
the process needs one bit of ”random information” in order to make the
random choice of transition when leaving node a and node b. Since these
nodes are visited with a fraction of 2/3 of the time and since this choice
directly determines the symbols in the sequence, the average randomness, or
the entropy, should be 2/3 bits.

3.2.1.1 An example of an optimal code exploiting correlations

Consider a stochastic process producing sequences of symbols from the al-
phabet Λ = {a,b,c,d}, like in example 2.1.1.1. Now we assume that there
are correlations between neighbouring symbols. If the preceding character is
observed, we have some additional knowledge about the probability for the
following one.

The correlations between the symbols are determined by the structure
of the Markov process generating the symbol sequence. The finite state
automaton in Figure 3.4 defines the Markov process. Solving for the sta-
tionary distribution, Eq. (3.23), results in the single symbol distribution
P1 = {1/2,1/4,1/8,1/8}, as we also had in the example 2.1.1.1. The entropy
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Fig. 3.4 Markov process generating sequence of symbols from the alphabet {a,b,c,d}.

of the process is then determined by Eq. (3.22). This implies that there is a
single bit of contribution to the entropy each time the process leaves any of
the states a or b (since there is always 1/2 chance for choosing a specific tran-
sition), but no contribution when leaving states c or d. The entropy is then
1/2 + 1/4 bits = 3/4 bits. This is significantly lower than the 7/4 bits that
we found in example 2.1.1.1, and what we would also get here if we would
disregard correlations, i.e.,the entropy of the single symbol distribution P1.

The implication of this is that we should be able to find an even more
efficient coding, compressing the length of a binary coded message down to
3/4 bits in average per original symbol. One easy way to achieve this is to
start with the code word for the initial symbol using the code of example
2.1.1.1. After that the code words are 0 or 1 only, for states a and b, with 0
meaning a transition to a and 1 for the other transition. For states c and d
no code word is needed as the next state is unique1. Then, in average for a
long message, we only need one bit after state a and another bit after state
b, which is only in 3/4 of all positions in the original sequence, resulting in
an average code word length of 3/4.

3.2.2 Hidden Markov models and entropy

In a hidden Markov model, one does not observe the states z of the process (or
of the finite state automaton), but one observes some function of the state
f(z). If the function f is not invertible this means that information may
be lost between the underlying process and the sequence of symbols that is
observed. In the example of Figure 3.3, if the function f is given by f(a) = 0
and f(b) = f(c) = 1, then we have a process that generates a sequence of ’0’
and ’1’ symbols, which is not a Markov process but a hidden Markov model.
The process can now be illustrated by the automaton in Figure 3.5.

1 In order to make sure one knows where the end of the message is (since there is no
code word following states c and d), one may encode the last symbol of the message
using the reversed code words that were used for the initial symbol (so that one can
read the last code word from right to left at the end).
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Fig. 3.5 Example of finite state automaton representing a Hidden Markov model based
on the Markov process of Figure 3.3.

The process thus generates sequences of 0’s and 1’s in which the restriction
is that blocks of 1’s (separated by 0’s) always are of even length. Since we
only observe the generated symbols 0 or 1, we do not always immediately
know which state the automaton is in. But if we are allowed to observe an
arbitrarily long sequence of symbols generated, we will almost always find
a 0 in the preceding sequence2. And then we can trace the path through
the automaton to determine in which node we are, which then gives us the
true probabilities for the next symbol. This procedure works for this specific
example, but that does not apply in general.

Using Eqs. (3.12)-(3.13), we can write the entropy

s= lim
n→∞

∑
x1...xn−1

p(x1...xn−1)
∑
xn

p(xn|x1...xn−1) log 1
p(xn|x1...xn−1) =

= lim
n→∞

∑
z

∑
(x1...xn−1)→z

p(x1...xn−1)
∑
xn

p(xn|z) log 1
p(xn|z)

=

=
∑
z

p(z)
∑
x

p(x|z) log 1
p(x|z) , (3.26)

where we note that the sum of the probabilities of all preceding sequences
ending in node z, denoted (x1...xn−1)→ z, is the stationary probability p(z)
for being in node z, and p(x|z) denotes the probability of generating symbol
x when in node z. In this case, it thus turns out that the entropy generated
by the underlying Markov process, i.e., the entropy in the choices on the level
of the automaton, can actually be detected in the Hidden Markov model pro-
cess, in which only the symbol sequences of 0’s and 1’s are observed. We do
need to take into account longer correlations, though, in order to find the

2 Only if the preceding sequence is an infinite sequence of 1’s, we cannot say where we
are.
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entropy. This implies that this hidden Markov model has a different correla-
tion information distribution than the corresponding Markov process. This
example is further discussed in the next section, illustrating also correlation
information quantities.

3.2.3 Some examples

In the following four examples, the processes that generate the symbol se-
quences are expressed with finite state automata in which the symbols are
on the transition arcs instead of in the nodes (internal states), as we have ex-
emplified above. Make sure that you understand how you can move between
these two representations.

3.2.3.1 Example: crystal

Consider a periodic symbol sequence of 0’s and 1’s,

...010101010101010101010101010101...

The density information is zero, k1 = 0, since the probabilities are equal for
the two symbols, p(0) = p(1) = 1/2, and they do not deviate from a uniform
a priori distribution. The probabilities that are required for calculating the
correlation information are

p(0) = p(1) = 1
2 , p(0|1) = p(1|0) = 1 , and p(0|0) = p(1|1) = 0 . (3.27)

The correlation information from length n= 2, calculated by Eq. (3.16), then
gives

k2 =
∑
x1

p(x1)
∑
x2

p(x2|x1) log p(x2|x1)
p(x2) = log2 = 1 (bit). (3.28)

Since this is the total information (per symbol) of the system, we can conclude
that all other redundant information quantities are zero, km = 0 for m 6=
2, and s = 0. This is what one should expect. There is no entropy in this
system—as soon as we see one symbol (”0” or ”1”), we know the next symbol,
and so on.
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3.2.3.2 Example: Gas

Consider instead a symbol sequence generated by a completely random pro-
cess, like coin tossing,

...110000110100010110010011011101...

The probability for next character to be ”0” or ”1” is 1/2 independently of
how many preceding characters that we may observe. The entropy of the
conditional probability is therefore always maximal, log2 = 1 (bit),

s= 1 (bit) (3.29)

and there are no contributions from the redundancy, kcorr = 0.

3.2.3.3 Example: Finite state automaton generating short
correlations

Let us now consider a symbol sequence generated by a stochastic process
described by a finite automaton, see Figure 3.6. This automaton generates
symbol sequences where 0’s cannot appear in pairs, e.g.,

...1101011111011110101011101110110...

Fig. 3.6 The finite automaton generates an infinite sequence of ”0” and ”1” by following
the arcs between the nodes in the graph. When there are two arcs leaving a node, one
is chosen randomly with equal probabilities for both choices.

In order to calculate the information-theoretic properties, we need to trans-
form the characteristics of the automaton to a probabilistic description of the
symbol sequence. First, we calculate the densities of 0’s and 1’s. Since the
transition (arc) to the right node (R) always generates a ”0” and is the only
way a ”0” can be generated the probability for being in R, p(R) equals the
frequency of 0’s, p(0) = p(R). Similarly, p(1) = p(L). The probabilities for the
nodes are given by the stationary probability distribution over the nodes.
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Here, this can be expressed by the fact that the probability for being in the
left node p(L) must be equal to the probability that we were in this node last
step and generated a ”1” plus the probability that we were in the right node
last step,

p(L) = p(L)1
2 +p(R) ⇒ p(L) = 2

3 and p(R) = 1
3 , (3.30)

where we have used the normalization p(L)+p(R) = 1. This means that p(0) =
1/3 and p(1) = 2/3. Then the density information is

k1 =
∑
x1

p(x1) log p(x1)
1/2 = 5

3 − log3≈ 0.0817 (bits) (3.31)

All other redundant information is contained in correlations over block length
n= 2, since if we observe one character we know which node in the automaton
that is the starting point for generating the next character, and then we
have the full knowledge about the true probabilities for that character. Thus,
p(0|1) = p(1|1) = 1/2,p(1|0) = 1, and p(0|0) = 0. The correlation information
for length two is then

k2 =
∑
x1

p(x1)
∑
x2

p(x2|x1) log p(x2|x1)
p(x2) = log3− 4

3 ≈ 0.2516 (bits) (3.32)

The entropy s is the entropy (uncertainty) about the next character in the
sequence, based on our knowledge on all preceding characters. The preceding
characters inform us on which node is used in generating the next character,
and, actually, this information is in the last character alone. Formally, this
can be expressed

p(1|x1...xn−11) = p(0|x1...xn−11) = 1
2 , for all possible x1...xn−1 ,and

p(1|x1...xn−10) = 1 , for all possible x1...xn−1 .

It is clear that we have a Markov process, and therefore equation (3.22) can
be used to calculate the entropy,

s= lim
m→∞

∆Sm = ∆S2 =
∑
x1

p(x1)
∑
x2

p(x2|x1) log 1
p(x2|x1) =

= p(1) · log2 +p(0) ·0 = 2
3 (bits) ≈ 0.6667 (bits) (3.33)

This is, of course, what we should expect, since we have already said that
there is no more correlation information than what was calculated in k1
and k2, and then remains when the redundancy has been subtracted from
the total of 1 bit of information per symbol must be the entropy, i.e., s =
1− (5/3− log3)− (log−4/3) = 2/3.
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3.2.3.4 Example: Finite state automaton generating long
correlations

The finite automaton of Figure 3.7 is similar to the one of the previous ex-
ample, with the difference that the arc leading from the right to the left node
generates a ”0” here. This means that the automaton generates sequences
where 1’s are separated by an even number of 0’s. This is a hidden Markov
model, similar to the one we discussed in the example of Section 3.2.2.

Fig. 3.7 Finite automaton generating sequences of 0’s and 1’s in which 1’s are always
separated by an even number of 0’s.

Suppose that we shall guess on the next character in the sequence, and that
we may take into account an large (infinite) number of preceding characters,
for example,

...0001000011100100000000110000000? (3.34)

Then it is sufficient to go back to the nearest preceding ”1” and count how
many 0’s there are in between. If there is an even number (including zero 0’s),
we are in the left node, and if there is an odd number, we are in the right
node. When we know which node we are in, we also have the true probability
description of the next character. (Only if there are only 0’s to the left, no
matter how far we look, we will not be able to tell which is the node, but as
the length of the preceding sequence tend to infinity the probability for this
to happen tends to zero.)

Since the preceding sequence almost always determines (and corresponds
to) the actual node, in the limit of infinite length, we can rewrite the entropy
s as follows.

s= lim
n→∞

∑
x1...xn−1

p(x1...xn−1)
∑
xn

p(xn|x1...xn−1) log 1
p(xn|x1...xn−1) =

= p(L)
∑
x

p(x|L) log 1
p(x|L) +p(R)

∑
x

p(x|R) log 1
p(x|R) = (3.35)

= 2
3 log2 + 1

3 ·0 = 2
3 (bits)≈ 0.6667 (bits)
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We have used the probabilities for the nodes L and R from the previous exam-
ple, since they are the same. Expressed in this way, it is clear that the entropy
of the symbol sequence comes from the random choice the automaton has to
make in the left node. The right node does not generate any randomness or
entropy. Therefore, we get the same entropy as in the previous example. Also
the frequency distribution of single characters are the same (but with shifted
order between 0 and 1) resulting in the same density information k1, but
when we get to the correlation information over blocks, we get a difference.
In this case, we have correlation information in arbitrarily large blocks, since
any number of consecutive 0’s may occur, and then there is more informa-
tion to be gained by observing one more character. To calculate the general
expressions for the different correlation information terms is now much more
complicated, and we leave it as a difficult exercise.

So, even if the last two discussed examples are identical in terms of entropy
and redundancy, this second example may be considered more complex, since
the correlation information is spread out on larger distances. In a later section,
we shall se that such a difference may be used as one way to characterize the
complexity of the symbol sequences.

3.3 Measuring complexity

What characterizes a complex symbol sequence or a complex pattern? There
are a large number of suggestions on how one should quantify complexity.
What quantity to use depends on what one is looking for in the system under
study. In this section we will focus on quantities related to how correlation
information is distributed in the system. This approach was suggested by
Peter Grassberger in the 1980’s, see Grassberger [1986]. Consider two of the
examples discussed above, the completely ordered (”crystal”) sequence and
the completely random (”gas”) sequence:

...010101010101010101010101010101...

...110000110100010110010011011101...

In the first case, the entropy is minimal (0 bit), and in the second case it
is at maximum (1 bit). None of these are typically considered as complex,
even though, in some contexts, the random one has been called complex. The
precise configuration of the gas needs a lot of information to be specified, but
the ensemble or the system that generate that type of sequence is simple:
”toss a coin forever...”. The crystal has a simple description as it is: ”repeat
01...”.

If neither the most ordered nor the most random systems are considered
complex, we should look for a measure of complexity that can take high values
when the entropy is somewhere in between, see Figure 3.8. One information-
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Fig. 3.8 One is usually not considering a fully random pattern (left) as complex. Neither
is a fully ordered structure, exemplified by the checkerboard pattern (right), considered
as complex. The potential to exhibit complex characteristics usually requires patterns
in between these extremes—patterns that may contain some order in correlations, but
where correlations may stretch over larger distances, and where there is also some ran-
domness as well. Here this is illustrated by a typical state in a physical spin system close
to the critical temperature (middle).

theoretic characteristic that has been considered important for a complex
system is to what extent correlation information stretches over large distances
in the system. If there is a lot of information in long-range correlations, it may
be more difficult to analyse and describe the system. Grassberger suggested
a quantity, the effective measure complexity, η, which can be defined as a
weighted sum of correlation information contributions from different block
lengths,

η =
∞∑
m=1

(m−1)km . (3.36)

This quantity has also been introduced and investigated by Jim Crutchfield
and coworkers under the term excess entropy, see, e.g., Crutchfield and Feld-
man [2003]. We call this the correlation complexity, emphasising the correla-
tion quantification, and it can be rewritten (if kcorr > 0) as

η = kcorr

∞∑
m=1

(m−1) km
kcorr

= kcorr(m−1) = kcorr dcorr . (3.37)

Here we have introduced an average correlation distance dcorr. This is based
on the average block length at which correlation information is found, but
where correlation distance is defined to be one less than the block length (or
the ”distance” between first and last symbol of the block). This complexity
measure is non-negative, but it is not unbounded. For the ”crystal” example
η = 1 and for the totally random sequence η = 0.

It also turns out that the correlation complexity can be interpreted
as the average information contained in a semi-infinite symbol sequence
(...x−2,x−1,x0) has about its continuation (x1,x2,x3, ...). This quantity can
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be written as a relative information. Suppose first that the preceding se-
quence, that we may observe, has a finite length m and denote it σm. The
continuation, has finite length n and we denote it τn. At the end we shall
look at infinite limits of m and n. The a priori description of the continuation
is given by probabilities p(τn), but after we have observed the preceding se-
quence σm, we can replace that with the conditional probabilities p(τn|σm).
The information we gain by this is a relative information quantity, and we
take the average over all possible preceding sequences together with the limit
of infinite lengths,

η = lim
m→∞

lim
n→∞

∑
σm

p(σm)
∑
τn

p(τn|σm) log p(τn|σm)
p(τn) ≥ 0 . (3.38)

Fig. 3.9 The block entropy Sn approaches an asymptotic line with slope equal to the
entropy s, as n increases. Also the ratio Sn/n converges to to the entropy, but more
slowly. Therefore, in the limit of infinite sequences, Sn−ns is a measure of how fast Sn/n
converges to to the entropy s. This is the correlation complexity η, and graphically, it is
the intersection point on the vertical axis of the asymptotic line for the block entropy.

One can also relate the correlation complexity to the block entropies, see
Figure 3.9,

η = lim
m→∞

(Sm−ms) , (3.39)

where s is the Shannon entropy of the symbol sequence (or more correctly of
the stochastic process). The correlation complexity can thus be interpreted
as the rate of convergence of Sm/m to s. The proof that these expressions
are equal to the correlation complexity of Eq. (3.36) is left as an exercise.



3.3 Measuring complexity 41

3.3.1 Correlation complexity for Markov processes and
hidden Markov models

For a Markov process the correlation complexity η is easy to calculate since
there is no correlation information from blocks longer than 2, and therefore
we get that η = k2. For a hidden Markov model, the situation is different. As
we saw in example 3.2.3.4, such a system may have correlation information in
arbitrarily long blocks of symbols. In some situations there may be an easy
way to calculate the correlation complexity using the form that expresses
the information contained in the past about the future of an infinite symbol
sequence, Eq. (3.38). Consider again the automaton describing the process of
example 3.2.3.4, see Figure 3.10.

Fig. 3.10 Example of hidden Markov model, represented by finite automaton generat-
ing sequences of 0’s and 1’s in which 1’s are always separated by an even number of 0’s.
The probability for the arcs leaving the left node are both 1/2.

If almost all past sequences σm, in the infinite limit, determine whether
we are in the left (L) or in the right (R) node, we can rewrite Eq. (3.38). The
probability of the future sequence τn is given by the node we are in, so we
can group together all σm leading to the left node L (and in the same way
all leading to the right one, R). Then we have

η = lim
n→∞

∑
z∈{L,R}

p(z)
∑
τn

p(τn|z) log p(τn|z)
p(τn) , (3.40)

where p(L) and p(R) are the stationary probabilities for the left and right
node, respectively. We now use the definition of conditional probability
p(τn|z) for the n-length sequence τn given that we are in node z, to rewrite
the argument in the logarithm,

p(τn|z)
p(τn) = p(τn,z)

p(τn)p(z) = p(z|τn)
p(z) . (3.41)

Then we can rewrite Eq. (3.40) as follows,
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η = lim
n→∞

∑
z∈{L,R}

p(z)
∑
τn

p(τn|z) log p(z|τn)
p(z) =

= lim
n→∞

∑
z∈{L,R}

p(z)
∑
τn

p(τn|z)
(

log 1
p(z) + logp(z|τn)

)
= (3.42)

=
∑

z∈{L,R}
p(z) log 1

p(z) − lim
n→∞

∑
τn

p(τn)
∑

z∈{L,R}
p(z|τn) log 1

p(z|τn) .

The last sum over nodes z is the entropy of which node we were in conditioned
on observing the future sequence τn. But, in this example, the starting node
for the future sequence is almost always uniquely given by the sequence τn.
Only when there are only zeroes in τn, we do not know, but that happens
with probability 0 in the infinite n limit. Therefore there is no uncertainty of
z given the future τn, and the last entropy term is 0. This means that

η =
∑

z∈{L,R}
p(z) log 1

p(z) , (3.43)

and we conclude that, for this situation, the correlation complexity equals
the entropy of the stationary distribution of the nodes in the finite state
automaton describing the hidden Markov model. Note, though, that this does
not hold in general, but only for certain types of hidden Markov models.

3.4 Extensions to higher dimensions

The decomposition of information into entropy and contributions from differ-
ent correlation lengths can be extended to lattice systems of any dimension.
In this section we briefly indicate how the extension to the two-dimensional
case is done, but it is easy to generalize the formalism also to higher dimen-
sions.

Consider an infinite two-dimensional lattice in which each site is occupied
by a symbol (0 or 1). (The generalization to larger alphabets is straightfor-
ward.) Assume that the relative frequencies, with which finite configurations
of symbols occur in the lattice, are well defined. Let AM×N be a specific
M ×N -block occurring with probability p(AM×N ). Then, in analogy with
the one-dimensional symbol sequence, Eq. (3.9), the entropy, i.e., the average
randomness per site, can be defined

s= lim
M ,N→∞

1
MN

SM×N , (3.44)

where the block entropy SM×N is defined by
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SM×N =
∑

AM×N

p(AM×N ) log 1
p(AM×N ) . (3.45)

In order to derive an alternative way to derive the entropy per site, based
on a sequential process that reads the states (or symbols) in the pattern one
by one, we introduce a block configuration of a shape that makes such an
approach possible. Let Bm be a certain configuration of symbols arranged
as follows: m− 1 rows of symbols, each of length 2m− 1, are put on top of
each other, and on the m−1 first symbols of the top row a sequence of m−1
symbols is placed, see Figure 3.11. We also introduce the notation Bmx for
the configuration that adds the symbol x to Bm after the (m−1)’th symbol
in the top row.

Fig. 3.11 The configuration of cells Bm that is used in the conditional probability for
the character x in the ”next” cell. The cell with x is not part of Bm but is added to
form the block Bmx. By extending the configuration Bm (increasing m), we get better
conditional probabilities for the unknown character x.

Then we can introduce the conditional probability for a certain character
x given that we have already observed the characters in the configuration
Bm,

p(x|Bm) = p(Bmx)
p(Bm) . (3.46)

This can be interpreted as the conditional probability for the ”next” character
given that we have seen the ”previous” 2m(m− 1) characters. The average
entropy is

Hm =
∑
Bm

p(Bm)
∑
x

p(x|Bm) log 1
p(x|Bm) . (3.47)

This entropy is analogous to hm in the one-dimensional case, Eq. (3.12). For
m= 1, we define H1 = S1×1, or the entropy of the single character distribu-
tion. One can prove, see Appendix (to be appended later), that in the limit
m→∞, Hm is equal to the entropy, Eq. (3.44),



44 3 Information theory for lattice systems

s= lim
m→∞

Hm =H∞ . (3.48)

As in the one-dimensional case, the average information of log2, or equiva-
lently 1 bit, per lattice site can be decomposed into a term quantifying the
information in correlations from different lengths (including density informa-
tion) and a term quantifying the internal randomness of the system,

1 = kcorr +s . (3.49)

The density information k1 does not depend on the dimensionality, so it
should be as in the one-dimensional case,

k1 =
∑
x

p(x) log p(x)
1/2 = 1−S1×1 = 1−H1 . (3.50)

Then it is clear that if we define correlation information over length m by
the difference between two consecutive estimates of the entropy s, i.e., km =
−Hm +Hm−1, for m > 0, then the decomposition above gives a complete
decomposition of the total information per lattice site. In order to show that
this definition leads to km being a non-negative quantity, we introduce an
operator R that reduces a configuration Bm to a configuration Bm−1 =RBm,
by taking away the symbols from the leftmost and rightmost columns as well
as from the bottom row. Then km can be written as the average relative
information when the distribution for ”next” character given a conditional
configuration Bm replaces an a priori distribution with a smaller conditional
configuration Bm−1 =RBm,

km =−Hm+Hm−1 =
∑
Bm

p(Bm)
∑
x

p(x|Bm) log p(x|Bm)
p(x|RBm) ≥ 0 . (3.51)

Here we have used the fact that summation over the characters in the part
that is being reduced in Bm connects the probabilities for Bm and RBm,

p(RBm) =
∑

all indices/∈RBm

p(Bm) . (3.52)

The correlation information kcorr is then decomposed as in the one-dimensional
case,

kcorr =
∞∑
m=1

km . (3.53)

This procedure can be repeated in higher dimensions. Note also that the
definition of correlation information contains a choice of direction and ro-
tation: the Bm configuration can be chosen in eight different ways. In one
dimension there are only two ways to choose, direction left or right, but the
choice does not change the resulting quantities. Furthermore, and this holds
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for both dimension one and higher, one may use other ways to decompose
total redundancy which result in different types of correlation measures.

Problems

3.1. Optimal coding.
How can the symbol sequences in Example 3.2.3.4 be coded so that one gets
a maximally compressed coded sequence?

3.2. Combining processes.
Suppose that we have a process that generates completely random binary
sequences (x0,x1,x2,x3, ...) with entropy 1 (bit). Construct a new binary
sequence (y1,y2,y3, ...) by addition modulo 2 of pairs of symbols from the
first sequence, yk = xk− 1 +xk (mod2),k = 1,2, ... . What is the entropy of
the new sequence?

3.3. FSA example.
The finite automaton below represents a stochastic process generating binary
sequences in which 1’s are separated by an odd number of 0’s. What is the
Shannon entropy? How long correlations are there (from the information-
theoretic point of view)? Assume that the arcs leaving the central node have
equal probabilities. Consider the class of stationary stochastic processes that

generate binary symbol sequences in which pairs of 1’s are forbidden. What
is the largest entropy such a process could generate?

3.4. Information loss in multiplication.
Consider two independent stochastic processes generating uncorrelated se-
quences of symbols 0, 1, and 2, with equal probabilities of the different sym-
bols. Form the product process in which a symbol zk is the product modulo
three of the corresponding symbols from the original processes, zk = xk · yk
(mod 3). (Mod 3 means that 2 ·2 (mod 3) = 1, while all other multiplications
work as usual.) How much information is lost in average from the original
pair of symbols (xk,yk) when the product zk is formed?
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3.5. Maximize entropy.
Consider an infinite sequence of isolated 1’s, separated by either one or two
0’s (but not more), for example, ”...100101010010010100101...”. What proba-
bility distribution should we choose for describing the system, if we want the
entropy s to be as large as possible? (The answer need not be explicit, but
an equation that determines the parameter(s) is sufficient.)
3.6. Two expressions for the entropy of symbol sequences
Show that Sm/m and ∆Sm are the same in the limit of infinite block length,
m→∞, cf. Eq. (3.13), and thus they both quantify the entropy of the symbol
sequence.
3.7. Correlation information and complexity
The hidden Markov model below generates sequences of 0’s and 1’s.

What is the correlation length in information-theoretic terms? Or in other
words: What is the longest distance m for which the correlation information
is positive, km > 0. Determine also the correlation complexity ηcorr for the
system.
3.8. Correlation complexity
Determine the correlation complexity ηcorr for the process described by the
hidden Markov model below. (When two arcs leave a node it is assumed that
they have the same probability.)



Chapter 4
Cellular automata

Abstract After a short introduction to cellular automata (CA), an information-
theoretic analysis is presented. It is based on a statistical or probabilistic
description of the state of the cellular automaton at each time step, where
the state is assumed to be an infinite sequence of symbols. Using information
theory for symbol sequences, we identify the information contained in correla-
tions, including density information, as well as the remaining randomness—
the entropy of the state. We derive laws for development of the entropy
over time, and we identify classes of CA dynamics for which these laws take
different form: general deterministic, almost reversible, and probabilistic. A
methodology for analysing changes in the probabilistic description of the CA
state from one time step to the next is described in detail. Illustrations on
the evolution of correlation information are given for a number of CA rules.

4.1 Cellular automata – a class of discrete dynamical
systems

Cellular automata (CA) are simple models of dynamical systems that are
discrete in space and time. The number of states per lattice site, or cell,
is finite and usually small. The time development is governed by a local
updating rule that is applied in parallel over the whole lattice. John von
Neumann and Stanislaw Ulam introduced cellular automata in the 1950’s,
and he wanted to use these models in his study of self-reproduction and noise-
sensitivity of computation. One purpose was to demonstrate the existence of
objects capable of complex behaviour combined with the capability of self-
reproduction. This work lead to the design of a cellular automaton rule on a
two-dimensional lattice with 29 states per cell. The designed object capable
of making a copy of itself in this space also had the capability to simulate any
computational process, usually termed a computationally universal system.
In this way complex behaviour of the object was said to be guaranteed. This

47
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work was completed and published by Arthur Burks after von Neumann’s
death [von Neumann and Burks, 1966].

There are several possibilities to construct cellular automaton rules, even
with only two states per cell, that demonstrate various examples of complex
behaviour. One well-known cellular automaton is ”Game of Life” that was
introduced by John Conway, see [Gardner, 1970]. This rule has been studied
extensively, mainly because of its capability of producing complex behaviour
like propagating spatio-temporal structures from random initial states, ex-
emplified by the simple ”glider” in Figure 4.1. The rule is based on a local
configuration involving the cell and its 8 neighbours. Cells can be ”alive” or
”dead”, represented by black and white in the figure. A ”dead” cell becomes
”alive” in the next time step if exactly 3 neighbours are ”alive”, while a cell
that is ”alive” remains so only if 2 or 3 neighbours are ”alive”.

Fig. 4.1 The cellular automaton ”Game of Life” exemplified by five time steps of the
”glider”, a propagating object with an internal cycle of four time steps.

One can show that ”Game of Life” also has the capability of universal
computation. This can be done, for example, by constructing structures in
the lattice that function as wires that allow for propagating signals that may
interact through structures serving as logical gates.

Already in the simplest class of CA, the CA rules in one dimension that
have local interaction depending on nearest neighbours only, there are ex-
amples of various types of complex behaviour. In 1989 it was shown that
with 7 states per cell, it is possible to construct CA rules that are capable
of universal computation [Lindgren and Nordahl, 1990]. A direct implication
is that results from computation theory applies to this rule. For example,
the halting problem, stating that there is no general procedure to determine
whether a computer program will ever halt, transforms into a theorem for
computationally universal CA. This means that there are initial states for
such a CA for which it is impossible to prove whether the CA will develop
to a fixed point. In fact, it has been shown that the even more simple CA
rule R110, depending on only two states per cell, is computationally universal
[Cook, 2004]. The space-time pattern of R110 is exemplified in Figure 4.2.

Cellular automata as models for physical systems met with a renewed in-
terest in the 1980’s, partly because of the classic paper by Stephen Wolfram
[1983], ”Statistical mechanics of cellular automata.” Among the physical ap-
plications of cellular automata, the ”lattice gases” are the most well known.
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Fig. 4.2 The time evolution of CA rule R110 starting with an ”random” initial state
(in the top row) shows how a periodic background pattern is built up at the same time
as complex structures propagate and interact. This is a good example of the complexity
that simple CA rules may exhibit.

These CA simulate systems of particles with discrete (usually unit) velocities
moving on a lattice. Despite the highly simplified microscopic dynamics, some
of these systems approximate the Navier-Stokes equations for fluid dynamics,
when averages are taken over large numbers of particles.

In this Chapter we shall demonstrate how the information-theoretic con-
cepts presented in Chapter 3 can be used in order to analyse how order
and disorder develop during the time evolution for different types of cellular
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automaton rules. We shall in particular study CAs that are reversible and
discuss how apparently random patterns may be created in such systems.
This will be related to the second law of thermodynamics to be discussed in
a later chapter.

Fig. 4.3 Cellular automata space-time patterns from the four classes of CA rules: a)
Class I rules approach a fixed point (e.g., R160). b) Class II rules develop a periodic
pattern in space and/or time (e.g., R213). c) Chaotic or class III rules are characterised
by a continuous change of the patterns at the same time as a high disorder is kept (e.g.,
R22). d) Class IV is a border class involving features from both class II and class III
with long complex transients. The last example is generated by a rule that depends on
the number of living cells (1’s) in a 5-cell neighbourhood, so that a cell survives if 1 or
3 neighbours are alive and a cell becomes living if 2 to 4 neighbours are alive; otherwise
the cell dies.
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4.2 Elementary Cellular Automata

The simplest class of cellular automata is based on a one-dimensional lattice
with two states per cell and a nearest neighbour rule for the dynamics. Such
a rule is fully determined by specifying the next state of a cell for each of
the eight possible local states that describe the present state of the local
neighbourhood. An example of such a specification is shown in Table 4.1.
The time evolution of this rule, starting from a random sequence of 0’s and

Table 4.1 Cellular automaton rule
t 111 110 101 100 011 010 001 000

t+ 1 0 1 1 0 1 1 1 0

1’s, is exemplified in Figure 4.2. The top row of black (1) and white (0) dots
represent the initial state, and the following rows represent the development
in time when the rule in the table is applied in parallel over the whole row.
In this CA class the rules can thus be described by the binary digits in the
second row of the table, which means that eight binary symbols determine the
rule. In the example, we have the rule number (01101110)2 which in decimal
form is 110 – the rule mentioned above being computationally universal.
There are 28 = 256 elementary CA rules, but several of these are equivalent
(by symmetries, such as changing symbols and direction), which results in 88
different rules.

The dynamic behaviour of elementary CA can differ a lot from one rule
to another. Wolfram suggested a classification with four types. The simplest
CAs, class I, approach a homogenous fixed point as is exemplified by the rule
in Figure 4.3a. A class II rule develops into an inhomogenous fixed point or to
a periodic and/or simple shift of the pattern like in Figure 4.3b. The class III
rules never seem to approach an ordered state, but their space-time patterns
continue to look disordered, as illustrated in Figure 4.3c. These rules are
often called ”chaotic”. Then there is a class IV that is more vaguely defined
as a border class between II and III with long complex transients, possibly
mixed with a spatio-temporal periodic background pattern, see Figure 4.3d.
Also rule R110 in Figure 4.2 belongs to this class.

An important characteristic of the class III, or the chaotic, rules is that
they are sensitive to small perturbations, just like chaotic low-dimensional
systems. If one follows the time evolution starting from two initial states, dif-
fering at one position only, the number of differing positions tends to increase
linearly in time. This is illustrated in Figure 4.4, which shows the differing
cells between the space-time patterns of two CAs following rule R22.
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Fig. 4.4 The difference pattern resulting from the time evolution of CA rule R22 start-
ing from two different states, initially differing only by the state in one cell.

4.3 Information theory for Cellular Automata

What happens with the entropy that describes the internal disorder of the
CA state in the time evolution? Initially we may have prepared the system
as a maximally disordered sequence of symbols with an entropy of 1 bit per
cell. Under what circumstances will this entropy decrease to create order in
the system?

We shall use the information theory for symbol sequences presented in
Chapter 3, in order to prove relations between the entropy of the CA at time
t and the following time step t+1, see Lindgren [1987]. Suppose that we have
a cellular automaton rule with range r, i.e., the local neighbourhood involved
in the rule includes 2r+ 1 cells (r to the left, r to the right, and the cell
itself). We also assume that there are only two states per cell (0 and 1); the
formalism is easily extended to more states. At each time step t, the state of
the CA is described as a symbol sequence characterised by its entropy s(t).

4.3.1 Deterministic rules

To begin with we shall assume that the rules are deterministic, which implies
that the state at time t fully determines the state at the next time step.
Let βm denote a certain sub-sequence of symbols of length m at time t+
1. This sequence may have several possible predecessors at time t. Since
the rule has range r, the predecessor sequence has length m+ 2r, and we
denote such a sequence αm+2r. The probability distributions that describe
the symbol sequences at different times may of course be different, and we
use p for probabilities at time t and p′ for probabilities at time t+ 1. Then
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the probability for a sequence βm at t+1 can be expressed as the sum of the
probabilities for all possible predecessors,

p′(βm) =
∑

αm+2r→βm

p(αm+2r) . (4.1)

This relation can be used to establish a connection between block entropies
of length m+ 2r at time t with block entropies of length m at time t+ 1,

Sm(t+ 1) =
∑
βm

p′(βm) log 1
p′(βm) =

=
∑
βm

 ∑
αm+2r→βm

p(αm+2r)

 log 1∑
αm+2r→βm

p(αm+2r)
≤

≤
∑
βm

∑
αm+2r→βm

p(αm+2r) log 1
p(αm+2r)

= Sm+2r(t) . (4.2)

Here we have made use of the fact that log(1/x) is a decreasing function
of x, when removing the summation in the logarithm1. This inequality can
be used to derive the change in entropy (per symbol), Eq. (3.9), between to
successive time steps in the CA time evolution,

∆ts(t) = s(t+ 1)−s(t) = lim
m→∞

(
1
m
Sm(t+ 1)− 1

m+ 2rSm+2r(t)
)

=

= lim
m→∞

(
1
m

(Sm(t+ 1)−Sm+2r(t)) +
(

1
m
− 1
m+ 2r

)
Sm+2r(t)

)
.

(4.3)

By using Eq. (4.2) and the fact that the second term in Eq. (4.3) goes like
2rs(t)/m, and approaches 0 as m→∞, we can conclude that, for determinis-
tic cellular automaton rules, the entropy decreases (or stays constant) in the
time evolution,

∆ts(t)≤ 0 . (4.4)

This irreversibility, when the inequality is strict, can be understood by the
fact that deterministic CA rules reduce the number of possible states (symbol
sequences) in the time evolution. This decrease in entropy is associated with
an increase in total correlation information (including density information).
This is clearly visible in the periodic pattern formed in the time evolution of
rule 110, illustrated in Figure (4.2). The initial state is a completely disor-
dered sequence of zeroes and ones with en entropy s = 1 (bit), but as time
goes on correlation information is built up and entropy decreases.

1 We use the fact that (x+y) log(1/(x+y))≤ x log(1/x) +y log(1/y).
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4.3.2 Almost reversible rules

An important property of the rules that govern a dynamical system is whether
they can be considered reversible. In physical systems, the microscopic laws
of motion usually are reversible, and therefore it is of interest to investigate
the information-theoretic properties of cellular automata that can be consid-
ered reversible. Intuitively, we should expect the entropy of such a CA to be
constant in time.

With a reversible CA rule we consider a CA in which each microstate
(infinite symbol sequence) has a unique predecessor at the previous time
step. We shall show, though, that there is a weaker form of reversibility that
results in a constant entropy, i.e., equality in Eq. (4.4).

Suppose that a cellular automaton rule R with range r can be written as

R(x1,x2, ...,x2r,x2r+1) = f(x1,x2, ...,x2r) +x2r+1 mod 2 , (4.5)

where the summation is taken modulo 2. This means that the rule R is a
one-to-one mapping with respect to its last argument—a flip of the state
in the rightmost cell in the neighbourhood flips the result of the rule. (A
corresponding type of rule can be constructed with respect to the leftmost
argument.)

Note that this type of rule involves a certain type reversibility: Suppose
that we know the semi-infinite microstate y1y2y3... of the CA at time t+ 1,
and that we know the first 2r cells of the corresponding preceding microstate
x1x2...x2r at time t, which is then all but one of the cells in the neighbour-
hood that determines y1. Then we can use the rule, Eq. (4.5), by entering
x1x2...x2r as an argument in f , to find the cell state x2r+1 at t that corre-
sponds to the result y1. This means that we now have all but the rightmost
cell in the neighbourhood that determines y2, and the same procedure can be
repeated again to derive x2r+2. By repeated use of this procedure, we may
reproduce the complete semi-infinite microstate x1x2x3... at time t. Only 2r
bits of information are needed (the first 2r cells) to reproduce the preceding
microstate from the present one, and we call such a rule almost reversible.
These rules differ from the reversible rules in that each microstate may have
several (up to 22r) preceding microstates.

Then the probability for a sequence βm at t+ 1 can be expressed as the
sum of the probabilities for all possible ancestors using a transfer function
T (αm+2r,βm). The function T takes the value 1 if αm+2r → βm under the
rule, otherwise 0. We can the express the probabilities p′ at time t+1in terms
of the probabilities p from the previous time step,

p′(βm) =
∑
αm+2r

T (αm+2r,βm)p(αm+2r) . (4.6)

The transfer function has the properties
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αm+2r

T (αm+2r,βm) = 22r , (4.7)

∑
βm+2r

T (αm+2r,βm) = 1 . (4.8)

To simplify the notation, we drop the length indices on α and β. The differ-
ence in block entropies between m-length blocks at t+1 and (m+2r)-length
blocks at t can then be written

Sm(t+ 1)−Sm+2r(t) =
∑
β

p′(β) log 1
p′(β) −

∑
α

p(α) log 1
p(α) =

=
∑
β

∑
α

T (α,β)p(α) log p(α)
p′(β) = (4.9)

=
∑
β

p′(β)
∑
α

T (α,β)p(α)
p′(β) log T (α,β)p(α)/p′(β)

T (α,β)/
∑
α′ T (α′,β) − log

∑
α′

T (α′,β) .

Here we see that the sum over α in the last row is a relative information, since
both T (α,β)p(α)/p′(β) and T (α,β)/

∑
α′ T (α′,β) are normalized probability

distributions over α whenever p′(β) > 0. Since the relative information is
non-negative and the last logarithm is 2r, we can conclude that

Sm(t+ 1)−Sm+2r(t)≥−2r . (4.10)

Using the same approach as in Eq. (4.3) we conclude that

∆ts(t) = lim
m→∞

(
1
m
Sm(t+ 1)− 1

m+ 2rSm+2r(t)
)
≥

≥ lim
m→∞

(
2r

m(m+ 2r)Sm+2r(t)−
2r
m

)
= 0 . (4.11)

In combination with the law of non-increasing entropy for deterministic rules,
Eq. (4.4), this results in a constant entropy for the time evolution of almost
reversible rules,

∆ts(t) = 0 . (4.12)

For these cellular automata the initial distribution of information between
entropy and redundancy is kept in the time evolution. Still, there may be
non-trivial information-theoretic changes since the correlation length may
change, provided that the system is prepared with an initial redundancy, for
example in the form of density information. We will look at illustrations of
this in Section 4.4.
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4.3.3 Rules with noise

If noise, in the form of a process that randomly select cells in which the state
is changed, interfere with an otherwise deterministic rule, it seems reason-
able that an increase in entropy is possible for some rules, provided that we
start from an initial state with some redundancy, s < 1. Suppose that the
deterministic rule R is applied as usual on the complete CA microstate, but
that in the resulting microstate each cell state is flipped with a probability
q. Then we denote such a probabilistic rule by the pair (R,q).

The change in entropy in one time step, can then be decomposed into two
terms, one negative (or zero) term ∆Rs(t) associated with the deterministic
change resulting from rule R, cf. Eq. (4.4), and one term ∆qs(t) due to the
entropy change from the noise,

∆ts(t) = ∆Rs(t) + ∆qs(t) . (4.13)

Let us now investigate how the noise affects the entropy s. Suppose that the
probability distribution for m-length sequences of symbols are given by prob-
abilities p(αm), after the rule R has been applied. The noise then transforms
the probabilities according to a transfer function Tq(αm,βm),

p̂(βm) =
∑
αm

Tq(αm,βm)p(αm) , (4.14)

The transfer function, which is simply the probability that a certain sequence
αm is transformed into βm, depends on the Hamming distance H(αm,βm),
i.e., the number of cells for which the disturbed sequence βm differs from the
original one αm. This implies that

Tq(αm,βm) = qH(αm,βm)(1− q)m−H(αm,βm) . (4.15)

Normalization and symmetry implies that∑
αm

Tq(αm,βm) =
∑
βm

Tq(αm,βm) = 1 . (4.16)

The change in block entropy ∆qSm due to the noise can then be written
(dropping the length notation m on the sequence variables α and β)
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∆qSm = S[P̂m]−S[Pm] =

=
∑
β

∑
α

Tq(α,β)p(α) log 1
p̂(β) −

∑
α

p(α) log 1
p(α) =

=
∑
β

∑
α

Tq(α,β)p(α) log Tq(α,β)p(α)/p̂(β)
Tq(α,β) =

=
∑
β

p̂(β)
∑
α

Tq(α,β)p(α)
p̂(β) log Tq(α,β)p(α)/p̂(β)

Tq(α,β) ≥ 0 . (4.17)

Here we have used the fact that the sum over α in the last line is the relative
information (for each sequence β) between an ”a priori” distribution Tq(α,β)
and a ”new” distribution Tq(α,β)p(α)/p̂(β), which then guarantees that the
change in block entropy is non-negative. From this we can conclude that

∆qs(t) = lim
m→∞

1
m

∆qSm ≥ 0 . (4.18)

But it is also clear, from the fact that the relative information is zero only
when both involved distributions are identical, that the added noise entropy
is zero only when p(αm) = p̂(βm) for all αm and βm. This only occurs when
p(αm) = p̂(βm) = 2−m, i.e., when the cellular automaton state is completely
disordered with maximum entropy, s= 1.

We can now conclude that if the CA rule R is almost reversible, the only
entropy change comes from the added noise. Starting from an ordered initial
condition, s < 1, the entropy will increase until the system is completely
disordered,

∆ts(t)> 0 , if s(t)< 1 , (4.19)

∆ts(t) = 0 , if s(t) = 1 . (4.20)

The results on the entropy change in deterministic and noisy cellular au-
tomata are summarized in Table 4.2. For irreversible and noisy CA both
increase and decrease in entropy is possible, depending on rule and the de-
tails of the current microstate.

Table 4.2 Cellular automata entropy laws

Deteministic Noisy

Irreversible ∆ts(t)≤ 0 –

Rreversible ∆ts(t) = 0 ∆ts(t)≥ 0
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The results presented in this section are easily extended to two and more
dimensions. One class of CAs that is of interest for this type of analysis is
lattice gas models. As we will see in the next Chapter, the entropy associated
with the symbol sequence of a microstate is proportional to the thermo-
dynamic entropy, and therefore the different relations shown in Table 4.2,
especially for (almost) reversible rules, have implications for the second law
of thermodynamics, stating that physical entropy for a closed system cannot
decrease.

Fig. 4.5 During the time evolution of CA rule 110, density and correlation information
increases at the same time as entropy decreases by the same amount. In the diagram,
the density information k1 is represented by blue and contributions to correlation infor-
mation from the first 7 terms, k2 to k8, represented by grayscale patterns from dark to
light gray, are put on top of each other.

4.4 Examples of information-theoretic properties in the
evolution of simple CA

The irreversibility expressed by the law of non-increasing entropy for deter-
ministic rules, Eq. (4.4), and illustrated by the time evolution of rule R110
in Figure 4.2, can be quantified by calculating the increase in correlation in-
formation during the first time steps. This is depicted in Figure 4.5 showing
the contributions to the redundant information from density information k1,
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as well as from correlation information from blocks of lengths up to 8, i.e.,
k2, ...,k8, as functions of time. The initial state is completely ”random” with
an entropy s = 1 and zero redundancy, kcorr = 0. During the time evolution
the entropy is transformed to density and correlation information.

Fig. 4.6 The space-time pattern of rule R60, an almost reversible rule, exhibits non-
trivial behaviour when the entropy is less than 1 bit, s< 1. The initial state is dominated
(90 %) of 0’s.

If an almost reversible rule starts from a random initial state (s = 1),
then the maximum entropy will be conserved in the time evolution, accord-
ing to Eq. (4.12). For this type of system it is more interesting to study
what is happening if one starts with a low entropy initial state, i.e., an ini-
tial configuration with s < 1. In the example shown in Figure 4.6, the time
evolution of rule R60 is shown. This is an almost reversible rule given by
x′k = R(xk−1,xk) = xk−1 +xk (mod 2). This type of rule is also called an
additive rule. Note that the rule only depends on the cell itself and the left
neighbouring cell. The initial state is prepared with a 90% frequency of 1’s,
but without any correlations, resulting in k1 ≈ 0.53 and s≈ 0.47.

The time evolution of the CA in Figure 4.6 is characterised by the den-
sity information and the short length correlation information terms, see Fig-
ure 4.7. Even though the total redundancy is conserved, there are large
changes in the specific km terms, showing that correlation information is
changing significantly in length from one time step to another. Note also
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Fig. 4.7 The diagram shows the contributions to the redundancy from density infor-
mation (blue) and correlation information of lengths 2 up to 7 (grayscale from dark to
light) put on top of each other, for the time evolution of the almost reversible rule R60.
The initial state does not contain any correlations but there is density information due
to the 90% dominance of the state 0. Therefore, the initial redundancy is larger than
zero and the entropy s < 1. The reversibility implies that the entropy is conserved, and
the figure then shows that information quickly is distributed over correlations of lengths
larger than 7.

that at certain time steps, t∗ = 1,2,4,8,16, etc, a large part of the redun-
dancy is again gathered in the density information, k0, and that these time
steps are preceded by a series of steps in which correlation information is
moving back from larger distances towards the density (or single cell) in-
formation term. Contributions from correlation information of length larger
than 8 is not shown in the figure, but since we know that the total redundancy
is conserved we also know that these contributions add up to the horizontal
line at k = 1−s. Of course, as time goes on, these events become more rare,
which implies that in the long run most of the states (time steps) will not
show any tracks of short length correlations. One can actually quantify how
the correlation information becomes more important on longer distances by
using the correlation complexity η, Eq. (3.36). It can be shown [Lindgren and
Nordahl, 1988] that the complexity increases linearly if s < 1,

∆tη(t) = t ·s . (4.21)

If the entropy is s= 1, though, the CA state remains fully random, and the
correlation complexity is constantly 0. Thus, Since η = kcorrlcorr, Eq. (3.37),
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Fig. 4.8 Noise at a level of 1% is added to rule R60, and the initial redundancy is
efficiently destroyed in the time evolution, cf. Figure 4.6.

Fig. 4.9 In the same way as was illustrated for rule R60 without noise, see Figure 4.7,
the contributions to the redundancy, from density information (blue) and from correla-
tion information over lengths 2 to 7 (dark to light grey), are put on top of each other.
It is clear that the noise destroys the correlations, and the entropy increases.
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the average correlation length lcorr increases linearly in time, provided that
s < 1 (or lcorr > 0).

Therefore, even if the entropy is conserved for rule R60, the state of the CA
will in the long run (at most time steps) appear more and more disordered,
unless increasingly long correlations are taken into account when calculating
the entropy. The low initial entropy may appear to increase, if the system is
observed locally only.

If the time evolution of rule R60 is disturbed by random noise, the cor-
relations that are built up from the initial density information are rapidly
destroyed. In Figure 4.8, the space-time pattern is shown when a noise of 1%
(q = 0.01) is added. It is clear, as also Figure 4.9 illustrates, that the time
steps when a large part of the redundancy is recollected in the density in-
formation disappear. According to Eqs. (4.19)-(4.20), the time evolution will
lead to a completely disordered state with maximum entropy s= 1.

4.5 Analysis of CA time evolution using Hidden Markov
models

The change of information-theoretic characteristics in the state of a one-
dimensional CA, represented by the infinite sequence of symbols, from one
time step to the next, can be analyzed by investigating how the finite state
automaton (FSA) representation of the sequence changes under the CA rule.
Here we will assume that the state is given by a stochastic process, represented
by a certain FSA. The FSA can correspond to a Markov process, which it
does for the initial state if we, for example, start with uncorrelated symbols,
like in the examples in previous sections. In general, though, also for such an
initial condition, the CA rule transforms the automaton to one representing a
hidden Markov model, as we shall see in examples below. How the procedure
works to transform one FSA to a new one under a CA rule will be illustrated
by the following example.

Assume that we have, at time t, a certain description of the CA state
in the form of the hidden Markov model shown in Figure 4.10a, where we
assume all transition probabilities to be 1/2 whenever there is a choice. First
we rewrite that into a corresponding Markov model, Figure 4.10b, in which
all the states are represented by specific symbols.

Next we construct a new Markov model out of the one in Figure 4.10b, by
having each new FSA state representing pairs of symbols from the sequence.
These pairs are overlapping, so that a state can be seen as a two-symbol wide
”window”, and each transition in this automaton moves the window one step
forward in the sequence of symbols, as illustrated in Figure 4.11.

When we have the FSA in this form, still representing the CA state at
time t, we can use the CA rule to determine how the FSA will be trans-
formed to a new one representing the stochastic process that describes the
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Fig. 4.10 (a) FSA representing the hidden Markov model in which sequences of symbol
1 are separated by an odd number of the symbol 0. (b) FSA representing the correspond-
ing Markov model in which the rightmost state has been given symbol 0’ in order to
distinguish between the two 0-states. The hidden Markov model in (a) is then given by
the function f(1)=1, f(0)=0, and f(0’)=0. All transition probabilities are 1/2 when there
is a choice.

Fig. 4.11 (a) FSA representing the same Markov model as in Figure 4.10b, but where
states correspond to overlapping pairs of symbols, and where the transition move to
the next pair overlapping with the previous one, as illustrated in (b). The transition
probabilities from the original automaton remains, all being 1/2 when there is a choice.

CA state at time t+ 1. The transitions in the FSA based on pairs of sym-
bols, in Figure 4.11, correspond to triplets of symbols (resulting from the
two overlapping pairs of symbols of the states connected by the transition).
We can apply the elementary CA rule on the triplets to get the automaton
representing the FSA at time t+1. In Figure 4.12 this is illustrated with the
resulting automaton shown for rule R86, see Table 4.3. This rule is almost
reversible (involving a 1-to-1 mapping between the rightmost cell and result-
ing state). Thus we know that the entropy s will not change under the CA
rule, but correlation characteristics may do.

Table 4.3 CA rule 86
t 111 110 101 100 011 010 001 000

t+ 1 0 1 0 1 0 1 1 0



64 4 Cellular automata

Fig. 4.12 (a) The transitions on the FSA for the original time step t correspond to
triplets of symbols and thus defines the local neighbourhood on which the CA rule is
applied. In (b) the resulting FSA is shown where the states in the node are hidden, and
this FSA represent the stochastic process describing the CA state at time t+ 1.

It is now possible to use the FSA of Figure 4.12b to calculate the properties
of the CA at the new time step. One can simplify these calculations, though,
by reducing the size of the FSA exploiting the fact there there exist equivalent
states in the automaton. The leftmost state (old 11) and the top middle state
(old 01) both produce a 0 with probability 1/2 ending up in the leftmost
state and they both produce a 1 with the same probability ending up in the
bottom middle state (old 10). Therefore they are equivalent in every aspect,
and the states can be merged as shown in Figure 4.13.

Fig. 4.13 The most compact FSA representation of the CA state characteristics for
time t+ 1, when elementary CA rule R86 is applied to a CA state characterised by the
FSA in Figure 4.10a at time t.

For the FSA in Figure 4.13, it is straightforward to calculate the stationary
distribution over the nodes, which results in probability 2/5 for the upper left
node and 1/5 for the others. One can check that the conditions for using the
simplified expression of the entropy, as discussed in Section 3.2.2, is fulfilled
here2. This means that the entropy equals the information required for the
2 For almost all preceeding sequences (generated by this FSA), in the infinite length
limit, one can uniquely determine which node is the final one.
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choices of transitions in the FSA. Each such choice involves 1 bit, as the
probabilities are 1/2 whenever there are two outgoing transitions. This occurs
in all nodes except the lower right one, with a total weight of 4/5. This
results in the entropy s = 4/5, which one also finds for the original FSA in
Figure 4.10a.

The correlation complexity η for the FSA at t+ 1 in Figure 4.13 can
be calculated using the approach in Section 3.3.1 and Eq. (3.42), but not
Eq. (3.43) since a future sequence does not uniquely determine the start
node. Numerically one can find that ηt+1 ≈ 0.9613 (bits). For the origi-
nal FSA at t the correlation complexity is similarly derived analytically:
ηt = log5− (8/5) log2 ≈ 0.7219. This indicates an increase in average cor-
relation length for this time step.

4.6 Local information detecting patterns in CA time
evolution

In the time evolution of a cellular automaton rule it is often difficult to
distinguish the normal behaviour from more rare events. For example, in a
chaotic rule like R18 the irregular space-time pattern contains local structures
that are less common, but they are not easy to distinguish. Therefore it
would be useful to be able to filter out the regular patterns to identify local
configurations that deviate.

Fig. 4.14 The space-time CA pattern for rule R18, and the corresponding information
density Ii,n picture.

In information terms one would expect that when a local less common
configuration is encountered at a certain position i in the sequence of cells,
the conditional probability for that configuration given the n-length symbol
sequence, for example, in the cells to the left of it will be relatively small.
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Fig. 4.15 The space-time CA pattern for rule R60, and the corresponding information
density picture. Here the information density Ii,n is derived analytically. A numeri-
cal estimate would not be computationally possible because of the linearly increasing
correlation lengths.

This implies a high local information of that conditional probability,

I
(L)
i,n = log 1

p(si|si−n...si−1) , (4.22)

where si denotes the symbol at position i, see Helvik et al. [2007]. A corre-
sponding local information I(R)

i,n conditioned on the n cells to the right of the
position i is similarly defined. Such a local information quantity has a spatial
average that can be written

〈I(L)
i,n 〉= lim

N→∞,n→∞

1
2N + 1

N∑
i=−N

log 1
p(si|si−n...si−1) . (4.23)

By using the ergodicity theorem, Eq. (3.7), we find that

〈I(L)
i,n 〉= lim

n→∞

∑
x0...xn∈Λn+1

p(x0...xn) log 1
p(x0...xn) =

= lim
n→∞

∆Sn+1 = s . (4.24)

The same holds for the corresponding right-sided quantity I(R)
i,n . We can define

a local information as an average between the two,
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Ii,n = 1
2

(
I

(L)
i,n + I

(R)
i,n

)
, (4.25)

This means that the local information Ii,n, as well as the left- and right-
handed versions, has a spatial average that equals the entropy of the system.
In Figures 4.14 and 4.15, the local information is applied to the patterns
generated by two cellular automaton rules, one being the irreversible class III
rule R18, and the other being the almost reversible rule R60. The information
pictures reveals a pattern not clearly seen in the space-time CA patterns.

Problems

4.1.
Suppose that the initial state of a cellular automaton is generated by the
following automaton, where the probability for choice of arc is 1/2.

How large is the entropy initially? If the rule is R18, how does the automaton
look like that describes the system after one time step, and what is the entropy
s? What will the entropy be at this time step if the rule instead is R22?

4.2. CA entropy.
Consider a one-dimensional cellular automaton given by elementary rule R71
(where configurations 110, 010, 001, and 000 result in a 1 and the others
give 0). Let the initial state be characterised by the following finite state
automaton

where the probabilities for choosing an arc is always the same (1/2) if there
is a choice. What is the initial entropy (t = 0), and what is the entropy at
t= 1 and t= 2?

4.3. Lattice gas entropy.
Consider an infinite 2-dimensional lattice gas constructed in the following
way. The space is a square lattice and in each cell up to four particles may be
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present (one in each direction). The system evolves in discrete time, and in
each time step there is movement and collision. Particles move from one cell
to the next according to the direction of the particle. A collision occurs if and
only if exactly two particles enter a cell with opposite directions, and then
the direction of these particles are shifted so that they leave perpendicular to
their initial directions. The two processes in a single time step is illustrated
in the following figure below.

Suppose we have a system where we initially (at t= 0) have equal densities of
the four particle directions (ρ/4 each, with ρ being the overall particle den-
sity), but where particles initially are present only in cells where all particle
directions are present. Assume that these cells, each containing four particles,
are randomly distributed over the whole lattice.

Consider the entropy s of the spatial configuration of particles, based on
the 2-dimensional block entropy, s = Sm×m/m

2 in the limit infinitely large
blocks, m→∞, see Eq. (3.44).

What is the entropy s at t= 0? How does the entropy change in the time
evolution? If one would estimate the entropy using a finite block size m after
very long time T , with T >>m, what result should one expect? What is the
explanation?

4.4. CA entropy.
Consider a one-dimensional cellular automaton given by elementary rule 128
(where configuration 111 results in a 1 and the others result in 0). Let the
initial state be characterised by the following finite state automaton

where the probabilities for choosing an arc is always the same (1/2) if there
is a choice. Determine the finite state automaton that characterises the state
at time t= 1. What is the initial entropy (t= 0), and what is the entropy at
t= 1 and t= 2?



4.6 Local information detecting patterns in CA time evolution 69

4.5. CA entropy.
Consider a one-dimensional cellular automaton given by elementary rule 192
(where configurations 111 and 110 result in a 1 and the rest give 0). Let the
initial state be characterised by the following finite state automaton

where the probabilities for choosing an arc is always the same (1/2) if there
is a choice. Determine the finite state automata that characterise the state at
time t= 1 and at time t= 2, respectively. What is the initial entropy (t= 0),
and what is the entropy at t= 1, t= 2, and t= 3?

4.6.
Suppose that the initial state (t = 0) for the elementary CA rule 18 is de-
scribed by the finite automaton:

First, suppose that q = 1/2. What does the finite automaton look like that
describes the state at time t= 1? How has the entropy changed between these
time steps? What is the entropy at t= 2?

If q > 1/2, what is then the entropy s at t= 2?

4.7.
Consider a binary periodic sequence ...01010101... . If noise is added so that
symbols in this sequence are flipped (0→ 1 and 1→ 0) with a certain prob-
ability q < 1/2, how does the correlation complexity η change?

4.8.
Suppose that elementary rule 129 governs the time evolution of a cellular au-
tomaton, and that the initial state (at t= 0) is characterised by the following
finite automaton
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where the probabilities for choosing 0 and 1 from the middle node are equal
(1/2). What is the entropy s after one time step (t= 1) and after two steps
(t = 2)? Suppose instead that the probabilities for choosing 0 and 1 in the
middle node differ, say p(0)< 1/2< p(1). Describe in a qualitative way how
this affects entropy and correlations at the first time step (t= 1).

4.9.
Suppose that elementary rule 68 governs the time evolution of a cellular au-
tomaton, and that the initial state (at t= 0) is characterised by the following
finite automaton

where the probabilities for choosing 0 and 1 from the bottom left node are
equal (1/2). What is the initial entropy, and how does it change over time?



Chapter 5
Physics and information theory

Abstract This Chapter starts with a short introduction of some basic ther-
modynamic concepts and laws. This is followed by an example of mixing
of ideal gases, in which the change in information is discussed together with
thermodynamic characteristics like entropy change and work. This illustrates
the connection between the entropy concepts in information theory and ther-
modynamics, respectively. In statistical mechanics, a physical system can
be characterised by certain macroscopic properties, expressed as expectation
values for, e.g., the internal energy of the system, the number of molecules
of a certain type, etc. We demonstrate how the maximum entropy formalism
can be applied to such a situation to define the probability distribution that
describes the system—the Gibbs distribution. It is shown how the formalism
can be used to derive a number of thermodynamic relations. As a specific
example, for which there is a strong connection to information theory, we
discuss one-dimensional spin systems. Since these can be treated as symbol
sequences generated by some stochastic process, we can directly apply the
methodology from Chapter 3. The entropy based on the internal statistics
from such a symbol sequence equals the statistical mechanics entropy of the
system (up to a factor of Boltzmann’s constant). This means that we can use
the maximum entropy formalism on the entropy of the symbol sequence in
order to determine the equilibrium characteristics of the corresponding spin
system. This is illustrated with the one-dimensional Ising model.

5.1 Basic thermodynamics

When observing, or measuring on, a physical system we often gain knowledge
on some macroscopic characteristics of the system, for example its energy or
molecular composition. We seldom have full information on the exact mi-
croscopic configuration of the system, but we may, based on what we know
regarding the macroscopic properties, assign a probabilistic description of the

71
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system. Such a description could be in the form of a probability distribution
over the possible microstates of the system. Following the discussion in Chap-
ter 2, such an assignment of probabilities should not include more knowledge
than we have, and thus we should use a maximum entropy approach.

Before describing in detail how the maximum entropy approach connects
information theory with statistical mechanics, we will study a simpler ex-
ample in which the information is directly connected to the work that can
be extracted out of an ordered, non-equilibrium, system, when bringing that
system reversibly to an equilibrium, i.e., to a fully disordered state. That ex-
ample will be based on some basic thermodynamic definitions and relations
that will first be summarized below.

In the following section we will consider ideal gases (pure or mixed gases).
In an ideal gas molecules are assumed to be point particles that do not
interact. For such a system the ideal gas law holds,

pV =NkBT . (5.1)

Here, p is the pressure, V the volume, N the number of molecules in the gas,
T the temperature, and kB Boltzmann’s constant (1.38×10−23 J/K).

We will use this relation in order to determine the work that is required
(or that can be extracted) when a gas volume is changed. If one assumes that
the system may interact with the environment (the world outside the system
defined by the volume V ) by receiving energy in the form of heat Q or deliver
energy in the form of work W , then we can use Figure 5.1 to illustrate the
first law of thermodynamics.

Fig. 5.1 The first law of thermodynamics states that energy is a conserved quantity.
The change in internal energy U is determined by the net energy difference resulting
from the inflow of heat Q and work extracted from the system W .

The change ∆U of internal energy U must equal the difference between
heat received and work delivered. (Heat and work may, of course, go in the
other direction, when the corresponding variable is negative.) This is the first
law of thermodynamics stating that energy is a conserved quantity,

∆U =Q−W . (5.2)
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If the work is pressure-volume work, i.e., work dW extracted from an ideal
gas from an infinitesimal volume change dV , then the work is

dW = pdV . (5.3)

Thermodynamic entropy ST is a quantity that follows a heat flow but that
is not present in the energy flow associated with the work. (We will use
the notation ST for thermodynamic entropy to distinguish that from the
information theoretic entropy. As will be seen, there is a simple relation
between the two.) With a heat flow dQ of temperature T follows an entropy
increase of the system dST,

dST = dQ
T

. (5.4)

This is assuming processes in which the change of the system state is arbi-
trarily close to a local equilibrium. In general, the entropy change is at least
as large as is stated in Eq. (5.4), where an additional increase may come from
irreversible processes driving the system towards equilibrium.

Similarly, a heat flow leaving a system leads to a decrease in the entropy of
the system (but increases the entropy in the system that receives the heat).
For a closed system, the second law of thermodynamics states that the entropy
always increases or stays constant,

dST,total ≥ 0 . (5.5)

For, example, if one part of a system has higher temperature TH and loses
heat dQ to a colder part TC, there is an entropy decrease of the first part,
dSH = dQ/TH which is then smaller than the corresponding increase of the
second part, dSC = dQ/TC, and the total entropy change is then positive,
dST,total =−dSH +dSC = dQ(1/TC−1/TH)> 0.

5.1.1 Intensive and extensive variables

We will consider a system of volume V that contains M different molecular
species, each with a certain number of molecules Ni (i = 1, ...,M). Further,
we assume that the system is characterized by a certain internal energy U .
If we assume that the system is in internal equilibrium, the thermodynamic
entropy ST of the system is well defined by the state variables U , V , and Ni.

These state variables are extensive variables, i.e., they increase linearly
with system size. One can characterize the same system using intensive vari-
ables instead, related to these three types of extensive variables. Sometimes
the relations below, based on the how the thermodynamic entropy ST depends
on the extensive variables, are used as definitions of the intensive variables
temperature T , pressure p, and chemical potential gi. The relations are partial
derivatives thermodynamic entropy ST with respect to one of the extensive
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variables (U , V , or Ni), with the other variables kept constant (as indicated
by the notation), (

∂ST

∂U

)
V ,Ni

= 1
T

, (5.6)(
∂ST

∂V

)
U ,Ni

= p

T
, (5.7)(

∂ST

∂Nj

)
U ,V ,Ni 6=j

=−gj
T

. (5.8)

We will use these relations when interpreting the maximum entropy approach
from information theory within statistical mechanics in Section 5.3.

5.2 Work and information—an extended example

In this section we consider the following experiment dealing with mixing of
ideal gases. First, consider two gases that are separated within a container
by a wall. When the wall is removed the gases expand into the full volume of
the container, and finally the system consists of the mixture of the two gases
occupying the full volume. In the mixed system we have less information
about the positions of gas molecules compared to the case when the gases
are separated by the wall. It turns out that the additional information we
have in the separated case corresponds to the amount of work that we can
extract when bringing the system to the mixed state in a controlled way.
Below we shall see how the information is related to the energy that can be
extracted in the form of work. This will also give us a relation between the
information-theoretic entropy describing the disorder of the mixed system
and the corresponding thermodynamic entropy.

Let us consider a gas container of volume V with a mixture of two different
ideal gases 1 and 2, see Figure (5.2). The total number of molecules is N , of
which N1 are of type 1 and N2 are of type 2. The normalized concentration
can be written x1 = N1/N and x2 = N2/N . If we pick a molecule from a
certain part of the container, we do not know which molecule we will get,
but we describe the chances by the probability distribution given by the
concentrations P = {x1,x2}. The information-theoretic entropy S can then
be used to quantify our lack of knowledge about the system (which molecule
we will get),

S = x1 log 1
x1

+x2 log 1
x2

. (5.9)

Consider now the case where the two gases are separated. The container is
divided in two parts with volumes V1 and V2, so that the pressure is the
same everywhere, i.e., V1 = x1V and V2 = x2V , see Figure (5.2). If we now
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pick a molecule from a certain place, we know which molecule it is and our
uncertainty (entropy) is zero. By mixing the gases, we make an information
loss of ∆S = S per molecule.

Fig. 5.2 The to gases are mixed in the container to the left, but to the right they are
separated by a wall so that the pressure is equal in the two parts.

Fig. 5.3 The two gases are mixed reversibly by an isothermal expansion in which work
is done, followed by a fully reversible mixing without any energy transfer.

We will now calculate the maximum amount of work that can be derived
from a process that mixes the two gases. Then we may compare that with
the information loss we make by mixing the gases. We will also derive the
thermodynamic increase of entropy, to be compared with the information-
theoretic one.

Suppose that the gas container is in thermodynamic equilibrium with the
environment at temperature T0. Since the initial volume and the final volume
of our system are equal, there will be no net pressure-volume work done
on the environment and we may assume that the environmental pressure is
zero in our calculations. Now we shall mix the gases in a reversible way as
follows. First, let the separated gas volumes expand isothermally, each to
the full volume V , by allowing a heat flow from the environment to keep the
temperature constant, see Figure (5.3). Next, we assume that the two volumes
can slide into each other as shown in the figure, and that the walls that keeps
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the molecules within the volume V are semi-permeable, so that the other
molecular type can freely pass. This allows us to mix the gases reversibly by
letting them pass the semi-permeable walls, when the two volumes are pushed
together. Note that there is no net force involved in this mixing, since the
molecules in the first volume do not recognise the wall of the second, and
vice versa. There is no heat flow involved in the mixing, so the entropy is
unchanged in this part of the process. The only work (and entropy change)
in this process comes from the expansion before the mixing takes place. The
workWi, for volumes i= 1 and 2, is given by, using the ideal gas law, Eq. (5.1),
and Eq. (5.3),

Wi =
∫ V

Vi

pidv =
∫ V

vi

NikBT0
dv
v

=NikBT0 ln V
Vi

=NkBT0xi ln
1
xi

, (5.10)

which results in

W =W1 +W2 =NkBT0

(
x1 ln 1

x1
+x2 ln 1

x2

)
=NkBT0(ln2)S , (5.11)

where the factor (ln2) enters when the information-theoretic entropy is de-
fined by log of base 2, as in Eq. (5.9). The relation between extractable work
per molecule w and information loss when the system is mixed ∆S is then

w = kBT0(ln2)∆S . (5.12)

Next, we would like to relate the information-theoretic increase in disorder,
∆S, with the thermodynamic increase in entropy ∆ST. We have assumed an
isothermal process (i.e., constant temperature). Since the internal energy U
of an ideal gas is a function of temperature only (since there is no interac-
tion between the molecules), energy conservation implies that the work W
done by the system must equal the heat flow Q into the system. The change
of thermodynamic entropy ∆ST = Q/T0 for the whole system can then be
written

∆ST = Q

T0
=NkB(ln2)∆S . (5.13)

This illustrates the fact that the conversion factor between information-
theoretic S and thermodynamic entropy per molecule sT is kB(ln2),

sT = kB(ln2)S . (5.14)

Note that the information-theoretic quantity here was also expressed on the
level of a single molecule, since it quantified information associated with ob-
serving one molecule from the system. One bit of information thus has a very
low thermodynamic value. This example also illustrates that the information
loss when mixing two gases is not really a result from a mixing process, but
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it comes from the fact that each gas, after the mixing, is distributed over a
larger volume.

5.3 From information theory to statistical mechanics
and thermodynamics

Information theory can be used as a tool to determine the macrostate (the
probability distribution over microstates) in physical systems when aver-
ages of certain physical variables like energy and number of particles are
known. According to the maximum entropy principle, we should choose the
macrostate that has the largest entropy and that is consistent with the known
variables. In this section, we shall demonstrate the connection between con-
cepts in information theory and concepts in statistical mechanics and ther-
modynamics.

Fig. 5.4 We consider a system of volume V , with an expected internal energy, U , and M
different molecular species, each with an expected number of molecules Ni. The system
is placed in a large environment characterised by a certain energy density u0 and certain
molecular densities (concentrations). Both the system and the environment can also be
characterised by their corresponding intensive variables, temperature T , the pressure p,
and the chemical potentials gi (i= 1, ...,M).

We will consider a system characterized by a certain volume V , and M
different molecular species. The system is part of a larger surrounding equi-
librium system with possibly different energy per unit volume as well as
different concentrations ni (i= 1, ...,M), as indicated in Fig. 5.4. Our knowl-
edge about the studied system of volume V is that its composition is given by
expectation values (or averages) Ni (i= 1, ...,M) of the number of molecules
of the different species. We also know that the the expectation value U of the
internal energy.

This is the type of situation discussed in the Section 2.2 on the maximum
entropy formalism. We do have some knowledge about the system in terms
of averages, or expectation values, of certain properties of the system, but
we do not know the microstate, neither the probability distribution over the
microstates. The maximum entropy formalism can now be applied to derive
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a distribution over the microstates. Like in Section 2.2, the maximization
problem can be formulated as

Choose P = {pi}i∈microstates so that the entropy

S[P ] =
∑
i

pi ln
1
pi

(5.15)

is maximized, subject to constraints on, (i) energy,∑
i

pih(i) = U , (5.16)

(ii) number of molecules of each species,∑
i

pifk(i) = nk , (k = 1, ...,M) , and (5.17)

(iii) normalization,∑
i

pi = 1 . (5.18)

Here the microscopic function h(i) determines the energy for each mi-
crostate i, and in average that should be equal to the internal energy U .
Similarly, the function fk(i) determines the number of molecules of type k in
microstate i, which in average should be equal to Nk. In order to solve the
general problem and to derive some important relations, this level of descrip-
tion is sufficient, and we do not need to specify these functions further.

Following the Lagrangian formalism in Section 2.2, we introduce La-
grangian variables: β for the energy constraint, λk(k = 1, ...,M) for the M
different constraints on number of molecules, and µ−1 for the normalization
constraint. The solution is then a Gibbs distribution, cf., Eq. (2.22),

pi = exp
(
−µ−βh(i)−

M∑
k=1

λkfk(i)
)

, (5.19)

The entropy of the Gibbs distribution, expressed in the Lagrangian variables,
is easily determined,

S = µ+βU +
M∑
k=1

λkNk . (5.20)

At this point, we can determine how the Langrangian variable µ depends
on volume V . If we scale up the system by a certain factor, increasing all
extensive variables (energy, number of molecules), for example by putting
together two identical system (i.e., multiplying with a factor of 2), then all
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variables S, U , and Nk, will increase with the same factor. Behind the linear
increase also in entropy is an assumption that the microstates of the systems
that are combined are uncorrelated (or that the systems are independent),
which means that we consider systems that are very large compared to the
interactions that, for example, determine the energy of a microstate. Then
we know from the additivity of the entropy, see Eq. (2.11), that the entropy
scales linearly with the size.

This means that also µ must have such a linear dependence on volume:
µ= µ(V ) = µ1V , where µ1 does not depend on volume. If we now also use the
relation between thermodynamic entropy and the information-theoretic one
(with information expressed in natural units using the natural logarithm),
ST = kBS, we can write Eq. (5.20) as,

ST

kB
= µ1V +βU +

M∑
k=1

λkNk . (5.21)

By using this equation together with the thermodynamic definitions on tem-
perature T , pressure p, and chemical potential gi, from Eqs. (5.6-5.8), we find
that the Lagrangian variables can be expressed in these intensive variables,(

∂ST

∂U

)
V ,Ni

= kBβ = 1
T

⇒ β = 1
kBT

, (5.22)(
∂ST

∂V

)
U ,Ni

= kBµ1 = p

T
⇒ µ1 = p

kBT
, (5.23)(

∂ST

∂Nj

)
U ,V ,Ni6=j

= kBλj =−gj
T

⇒ λj =− gj
kBT

. (5.24)

By inserting this in Eq. (5.21), we get the Gibbs equation,

U = TST−pV +
M∑
k=1

gkNk . (5.25)

By using the maximum entropy formalism to derive a probability distribu-
tion over microstates, the Gibbs distribution, we have derived one of the
fundamental relations in thermodynamics.

5.3.1 Comparing two different Gibbs distributions

There are often reasons for comparing two different Gibbs distributions, for
example, when a smaller physical system, characterized by a certain Gibbs
distribution P , deviates from an environment (equilibrium) system charac-
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terized by the distribution P0 that would describe the system if it would be in
equilibrium with the environment. In that equilibrium situation, the system
would have other values on its extensive variables (energy and number of
molecules of different kinds). With the notation from Fig. 5.4, we would have
for the internal energy U0 = u0V , for the number of molecules Nk = nkV .
The environment (and the system in equilibrium with it) would also be char-
acterized by intensive variables, the temperature T0, the pressure p0, and the
chemical potentials gk0 (k = 1, ...,M). Again, using the maximum entropy
formalism to derive the distribution describing the equilibrium situation, the
distribution P0, characterized by the probabilities

pi0 = exp
(
−µ0V −β0h(i)−

M∑
k=1

λk0fk(i)
)

. (5.26)

Since the constraints for the equilibrium distribution is different, we have
other Lagrangian variables now, as indicated by the subscript 0. Like in
Eqs. (5.22-5.24), we can replace the Lagrangian variables for the equilibrium
situation with the corresponding intensive thermodynamic variables,

β0 = 1
kBT0

, (5.27)

µ0 = p0
kBT0

, (5.28)

λj0 =− gj0
kBT0

. (5.29)

One can now ask the question: If we a priori assume that the system (in
volume V ) will be in equilibrium, characterized by the Gibbs distribution of
Eq. (5.26), but after observation learn that the correct description is another
Gibbs distribution, Eq. (5.19), how much information have we gained? This
represents a situation where the observed system is not in equilibrium with
the environmental system. Below we will relate such an information gain with
thermodynamic properties of the non-equilibrium situation.

The relative information K[P0;P ] between the a priori equilibrium descrip-
tion and the observed one, both being Gibbs distributions, can be written
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K[P0;P ] =
∑
i

pi

(
(−µ1 +µ0)V + (−β+β0)h(i) +

M∑
k=1

(−λk+λk0)fk(i)
)

=

= (µ0−µ1)V + (β0−β)U +
M∑
k=1

(λk0−λk)Nk = (5.30)

= 1
kBT0

(
p0V +U −

M∑
k=1

gk0Nk

)
− ST

kB
, (5.31)

where we in the last step have used Eq. (5.21). If we multiply by kBT0, we
get

kBT0K[P0;P ] = U +p0V −T0ST−
M∑
k=1

gi0Nk . (5.32)

It turns out that the expression on the right-hand side quantifies the amount
of work that can be extracted from a process that brings the system charac-
terized by the distribution P (or the extensive variables U , V , and Ni) into
equilibrium with the environment characterised by P0 (or the corresponding
intensive variables T0, p0, and gi0). Willard Gibbs introduced this general
form of free energy already in 1875. This energy is often called the exergy
of the system in the given environment. We will use the term exergy of a
system as the most general form of free energy, which is then defined by
the maximum amount of work that can be extracted when the system is
reversibly brought to equilibrium with its environment. Thus, the exergy E
equals the relative information between the equilibrium state and the actual
one, multiplied with kBT0,

E = kBT0K[P0;P ] . (5.33)

By combining the expression for exergy, Eq. (5.32), with the Gibbs equa-
tion (5.25) for internal energy, the exergy can be written

E = ST(T −T0)−V (p−p0) +
M∑
i=1

Ni(gi−gi0) . (5.34)

In this form it is clear that the exergy is zero when the system is characterised
by the same intensive variables as the environment (which then implies that
they are described by identical Gibbs distributions).
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5.3.2 Information and free energy in non-equilibrium
concentrations

Let us now introduce chemical concentrations, ci = Ni/V and ci0 = Ni0/V ,
for the system and its environment, respectively. Here we will focus on in-
formation and thermodynamic characteristics of a system that deviates from
equilibrium in its concentrations of different molecules. Suppose, therefore,
that the system has the same temperature and pressure as the environment,
T = T0 and p = p0. Further, we assume that the chemical potential gi, for
chemical component i, can be written as for an ideal solution,

gi
kBT

= C+ lnci . (5.35)

Here, C is a constant. Then the exergy, Eq. (5.34), can be written as

E =
M∑
i=1

Ni(gi−gi0) = V kBT0

M∑
i=1

Ni
V

ln ci
ci0

=

= V kBT0

M∑
i=1

ci ln
ci
ci0

. (5.36)

This is in a form very close to a relative information quantity, but the con-
centrations ci and ci0 are not normalised. If we multiply them with a factor
V/N the resulting quantities are normalised. Then we can rewrite the exergy
in the form of a relative information between an a priori distribution over
molecular types i given by V ci0/N , and a new distribution V ci/N ,

E = kBT0N
M∑
i=1

(ciV/N) ln ciV/N

ci0V/N
= kBT0NK[c0V/N ;cV/N ] , (5.37)

where N is the total number of molecules in the system, N =
∑
kNk, and c

and c0 denotes the concentration distributions.
The exergy is once again expressed in the form of a relative information

between an a priori description and a new description. But in this case, the
description is macrosopic, since we have a concentration distribution over
molecular components, and not over microstates as was the starting point
for the derivation of the exergy expression, cf. Eqs. (5.33)-(5.34). The nor-
malised concentration distribution cV/N represents the probability ciV/N
that a randomly selected molecule is of type i, and we can view this as a
macroscopic representation of a chemical system. For example, if we make
an image of a chemical system, the observed pattern can be assumed to be
proportional to these concentration characteristics.

This relative information can serve as a starting point for examining spa-
tial structure in chemical systems. It has the advantage that it is in an
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information-theoretic form at the same time as it connects to statistical
mechanics and thermodynamics through the basic concept of exergy. The
second law of thermodynamics tells us that, for a closed system, the entropy
increases (or is constant), or, equivalently, that the exergy decreases (or stays
constant). Such physical restrictions may be important in the description and
analysis of chemical systems that exhibit self-organisation. We shall return
to such an analysis in a later chapter.

5.4 Microscopic and macroscopic entropy

The second law of thermodynamics originates from Clausius [1850] and
Thomson [1852] (Lord Kelvin), who found a thermodynamic quantity which
is non-decreasing in time, and Clausius [1865] introduced a term for it—
entropy. At this time, statistical mechanics had not been established, but
there was a need for an understanding of the relation between thermody-
namics and microscopic properties of gases. A first step was taken by Krönig
[1856] who discussed macroscopic phenomena in terms of microscopic prop-
erties. Soon Clausius, and later Maxwell and Boltzmann developed a kinetic
theory for gases.

A problem which remained unsolved was how to understand the second law
of thermodynamics from kinetic gas theory. In an attempt to solve this, Boltz-
mann [1872] introduced a function of the microstate in a gas, the H-function,
which under certain assumptions was proven to be decreasing in time until
the system reaches an equilibrium given by the Maxwell-Boltzmann distribu-
tion law for molecular velocities. This is called the H-theorem, and the idea
was that this should correspond to the second law of thermodynamics, with
the H-function being equal to the entropy with opposite sign. This approach
met with difficulties, especially when it was applied to other systems than
dilute gases, which led to the development of ensemble theory by Gibbs [1902]
and Einstein [1902, 1903].

In ensemble theory one considers a large number of systems, in which
certain macroscopic variables are known, either as an average or exactly.
In the microcanonical ensemble all systems (elements in the ensemble) have
exactly the same energy, while the canonical ensemble only prescribes an
average energy for the whole ensemble. A probability pi is associated with
each microstate in the ensemble, which is then described by a distribution P =
{pi}, and the entropy is defined as −kB

∑
i pi lnpi, i.e. an ensemble average

of −kB lnpi. Quantities like energy or number of particles can, of course, be
directly interpreted both at the microscopic and at the macroscopic level.
But for entropy it seems at first that it is a macroscopic property only, and
that it is more difficult to determine it for a certain microstate. The physical
state, the macrostate, is defined to be the probability distribution over the
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microstates, although a single physical system will always be found in a single
microstate.

In our discussion of entropy in symbol sequences, based on internal statis-
tics of a single but very long sequence (microstate), we have considered that
entropy as a characterisation of the internal randomness or the internal dis-
order. It then seems plausible that there should exist a microscopic property
that corresponds to the macroscopic entropy, and hence also determines the
other thermodynamic properties of the system, at least if the system (or the
microstate) is large enough to provide sufficient internal statistics. In fact, one
can show under some, fairly general, conditions that a system in which each
microstates can be described as a symbol sequence σ, the (internal) random-
ness in form of the entropy s(σ) serves as a microscopic entropy [Lindgren,
1988]. The ensemble average of the entropy s(σ) for an individual microstate
σ is, in the thermodynamic limit, equal to the thermodynamic entropy sT
per symbol (times a constant),

sT = kB
∑
σ

p(σ)s(σ) , (5.38)

where the summation is over all microstates in the ensemble. In fact, for
almost all microstates in the ensemble, the microscopic entropy equals the
thermodynamic entropy,

sT = kBs(σ) , for almost all σ . (5.39)

This can be understood if one realizes that each microstate contains all cor-
relations that are necessary for determining the whole ensemble. This is the
requirement needed for the ergodicity theorem to hold, Eq. (3.7). The inter-
nal correlations of almost any microstate give restrictions to its randomness,
expressed by its (internal) entropy s(σ), as well as to the uncertainty of the
macrostate, expressed by the thermodynamic entropy ST. (In the thermody-
namic limit the exceptions to this is of measure zero.)

In conclusion, the thermodynamic entropy, which is usually interpreted as
a measure of disorder or uncertainty on which microstate a certain physi-
cal system occupies, also has an interpretation on the micro level. The mi-
croscopic entropy s(σ) quantifies the internal disorder in the microstate σ
based on internal correlations. When the physical system can be described
as a symbol sequence (or a d-dimensional discrete pattern of symbols), the
information-theoretic framework of Chapter 3 can be used to derive the inter-
nal entropy s then reflecting the thermodynamic entropy of the system (up
to a factor of Boltzmann’s constant). In the following section, this idea will
be used to analyse spin systems that can be given such a symbol sequence
description.
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5.5 Information theory for spin systems

In this section, we shall illustrate how the microscopic entropy can be used
to determine the equilibrium state in simple one-dimensional spin systems.

In Section 5.3, we used the maximum entropy formalism to determine the
macrostate, the probability distribution that characterises a certain physical
system. Here we shall apply the maximum entropy formalism on the micro-
scopic entropy of a spin system, or a system that can be described as a symbol
sequence. This should then result in a probabilistic description of blocks of
symbols in the microstate. Again, the maximization is done under certain
constraints, usually in the form of an average energy in the system. There
are also constraints regarding typical properties that hold for probabilities of
symbol sequences, for example, regarding summation over last or first index,
see Eqs. (3.5) and (3.6).

In a spin system, the local interactions between spins (symbols) give rise
to certain energy contributions, depending on the specific local configuration.
This is usually characterised by an energy function that associates a certain
energy value h(x1, ...,xn) for each sequence of spins x1, ...,xn within the in-
teraction distance n. A given value of the internal energy u (per spin) in the
system, then results in the constraint∑

x1,...,xn

p(x1, ...,xn)h(x1, ...,xn) = u . (5.40)

The maximization problem then takes the form: Find a set of probability
distributions Pm over m-length sequences so that the entropy, Eq. (3.14),

s= lim
m→∞

∆Sm (5.41)

is maximized, under the energy constraint, Eq. (5.40).
This may be very complicated, but if there are no restrictions on longer se-

quences than interaction distance n, as stated by Eq. (5.40), then the entropy
s equals ∆Sn, which means that we need only consider sequences of length up
to n. In order to see this, let us suppose that we get convergence only at ∆Sm,
with m> n. This means that there is correlation information over blocks of
length m, i.e., km > 0. But this is an unnecessary correlation information that
reduces the maximum entropy, since we may reduce km to zero by selecting
the m-block probability as p(x1, ...,xm) = p(x1, ...,xm−1)p(xm|x2, ...,xm−1),
without affecting the energy constraint. This procedure may then be repeated
down to length n, and for each step when correlation information is removed
the entropy increases. So when searching for the maximum entropy state, it
is sufficient to examine

max ∆Sn , (5.42)

under the constraints above, and where n is the longest interaction distance
entering in the energy constraint.
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5.5.1 Example: The one-dimensional Ising model

As a more specific example, consider the one-dimensional Ising model (with-
out an external field). Suppose that our system is composed by an infinite
sequence of spins, pointing either up or down,

... ↑↓↓↓↑↓↓↑↑↑↓↓↑↑↑↑↓↓↓↑↓↑↑↓↓↓↓↓↑↑↑↑↓↑↑↓↓↓ ... ,

and that the energy in the system is determined by nearest neighbour in-
teractions only: Configurations ↓↓ and ↑↑ contribute with energy −J , while
↑↓ and ↓↑ contribute with +J . Since h only depends on pairs of spins, it
is sufficient to find maximum of ∆S2, in order to determine the probabil-
ity distributions. Then there are three probabilities to consider: p0 = P (↓↓),
p1 = P (↓↑) = P (↑↓), and p2 = P (↑↑), where we have used the symmetry
P (↓↑) = P (↑↓) that must hold in an infinite binary symbol sequence. Proba-
bilities for single spins can then be written P (↓) = p0 +p1 and P (↑) = p1 +p2.

To solve the maximization problem, we introduce the Lagrange function

L(p0,p1,p2,λ,µ) = ∆S2 +β(u−J(2p1−p0−p2))
+µ(1−p0−2p1−p2) . (5.43)

Here β is the Lagrange variable related to the energy constraint, while µ is
related to the normalization constraint. The block entropy difference can be
written

∆S2 = p0 ln p0 +p1
p0

+p1 ln p0 +p1
p1

+p1 ln p1 +p2
p1

+p2 ln p1 +p2
p2

. (5.44)

The derivation of the following solution is left as an exercise

p0 = p2 = 1
2(1 + e−2βJ )

, (5.45)

p1 = 1
2(1 + e2βJ )

. (5.46)

Here we have chosen to keep the Lagrange variable β, instead of the energy
u. As in the general Gibbs distribution, see Eq. (5.22), it is related to temper-
ature, β = (kBT )−1. It is clear that in the zero temperature limit T → 0, the
system is charaterised by larger and larger blocks of parallel spins, p0 = p2,
while in the limit of T →∞, all p are equal, and we get a completely disor-
dered state.
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Problems

5.1. A small spin system.
Consider a system of 2×2 spins, in which a microstate is a configuration like
the one below.

↑ ↓
↑ ↑

Each spin has two neighbours, as the example indicates, one in the vertical
direction and one in the horizontal direction. Each such neighbour interaction
contributes with an energy +J for parallel spins and −J for anti-parallel spins
(so that in the example above the energy is 0). If the average energy is u,
what is the equilibrium distribution over microstates? (Use the maximum
entropy formalism. You may give the answer as a function of temperature
instead of energy.)

5.2. Spin system.
Suppose that in a one-dimensional discrete spin system, described by a row
of spins, up or down, the interaction is with third nearest neighbours only
(position x interacts with position x+3). Parallel spins at this distance con-
tribute with an energy −J and anti-parallel spins with an energy +J . What
is the equilibrium state of this system? Use the maximum entropy formalism,
and express the probabilities that characterise the equilibrium as functions
of temperature (or of β).

5.3. Spin system.
Consider a one-dimensional spin system with 4 states per position: ←,→,↓
and ↑. Interaction is with nearest neighbours only, such that parallel spins
contribute with energy−J < 0, anti-parallel spins with the energy J > 0, while
perpendicular spins give no energy contribution. Characterise an equilibrium
distribution as function of temperature T . What is the entropy in the limit
T → 0? (Make use of the fact that finite interaction distance in one dimension
does not allow for any phase transitions, i.e., all symmetries are kept in the
equilibrium description.)

5.4. Spin system.
Consider a one-dimensional spin system with 2 spin states: ↓ and ↑. Interac-
tion is with both nearest and next nearest neighbours, so that parallel spins
at distance 1 (e.g., ↑↑) contribute with the energy −J < 0 and anti-parallel
spins with energy J , while parallel spins at distance 2 (e.g., ↑ ↑) contribute
with energy J and anti-parallel spins with energy −J . What is the equilib-
rium description? (The solution needs not be explicit, but it is sufficient to
determine the equations from which the probabilities can be derived.) What
is the entropy in the zero temperature limit (T → 0), and how does a typical
state look like in that situation?
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5.5. Happy agents.
Consider an infinite one-dimensional lattice system (of cells) in which each
cell may be inhabited by a red (R) individual, a blue (B) individual, a pair
(RB of agents with different colours), or the cell may be empty. Assume equal
densities of individuals R and B of 1/4 each. Each individual has a happi-
ness level being the sum of the happiness from the relation with the closest
neighbours. If there is a pair in a cell the happiness of that cell is 4H (with
H being a positive ”happiness” constant), and then there is no contribution
from the neighbouring cells. If there is a single individual in a cell, the hap-
piness of that individual get a contribution of H/2 from each single living
neighbour of opposite colour (to the left and to the right, but no contribution
from neighbour pairs). Empty cells do not contribute to happiness.

If you know that the average happiness is w, how would you guess that the
system looks like in equilibrium, using information-theoretic arguments. You
may answer in terms of a set of equations that you need not solve. Discuss
what happens if the ”temperature” is low (limit of zero temperature), with
the interpretation that a low temperature corresponds to a high ”happiness”.
What is the entropy in this limit?

(If you prefer, all this can be thought of as molecules A and B that may
aggregate to a larger molecules AB, with the interpretation of H as a negative
interaction energy constant.)
5.6. Spin system.
Consider an infinite one-dimensional lattice system in which each position
can be in one of three possible states: A, B, or C. Assume that neighbouring
symbols contribute with energy +J if they are the same or if they are A and
C (i.e., AA, BB, CC, AC, and CA) while all other neighbour combinations
contribute with −J , where J is a positive constant.

(a) If the average energy per position is u, what is the equilibrium distribu-
tion? Use the maximum entropy formalism to determine the equations that
give the probabilistic description. You need not solve the equations derived.

(b) Calculate the entropy for zero temperature. (This can be done without
solving the full problem in (a).)
5.7. Spin system automaton representation.
Could the automaton below possibly represent the equilibrium state in a one-
dimensional spin system, in which the average internal energy u fulfills the
constraint

u=
∑
i1...im

p(i1...im)h(i1...im)

Suppose instead that the automaton that represents the equilibrium state is
as follows:
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What spin system (or other one-dimensional system with energy constraints)
may this automaton represent? (Must be shown.) How does the probability
q connect to inverse temperature β and/or interaction energy constant J ?

5.8. System of ”dots”.
Suppose that in a one-dimensional discrete system, described by a row of
”land pieces” or cells, there live these ”dot” agents. By inspecting what they
are doing you quickly find the following characteristics. There is a density ?
of ”dots”, some of them living alone at a ”piece of land”, and some of them
that have joined in a ”marriage” so that two share the same ”piece of land”.
You also find that whenever there is a married couple in one cell, the adjacent
cells (to the left and to the right) are always free – the married couple really
want to be on their own or others avoid them. You also find by studying
several systems of this kind that the fraction of ”dots” that are married is a
certain constant α.

Now, before analyzing more in detail the statistics of the ”dot world”, you
want to design a probabilistic description of the system that is consistent with
the observations above and that has a maximum in its (Shannon) entropy.

Use the maximum entropy formalism to find a probabilistic description
that obeys the constraints described above, including the parameters ρ and
α. Assume that the system is of infinite length.

5.9. Dots are back.
Consider an infinite two-dimensional lattice system (of square cells) in which
dots are distributed. The cells can be either empty or inhabited (by one or
two dots). Free living dots have an ”energy level” of 0, while pairs (two dots
in one cell) have the energy −J (where J is a positive constant). Assume
that there is a certain density of dots ρ, and that there is a given average
energy u (per cell). Use the maximum entropy formalism to characterize an
”equilibrium” state of this system as a function of an ”inverse temperature”
(β). What is the entropy? What happens in the limit of a ”zero temperature”?





Chapter 6
Geometric information theory

Abstract When considering patterns or pictures, information theory can be
used to detect both at what length scales and at what positions information
is located. This information is in fact related to the random information, the
entropy we have defined for lattice systems, which is usually not decomposed
into different terms. The local information in cellular automata, though, is
an example of such an information quantity, where we make a decomposition
into contributions from different positions. Here, we will do something similar,
assuming a system in a continuous space, described by a probability density,
which can be seen as a representation of the light intensity in an image. The
relative information between a uniform a priori distribution and the observed
one, is then decomposed into contributions from both different positions in
the system as well as from different length scales.

6.1 Information decomposition with respect to position
and resolution

A chemical self-organizing system may build up spatial structure in the form
of concentration variations. Information-theoretic quantities for analysing
such structure formation may be based on probability distributions (densi-
ties) that correspond to the spatially distributed concentrations in the system.
In order to be able to analyse how information is distributed over different
length scales, we introduce a ”resolution” operator that can be used to mod-
ify how sharp a distribution appears. The goal is to present a formalism that
can be used to decompose the total information in a pattern into contribu-
tions from both different positions and different length scales [Eriksson et al.,
1987, Eriksson and Lindgren, 1987].

91
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6.1.1 Resolution dependent probability density

In our analysis we will use a normalized probability density p(x), as in
Eq. (2.34)-(2.35). We will present the formalism for a one-dimensional sys-
tem, but the generalization to higher dimensions is straightforward. Positions
x are assumed to be on the real axis, x ∈ R, but when applied to chemical
systems, later on, we will usually assume p(x) to be zero outside a finite in-
terval, with periodic boundary conditions. In case of an image, p(x) can be
interpreted as the light intensity of a certain color. Similarly, for a chemical
system, p(x) can be seen as the concentration profile for a certain chemical
component. In both cases, the distributions can be scaled so that p(x) is a
normalized probability density,∫ ∞

−∞
dxp(x) = 1 . (6.1)

When applied to systems of finite length L, the integral limits are 0 and L, re-
spectively. In the following we drop the integral limits, unless they are needed
for clarity. We will also need a reference, or an a priori, probability density
p0(x), in order to characterise our knowledge about the system before obser-
vation. We are then assuming that observation reveals information about the
system that makes us replace that a proiri distribution with a new one p(x).
In case of a finite system, we usually assume that the a priori description is
a uniform distribution.

The amount of information that we get when we observe a spatial dis-
tribution p(x) describing the spatial structure of the system is given by the
relative information with the a priori distribution p0(x) as the reference,

K[p0;p] =
∫

dx p(x) ln p(x)
p0(x) . (6.2)

We now introduce the resolution dependent distribution, where a resolution
parameter r determines how well the distribution p can be distinguished. The
resolution dependent distribution is the result of a Gaussian blur operation
applied to the original one—an operation available in various types of image
analysis and processing software. Mathematically, the reduced resolution is
achieved by taking the convolution of the original distribution with a Gaus-
sian of width r. The observed probability density p̃(r;x) at resolution r is
then written

p̃(r;x) = 1√
2πr

∫ ∞
−∞

dw e−w
2/2r2

p(x−w) =

= 1√
2π

∫ ∞
−∞

dz e−z
2/2p(x− rz) . (6.3)
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Parameter r = 0 means perfect resolution, while r→∞ leads to a Gaussian
with increasing width approaching a completely uniform pattern. Any of the
two expressions in Eq. (6.3) can be used to calculate the resolution dependent
distribution. For some of the theory we present, it will be useful to express
the Gaussian blur operation as a differential operator. This can be achieved
by making a series expansion of p(x− rz) in the integrand. (Note that due
to symmetry, we can replace (x− rz) with (x+ rz). Then, we can write

p̃(r;x) = 1√
2π

∫ ∞
−∞

dz e−z
2/2p(x+ rz) =

= 1√
2π

∫ ∞
−∞

dz e−z
2/2
(
p(x) + rzp′(x) + (rz)2

2 p′′(x) + ...
)

=

= exp
(
r2

2
d2

dx2

)
p(x) . (6.4)

The exponential function in the final expression should be viewed as a series
expansion, involving terms of even powers of the differential operation with
respect to x. By taking the derivative of the last expression with respect to
r we find that the probability density fulfils(

−r ∂
∂r

+ r2 d2

dx2

)
p̃(r;x) = 0 . (6.5)

It is also clear that the following properties hold,

p̃(r;x)> 0 , for r > 0 , (6.6)

p̃(0;x) = p(x) , (6.7)∫
dx p̃(r;x) = 1 , (6.8)∫

dx xp̃(r;x) =
∫

dx xp̃(0;x) , (6.9)

where the last one states that a change in resolution r does not shift the
”centre of mass” of the distribution.
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6.1.2 Examples on resolution dependent probability
densities

6.1.2.1 A Gaussian distribution

As a first example, consider a Gaussian distribution of width b,

p(x) = 1√
2πb

exp
(
− x2

2b2

)
. (6.10)

By using Eq. (6.3), we find that the resolution dependent distribution p̃(r;x)
is another Gaussian, see Figure 6.1a, with a larger width

√
b2 + r2,

p̃(r;x) = 1√
2π
√
b2 + r2

exp
(
− x2

2(b2 + r2)

)
. (6.11)

Fig. 6.1 (a) The Gaussian probability density p̃(r;x) as function of position x and res-
olution r. (b) Same plot for sinusoidal probability density. Periodic boundary conditions
are assumed at x= 0 and x= 1.

6.1.2.2 Example involving a sinusoidal function

For another example, consider a sinusoidal probability density,

p(x) = 1 + 1
2 sin(4πx) , (6.12)

on the interval x ∈ [0,1], which makes it a normalized probability density.
One can show, using Eq. (6.3) and assuming periodic boundary conditions,
that the resolution dependent density in this case takes the form



6.1 Information decomposition with respect to position and resolution 95

p̃(r;x) = 1 + 1
2e−8π2r2

sin(4πx) (6.13)

The resolution dependence of the probability density is illustrated in Fig-
ure 6.1b.

6.1.3 Connection between resolution and diffusion

A gradual increase in r, i.e., reducing the resolution or increasing the length
scale at which the system is observed, can be seen as a diffusion process
applied to the resolution dependent distribution p̃(r;x). If we make a variable
transformation in Eq. (6.5), replacing r2/2 by t, we get a diffusion equation,

d
dt
p̃(t;x) = d2

dx2 p̃(t;x) . (6.14)

This means that the distribution p̃(r;x) can be derived by running a diffusion
process the time t = r2/2. In this perspective, Figure 6.1 illustrates how
diffusion would affect the original distributions as time goes on along the r
axis.

6.1.4 Decomposition of information

We will now consider the total information in the pattern, expressed by the
relative information in Eq. (6.2), and we will derive a decomposition of this
quantity into contributions from different positions x and different length
scales, or resolution levels r.

First we assume that the resolution dependent distributions p̃(r;x) and
p̃0(r;x) are indistinguishable in the limit r→∞,

lim
r→∞

p̃(r;x)
p̃0(r;x) = 1 . (6.15)

That this is a reasonable assumption can be seen from the fact that the
ratio of any two Gaussian distributions (with centers of mass being finitely
separated) always approaches one in the limit of worst resolution, r→∞, cf.
Eq. (6.11).

We prepare for a decomposition of the relative information K, Eq. (6.2),
with respect to resolution r, by subtracting from K the relative information
at the infinite resolution limit r →∞, which is a zero term according to
Eq. (6.15). We also use that p(x) = p̃(0;x). This allows us to rewrite the
relative information K as an integral over resolution r,
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K[p0;p] =
∫

dxp(x) ln p(x)
p0(x) =

=
∫

dxp̃(0;x) ln p̃(0;x)
p̃0(0;x) −

∫
dxp̃(∞;x) ln p̃(∞;x)

p̃0(∞;x) =

=−
∫ ∞

0
dr

∂

∂r

∫
dx
(
p̃(r;x) ln p̃(r;x)

p̃0(r;x)

)
= (6.16)

=
∫ ∞

0
dr
∫

dxr
[
p̃(r;x)
p̃0(r;x)

d2

dx2 p̃0(r;x)−
(

1 + ln p̃(r;x)
p̃0(r;x)

)
d2

dx2 p̃(r;x)
]

.

In the last step we have used the relation between ∂/∂r and d2/dx2 from
Eq. (5.14). By partial integration of the last expression this can be rewritten
as

K[p0;p] =
∫ ∞

0
dr
∫

dxr p̃(r;x)
(
p̃′(r;x)
p̃(r;x) −

p̃′0(r;x)
p̃0(r;x)

)2
=

=
∫ ∞

0

dr
r

∫
dx p̃(r;x)

(
r

d
dx

ln p̃0(r;x)
p̃0(r;x)

)2
, (6.17)

where p′ denotes derivation with respect to x. The integrand is non-negative
everywhere (in x and r), and we choose to use that to define the local infor-
mation k(r,x) at position x and resolution r,

k(r,x) = p̃(r;x)
(
r

d
dx

ln p̃(r;x)
p̃0(r;x)

)2
≥ 0 , (6.18)

so that the total information K[p0;p] can be decomposed into local informa-
tion contributions,

K[p0;p] =
∫ ∞

0

dr
r

∫
dxk(r,x) . (6.19)

In the next chapter on chemical self-organizing systems, we will use this
formalism to study the flow of information, both in space and in length
scales. In the next section on fractals, we will relate resolution dependent
information quantities to the concept of fractal dimension.

In most cases we will consider a reference distribution that is uniform,
at least approximately. For a limited system, i.e., a finite interval of the real
axis, this is reasonable to assume. This is also the case that will be studied for
chemical pattern formation in the next Chapter. For an unbounded space, we
typically assume p0 to be a very broad Gaussian, which can be approximated
with a uniform distribution over the region where p typically exhibits spatial
pattern. In these situations, assuming a constant p0, the local information
density k(r,x) can be expressed as
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k(r,x) = r2p(r;x)
(

d
dx

lnp(r;x)
)2

. (6.20)

From this expression, it is clear that the local information is high at the
slopes of the probability density. For an image this means that information
is primarily located at the edges of the objects, with edges being defined as
slopes in the intensity (or probability density) p(x).

For the examples discussed above, we find, using Eq. (6.20), that for the
Gaussian, the information density takes the form,

kGaussian(r,x) = 1
(2π)1/2(b2 + r2)5/2 r

2x2 exp
(
− x2

2(b2 + r2)

)
, (6.21)

and for the sinusoidal density, we get

ksin(r,x) = 4e−16π2r2
π2r2 cos2(4πx)

1 + 1
2e−8π2r2 sin(4πx)

. (6.22)

For both these examples, it is clear, see Fig. 6.2, that there are certain length
scales and positions for which we have a higher information density. These
length scales are then related to the width of the structure.

6.2 Fractals patterns, dimension, and information

6.2.1 Dimensions

The word ”dimension” has several definitions in mathematics. Behind the
length of the coastal line of Sweden, there may be several dimension num-
bers hiding. A line or a curve can be considered a one-dimensional object,
characterized by the fact that it can be divided into two objects by removal
of a point. At the same time the object may be placed in a space of higher
dimension. Furthermore, even if the coastal line is one-dimensional and con-
strained by a two- or three-dimensional space, it may be so irregular that
its length is infinite. If a curve is strongly jagged it may be sufficiently close
to any point in a two-dimensional object, and one may consider the curve
two-dimensional.

The first dimension number we mentioned is related to the topology of
an object—a curve may be divided by removing a point, a surface may be
divided by removing a curve, etc—and therefore we call this the topological
dimension, DT, of the object. The object is placed in a space with a certain
Euclidean dimension, DE. The third dimension number is related to how
jagged, for example, a curve is, and as we have indicated this number may be
larger than the topological dimension of the object. This number is actually
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Fig. 6.2 The information density k(r,x) for the two examples of Fig. 6.1: (Top) the
Gaussian probability density (with b = 0.8), and (Bottom) the sinusoidal probability
density.
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defined so that it does not need to take only integer numbers, and therefore
it is called the fractal dimension, DF, of the object. An object is said to
be fractal if its fractal dimension is larger than the topological dimension,
DF >DT. In general, for these dimension numbers, we have

DT ≤DF ≤DE . (6.23)

There is also another perspective on the dimension of an object, related to
the resolution with which the object is observed. The following example, by
Benoit Mandelbrot [1983], illustrates this:

”... a ball of 10 cm diameter made of thick thread of 1 mm diameter pos-
sesses (in latent fashion) several effective dimensions. To an observer placed
far away, the ball appears as a zero-dimensional figure: a point. (...) As seen
from a distance of 10 cm resolution, the ball of thread is a three-dimensional
figure. At 10 mm it is a mess of one-dimensional threads. At 0.1 mm, each
thread becomes a column and the whole becomes a three-dimensional fig-
ure again. At 0.01 mm, each column dissolves into fibers, and the ball again
becomes one-dimensional, and so on, with the dimensionality crossing over
repeatedly from one value to another. When the ball is represented by a finite
number of atom-like pinpoints, it becomes zero-dimensional again.”

6.2.2 Fractal dimension

In the following, we sketch on a definition of the fractal dimension, based on
how the observed extension of the object scale when resolution is changed.
The extension is related to the length for a curve, to the area for a surface,
etc. Suppose that we have an object in a DE-dimensional space. We cover the
object with spheres of a certain radius r, corresponding to the resolution, in
order to get a characterisation it its extension. Let us assume that we find
that N(r) spheres are needed for this, where, of course, a smaller r requires
a larger number of spheres, see Figure6.3.

Fig. 6.3 The number of spheres with radius r that are needed to cover a curve is
proportional to r−D, where D is the fractal dimension of the curve. In the figure, the
number of spheres doubles as the radius is reduced to half the original, implying a curve
dimension D = 1.
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If the object is a straight line the number of spheres N(r) will be pro-
portional to 1/r, see Figure 6.2, while in the case of a flat two-dimensional
surface N(r) will be proportional to 1/r2. Therefore, we introduce the reso-
lution dependent fractal dimension, D(r), characterized by

N(r)∼ r−D(r) . (6.24)

We use this relation to define the fractal dimension by

D(r) =−∂ lnN(r)
∂ lnr . (6.25)

In general, the fractal dimension depends on the resolution r, but in most
mathematically constructed objects found in the literature on fractal patterns
there is a scale invariance that makes the fractal dimension independent of
the resolution, see, for example, Figure 6.3.

The fractal dimension may also be defined by scaling of the measured
length (in case of DT = 1) of an object when resolution is varied. One may
assume that the length scales as

L(r)∼ r1−D(r) . (6.26)

For the coast line of England one has found, within certain limits of r, that
the scaling leads to a fractal dimension of D = 1.2, while for a straight line,
the dimension is 1 since the length does not depend on the resolution (at
least if resolution is finer than the length of the object). A curve for which
new jagged structures appear when resolution is improved (smaller r) may
have a resolution dependent length and a fractal dimension larger than 1.

Fig. 6.4 The Koch curve is a fractal object with dimension ln4/ ln3 ≈ 1.26, in which
new structures appear as soon as resolution is improved.

The fractal dimension of the Koch curve in Figure 6.4, can be derived as
follows. At each step, resolution is improved by reducing r to r/3, i.e., an
improvement by a factor of 3, and the observed length is increased from L to
4L/3, or by a factor of 4/3. The dimension D can then be written as

D(r) = 1− ∂ lnL(r)
∂ lnr = 1− lnL− ln(4L/3)

lnr− ln(r/3) = ln4
ln3 ≈ 1.26 . (6.27)
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In this example the fractal dimension does not depend on the resolution. The
object is constructed so that new structure (with the same characteristics)
appears whenever resolution is improved.

6.2.3 Dimension and information

If resolution is improved when we observe an object, we may gain informa-
tion. Similarly, if the resolution becomes worse (r increases) we may lose in-
formation. In a three-dimensional space, a point loses information in all three
directions, since we get less accurate description on three of its coordinates.
For a line, on the other hand, a blurred picture only reduces information in
two directions, perpendicular to the extension of the line. This indicates that
there may be some connection between the dimensionality of an object and
how information quantities change when resolution is varied.

Suppose that our object can be characterized by a probability density p(x)
in a DE-dimensional Euclidean space, and further that we have an a priori
probability density p0 that is uniform. The decomposition of the relative
information with respect to both position and resolution, Eq. (6.19), can
then be written

K[p0;p] =
∫ ∞

0

dr
r

∫
dx p(r;x)

(
r

d
dx lnp(r;x)

)2
. (6.28)

By performing the integration over x, we get the information k(r) at length
scale (resolution) r,

k(r) =
∫

dx p̃(r;x)
(
r

d
dx ln p̃(r;x)

)2
. (6.29)

The information k(r) at a certain level of resolution can be related to the
change in resolution-dependent entropy,

k(r) = r
∂

∂r
S[p̃] . (6.30)

where the entropy is given by

S[p̃] =
∫

dx p̃(r;x) ln 1
p̃(r;x) . (6.31)

This is derived by carrying out the derivation of S with respect to r, using
the relation between ∂/∂r and d2/dx2 from Eq. (6.5),



102 6 Geometric information theory

r
∂

∂r
S[p̃] =−r2

∫
dx d2

dx2 p̃(r;x)(1 + ln p̃(r;x)) =

= r2
∫

dx
(

d
dx p̃(r;x)

)2 1
p̃(r;x) = (6.32)

=
∫

dx k(r,x) = k(r) , (6.33)

where we have also used partial integration, assuming dp̃/dx (1 + ln p̃)→ 0
when |x| →∞.

We now define the dimension d(r) as an information-theoretic counterpart
to D(r), following the discussion above that a low-dimensional object loses
more information than a higher-dimensional one when resolution becomes
worse, which leads to

d(r) =DE− r
∂

∂r
S[p̃] =DE−k(r) . (6.34)

In order to illustrate how this dimension quantity is related to the fractal di-
mension defined in Eq. (6.25), we approximate the probability density p(r;x)
with a uniform distribution over the N(r) spheres covering the object as it
was illustrated in Figure 6.3, i.e.,

p̃(r;x)∼ 1
N(r)rDE

. (6.35)

This means that the entropy of p̃ is

S[p̃] =
∫

dx p̃(r;x) ln(CN(r)rDE) , (6.36)

where C is a constant. Then, using Eq. (6.34) the dimension d(r) can be
derived,

d(r) =DE− r
∂

∂r
ln
(
CN(r)rDE

)
=−∂ ln(N(r))

∂ lnr =D(r) , (6.37)

where we in the last step used the definition of fractal dimension, Eq. (6.25).
This illustrates the connection between information-theoretic dimension d(r)
and fractal dimension D(r).

Problems

6.1. Dimension of a Gaussian
What is the dimension d(r) of a Gaussian distribution of width b (variance
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b2) in one dimension (DE = 1)? How can this be interpreted? Discuss the
relation between r and b.

6.2. Dimension of a ring
Consider a pattern in a two-dimensional space that is described as a ring
with a certain thickness a and a certain diameter 10a, schematically depicted
in the figure below.

The ring may be described by a uniform probability distribution p(x,y) that is
constant within the grey area and zero elsewhere. By introducing the resolu-
tion dependent probability density p(r;x,y), one may study how the entropy
S(r) changes when the resolution is made worse (r increases).

Discuss how the quantity

r
∂

∂ r

∫
dxdy p(r;x,y) ln 1

p(r;x,y)

depends on r. It should not be necessary with calculations (which are quite
complicated), but you should be able to discuss this in a more qualitative
way, relating resolution level r to characteristic lengths in the system, for
example a.

6.3. Gaussians indistinguishable at worst resolution
What is the relative information between two Gaussian distributions (with
centers of mass being finitely separated) in the limit of worst resolution,
r→∞, cf. Eq. (6.11).





Chapter 7
Pattern formation in chemical systems

Abstract The decomposition of information with respect to both position
and length scale, or resolution, is applied to chemical systems exhibiting
spatio-temporal pattern dynamics. With this approach, we derive a conti-
nuity equation for information that is determined by the reaction-diffusion
dynamics of the chemical system. Due to the connection between the infor-
mation in a chemical system and the chemical free energy it represents, we
can connect the physical or thermodynamic constraints of the pattern forma-
tion process to the information characteristics of the system. The formalism is
applied to the self-replicating spots system based on the Gray-Scott reaction-
diffusion dynamics.

In this chapter we apply information theory to chemical pattern formation,
often called chemical self-organizing systems. Here self-organization refers to
a system that spontaneously builds up or sustain spatio-temporal structure in
the form of concentration variations. The patterns formed and the dynamics
is not controlled by anything outside the system. The first theoretical inves-
tigation of chemical pattern formation was done by Alan Turing in his classic
paper, where he demonstrated that simple mechanisms in reaction-diffusion
dynamics can account for symmetry breaking necessary for morphogenesis
[Turing, 1952]. Self-organizing systems, or dissipative structures, that also go
beyond chemical pattern formation have been extensively studied, see, for
example, Nicolis and Prigogine [1977], Haken [1984].

There are several types of information quantities involved in pattern for-
mation processes, and they are typically of different orders of magnitude.
A first piece of information when one is presented with a specific chemical
system is the selection of molecules involved, both those that are present in
the system and those that are allowed to flow over the system border. All
this can loosely be referred to as genetic information, i.e., information on

105
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which components and thus also which processes that will be part of the
self-organizing chemical system. The amount of this information is not vary
large, as is reflected for example by the size of genomes in living organisms
with the order of 104 genes.

In biological systems all necessary information is not genetically encoded,
but there is also compositional information in the transfer of chemicals and
structures from the mother to the daughter cells. There are proposals express-
ing the idea that this type of information may have played an important role
in the origin of life [Segré et al., 2000].

Another type of information enters when a specific self-organizing system
starts to develop a pattern. The typical form of the pattern may be deter-
mined by the reaction scheme involved, but in many cases fluctuations in
concentrations or other disturbances may affect the exact pattern that is
formed. An example of that is the difference in finger prints between iden-
tical twins. One may view this as an information flow from fluctuations to
the actual pattern that is observed. This flow is of the same character as the
flow from micro to macro that we find in chaotic systems [Shaw, 1981]. This
information flow can be characterized by the Lyapunov exponent, an impor-
tant quantity for the analysis of chaotic dynamical systems. This perspective
will be brought up in the next Chapter presenting an information-theoretic
perspective on low-dimensional chaotic systems.

The focus of the approach presented here is a third type of information
quantity, the information capacity in free energy or exergy, based on the
information-theoretic formalism presented in Chapter 6. This is then com-
bined with the geometric information theory of Chapter 7. The starting point
is the free energy of a chemical system, involving both the deviation from
homogeneity when a spatial pattern is present and a deviation from equi-
librium (when the system is stirred). This free energy is expressed as the
total information of the system, and in our approach we decompose this into
information contributions from both different positions and different length
scales. The connection with thermodynamics then allows us to view the in-
flow of free energy, due to the fact that the system is open to an inflow of a
fuel and outflow of waste products, as an inflow of information capacity. This
inflow allows for an accumulation of information in the system when a pat-
tern is formed. Entropy production due to chemical reactions and diffusion
leads to destruction of information – an information loss that can be bal-
anced by the information capacity inflow to maintain the chemical pattern.
The following presentation is based on work previously published in Eriksson
and Lindgren [1987], Eriksson et al. [1987] which primarily applied to closed
chemical systems. This work was later extended to open reaction-diffusion
systems [Lindgren et al., 2004].
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7.1 Information analysis of chemical pattern formation

A closed self-organizing system is driven by the exergy that is initially present
in the form of chemical energy. We assume that the system has the same pres-
sure and the same temperature as the environment. According to Eq. (5.37),
the exergy for a homogenous system can be written as a relative information

E = V kBT0

M∑
i=1

ci ln
ci
ci0

=NkBT0K[P0;P ] , (7.1)

where the distributions P0 and P denote the normalised distributions pi0 =
V ci0/N and pi = V ci/N , respectively. The reference system P0 represents
a system in reaction equilibrium, and the non-equilibrium of the present
system, characterized by P , can be interpreted as the system being prepared
with an abundency of a fuel that may be used in the process of structure
formation. In the case of an open system where chemical substances are
allowed to pass the system border, the concentrations in the system may be
kept off equilibrium so that exergy (free energy) is available both for the
built-up and the maintenance of the spatial patterns.

7.1.1 Chemical and spatial information

We shall use Eq. (7.1) as a starting point for our combined information-
theoretic and thermodynamic analysis of the system. Since homogeneity is
assumed to be broken, we introduce spatially varying concentrations ci(x),
expressed in the probabilistic form pi(x) = V ci(x)/N . (We assume that the
number of molecules per unit volume, N/V, does not depend on position.)
This results in probability distributions pi(x) over the different molecules
that are normalized at each position. Then, Eq. (7.1) is replaced by

E = kBT0
N

V
K , (7.2)

where the information K is now an integral over relative information quan-
tities for each position in the system,

K =
∫
V

dxK[P0;P ] =
∫
V

dx
M∑
i=1

pi(x) ln pi(x)
pi0

. (7.3)

We shall use the average concentration within the system, defined by

pi = 1
V

∫
V

dx pi(x) , (7.4)
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in order to decompose the total information K in Eq. (7.2) into two terms,
one that quantifies the deviation of the average concentrations from equilib-
rium, Kchem, and one that quantifies the deviation from homogeneity, i.e., the
presence of spatial structure, Kspatial,

K =
∫
V

dx
M∑
i=1

pi(x) ln pi(x)
pi

pi
pi0

=

=
∫
V

dx
M∑
i=1

pi(x) ln pi(x)
pi

+ V

M∑
i=1

pi ln
pi
pi0

. (7.5)

Therefore we define the spatial information, Kspatial,

Kspatial =
∫
V

dx
M∑
i=1

pi(x) ln pi(x)
pi

, (7.6)

and the chemical information, Kchem,

Kchem = V

M∑
i=1

pi ln
pi
pi0

. (7.7)

Thus we can write the total information K as

K =Kspatial +Kchem . (7.8)

Thermodynamically, the chemical information is related to the presence of
a chemical non-equilibrium even when spatial variations are not taken into
account. This means that there is an abundance of ”fuel” and a low level of
”waste” products in the system. The spatial information reflects the presence
of a non-equilibrium for diffusion processes, i.e., that there is some spatial
pattern in the system.

7.1.2 Decomposition of spatial information in a
chemical pattern

We shall continue our analysis by further decompose the spatial information
into contributions from position and length scales, similar to what we did
in Chapter 6. For simplicity, let us assume that we have a chemical system,
characterized by concentrations ci(x, t) for the different molecules that are
normalized at each position x,
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M∑
i=1

ci(x, t) = 1 . (7.9)

In order to be able to analyze contributions from different length scales, we
introduce a resolution dependent concentration c̃i, cf. Eq. (6.3), by convolu-
tion of the original one ci with a Gaussian,

c̃i(r,x) = 1
(2π)n/2

∫
dz e−z

2/2ci(x + rz) = (7.10)

= exp
(
r2

2 ∇
2
)
ci(x) =R(r)ci(x) . (7.11)

We will use the last expression, Eq. (7.11), as a resolution operator applied to
the concentration for analytic derivations, but when calculating c̃i, the first
expression, Eq. (7.10), will be used. We assume that this operation handles
the boundary conditions so that in the limit of r→∞, i.e., complete loss of
position information, the concentrations equal the average concentrations in
the system1,

c̃i(∞,x) = ci . (7.12)

The derivation of a decomposition of the total information K into different
contributions will now be slightly different from the one in Chapter 6, since
the distributions are now normalized in each position (instead of over the
system volume). Our starting point, in Chapter 6, for decomposing the total
information K,∫ ∞

0
dr

∂

∂r

∫
dxK[c0; c̃(r,x)] =

∫
dxK[c0;c]−

∫
dxK[c0; c̃(r,x)]

=Kchem−K , (7.13)

illustrates that the chemical information Kchem can be detected regardless
of how bad the resolution is. This is obvious, since complete loss of resolu-
tion results in average concentrations in the system which determines the
chemical information. This means that the spatial information Kspatial can be
decomposed in a similar way as in Chapter 6,

1 In the simple examples we study, this follows immediately from the assumption on
periodic boundary conditions
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Kspatial =K−Kchem =−
∫ ∞

0
dr

∂

∂r

∫
dxK[c0; c̃(r,x)] =

=−
∫ ∞

0
dr
∫

dx ∂

∂r

∑
i

c̃i(r,x) ln c̃i(r,x)
ci0

=

=−
∫ ∞

0
dr
∫

dx
∑
i

∂c̃i(r,x)
∂r

ln
(
c̃i(r,x)
ci0

+ 1
)

=

=−
∫ ∞

0
dr
∫

dx
∑
i

r∇2c̃i(r,x) ln c̃i(r,x)
ci0

=

=
∫ ∞

0

dr
r

∫
dx
∑
i

c̃i(r,x)
(
r∇ ln c̃i(r,x)

ci0

)2
. (7.14)

In the last step, a partial integration is involved, including an assumption
of periodic (or non-flow) boundary conditions. (We also used the fact that∑
i ∂c̃i/∂r = 0 due to normalization.) The equilibrium concentration ci0 in

the last expressions could be removed (as it disappears under the differential
operation), but we keep it as it will serve a purpose in later derivations. In
the last expression we recognize a local information density, k(r,x), which
can be written in three different forms, of which the last one will be used
later,

k(r,x) = r2
∑
i

c̃i(r,x)
(
∇ ln c̃i(r,x)

ci0

)2
= (7.15)

= r2
∑
i

(∇c̃i(r,x))2

c̃i(r,x) = (7.16)

=
(
−r ∂

∂r
+ r2∇2

)∑
i

c̃i(r,x) ln c̃i(r,x)
ci0

. (7.17)

The information density k(r,x) can be integrated over space so that we
achieve the spatial information at a certain length scale,

kspatial(r) =
∫

dx k(r,x) . (7.18)

A schematic illustration of this decmposition is shown in Figure 7.1, illustrat-
ing a chemical patterns in a two-dimensional space with its variations along
the axis of resolution r.
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Fig. 7.1 An illustration of a two-dimensional chemical pattern at different levels of
resolution r, along with a schematic illustration on how the spatial information may be
decomposed between different length scales. The chemical information can be detected
regardsless of how bad the resolution is and it is therefore located at infinite r.

7.1.3 Reaction-diffusion dynamics

The concentrations are time-dependent since they vary in time due to diffu-
sion, characterized by diffusion constants Di, and chemical reactions, char-
acterized by reaction functions Fi(c(x, t), where c = (c1, ...,cM ). The equa-
tions of motion governing the dynamics is then the ordinary reaction-diffusion
equations plus a term Bi(ci(x, t)) capturing flows across the system border
in the case of an open system,

d
dt
ci(x, t) = ċi(x, t) =Di∇2ci(x, t) +Fi(c(x, t)) +Bi(ci(x, t)) . (7.19)

The term Bi(ci(x, t)) typically is in the form of diffusion-controlled flows. We
assume that the in- and out-flow is directly connected to the whole system.
For example, in a two-dimensional system, this means that there is a flow
across the ”surface” of the system in the direction of a third dimension.
We can view this as if the reaction volume everywhere is in contact with a
reservoir having a constant concentration c

(res)
i which results in an inflow

Bi(ci(x, t)) = bi

(
c
(res)
i − ci(x, t)

)
. (7.20)

with bi being a diffusion constant. (A negative value of that expression reflects
an outflow.) The open reaction-diffusion system, driven by the reservoir, is
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illustrated in Figure 7.2. The a priori, or reference, concentrations, ci0, rep-
resent an equilibrium system, but the chemical dynamics is only directly
driven by the in- and outflow associated with the reservoir. The reservoir
is characterised by concentration levels, c(res)

i , that are assumed to be kept
constant.

ci
(res) ci(x, t)

ci0Bi

Fig. 7.2 A schematic illustration of the open reaction-diffusion system, with concentra-
tions ci(x, t). There is a diffusion-controlled flow Bi, between the system and a reservoir,
in which the concentrations, c(res)

i , are assumed to be kept constant. As a reference, the
environment is assumed to be in homogenous equilibrium characterised by concentra-
tions ci0.

The equations of motion for the resolution dependent concentrations are
derived from Eq. (7.19) by applying the resolution operator, see Eq. (7.10),
to both sides of the equation,

˙̃c(r,x, t) =Di∇2c̃i(r,x, t) + F̃i(c(x, t)) + B̃i(ci(x, t)) , (7.21)

where we have used the fact that the resolution operator (exp(r2∇2/2)), or
equivalently the Gaussian convolution, commutes with the diffusion operator
(∇2). The terms F̃i and B̃i represent the result of the convolution applied
to the chemical reaction term and the flow term, respectively. In general,
those terms cannot be simplified, but if the flow is linearly dependent on the
concentrations, as in Eq. (7.20), we can replace ci by c̃i in the last term,

˙̃c(r,x, t) =Di∇2c̃i(r,x, t) + F̃i(c(x, t)) + bi

(
c
(res)
i − c̃i(x, t)

)
. (7.22)

This equation will be used in the derivation of suitable quantities for infor-
mation flows in reaction-diffusion dynamics.

7.1.4 Flows of information in a closed chemical
systems

In a closed homogenous chemical system, prepared in an out-of-equilibrium
state, all information is initially in the form of chemical information, Kchem,
corresponding to an initial amount of exergy. Chemical reactions consume



7.1 Information analysis of chemical pattern formation 113

the exergy, according to the 2nd law of thermodynamics, and the chemical
information thus decays. If spatial structure is built up, we find that some of
the information, at least temporarily, is transformed to spatial information,
Kspatial. If the system remains closed, though, such spatial structures cannot
remain and the system approaches a homogenous equilibrium state. In an
open system, a steady inflow of chemical energy may keep the chemical in-
formation at a high level, and spatial structures may be supported. First we
will discuss the closed system and derive a set of information flow quantities,
and in the next section the system will be open for molecular flows across the
boundary which will result in additional effects. So to start with, we neglect
the flow term B in Eqs. (7.19) and (7.22).

Let us discuss briefly some thermodynamic characteristics of the system.
The chemical system, described by the dynamics Eq. (7.19) but excluding
the result of the in- and out-flow (which will be treated separately), results
in a thermodynamic entropy production σ (in units of Boltzmann’s constant)
according to

σ(x, t) =
∑
i

(
Di

(∇ci(x, t))2

ci(x, t) −
(

ln ci(x, t)
ci0

)
Fi(c(x, t))

)
. (7.23)

The entropy production is determined by one part corresponding to the en-
tropy produced due to diffusion within the system and one part given by the
reactions that tend to even out the chemical non-equilibrium in the system.
The entropy production certainly leads to a decay of the information in the
system – decay of structural information as well as of chemical information.

We shall make an information-theoretic description of how information is
flowing in the system that connects to the thermodynamic loss of information
due to entropy production. This will be formulated in a continuity equation
for information density k(r,x, t), taking into account flows both in scale (r)
and in space (x), see Figure 7.3.

In the limit of r →∞ we cannot distinguish any spatial structure, but
the chemical information Kchem is still present, unaffected by the resolution
parameter. In a decomposition of the total information this part can therefore
be considered as present at the limit r→∞. The chemical information will
be consumed by the chemical reactions and we should therefore expect that
a proper definition of information flow shows how information will flow in the
direction towards smaller length scales r. If the system gives rise to spatial
structure, that should be captured in the continuity equation, resulting in a
temporal accumulation of structural information.

It is reasonable to think that information is leaving the system, through
the thermodynamic entropy production, at the finest length scales of the
system, i.e., at r = 0. At this point information leaves the macroscopic de-
scription that we have of our system, and the information is spread out on
microscopic degrees of freedom. Therefore, we define the information flow
jr(r,x, t) in the direction of smaller r, at the border r = 0, to be equal to the
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Fig. 7.3 A schematic picture of information (capacity) flows in a chemical pattern
formation system. The pattern is characterised by an information density k(r,x, t) dis-
tributed over spatial dimensions as well as over different length scales r. Information
flows both in space and in scale, where the flow is destroyed when it gets down to the
microscopic level. Here information disappears into microscopic degrees of freedom due
to entropy production. Information capacity enters the system at the very large scale
due to a diffusion-controlled inflow of chemical information or Gibbs free energy. A pat-
tern is formed when information that flows downwards in scale is aggregated at certain
positions as described by the continuity equation.

chemical entropy production,

jr(0,x, t) = σ(x, t) . (7.24)

To define this flow for general resolution values r, we generalize by introducing
the resolution operator into the expression for entropy production, and we
define jr by

jr(r,x, t) =
∑
i

(
Di

(∇c̃i(x, t))2

c̃i(x, t) −
(

ln c̃i(x, t)
ci0

)
F̃i(c(x, t))

)
. (7.25)

At infinitely bad resolution (r→∞) the reaction-diffusion dynamics, Eq. (7.22),
captures the changes in average concentration

ċi(t) = F i(c(x, t) . (7.26)

Using this, the information flow jr, in the limit r→∞, can be written
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jr(∞,x, t) =
∑
i

((
ln ci(t)

ci0

)
F i(c(x, t))

)
=

=−
∑
i

ċi(t) ln ci(t)
ci0

. (7.27)

Note that this expression is equal to the decay of chemical information,
−dkchem/dt, since

k̇chem(t) = d
dt

∑
i

ci ln
ci
ci0

=
∑
i

ċi(t)
(

ln ci(t)
ci0

+ 1
)

=

=
∑
i

ċi(t) ln ci(t)
ci0

. (7.28)

Here we have used
∑
i dci/dt= 0 due to the normalization. In general it holds

that dkchem/dt ≤ 0 (except for extreme cases), which means that there is a
positive flow of information jr(∞,x, t) at the infinite length scale limit in
the direction of smaller length scales, similar to what we have at the other
limit, r = 0. The interpretation is then that information flows from its origin
as chemical information down through the length scales, temporarily halting
if spatial structure is built up, but sooner or later continuing to the finest
length scale where it disappears as entropy production.

7.1.5 A continuity equation for information in the
case of a closed system

We can view the information density k as a generalized form of exergy (or
free energy). By the flow across length scales jr we have accounted for the
destruction of information from entropy production in chemical reactions
and diffusion within the system. We will now derive a continuity equation
for information which will connect the previously defined flow across length
scales, jr(r,x, t), with the change of local information k(r,x, t) and a flow of
information in space j(r,x, t). For a closed chemical system such a continuity
equation takes the form

k̇(r,x, t) = r
∂

∂r
jr(r,x, t)−∇· j(r,x, t) . (7.29)

The equation states that, for a closed system, the local information density k
changes due to accumulation of of the information flows across length scales
(in the downward direction) and across space. After several steps of derivation
(which is left as a difficult exercise), this continuity equation then implies a
definition of the ∇· j term,
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∇· j(r,x, t) = r
∂

∂r
jr(r,x, t)− k̇(r,x, t) = ... =

=−r2∇2
∑
i

(
F̃ (c(x, t)) ln c̃i(r,x, t)

ci0

)
. (7.30)

If we require that j(r,x, t) = 0 when c̃i is uniform and that j is rotation-free
(i.e., does not contain any term ∇×A), the spatial flow j is defined

j(r,x, t) =−r2∇
∑
i

(
F̃ (c(x, t)) ln c̃i(r,x, t)

ci0

)
. (7.31)

Note that the spatial flow depends on the presence of reactions. This means
that when reactions are not present, the only flow is the one across length
scales. This is a direct consequence of the fact that the resolution operator,
the Gaussian blur, is equivalent to a diffusion process. The flow across length
scales, though, depends on both reactions and diffusion. This should be ex-
pected since it is a generalization of the entropy production, and entropy is
produced in both these processes.

7.1.6 A continuity equation for information in the
case of an open system

Finally, we open the system for inflow and outflow of molecules, given by
the term B in the reaction-diffusion dynamics, Eq. (7.20). In addition to the
terms in the continuity equation for the closed system, already defined, we
need to introduce a local source (or sink) term J(r,x, t) which will capture
possible local effects from the system being open. The general continuity
equation for an open system then takes the following form,

k̇(r,x, t) = r
∂

∂r
jr(r,x, t)−∇· j(r,x, t) +J(r,x, t) . (7.32)

For an open system, there are two ways in which the information charac-
teristics of the system is directly affected from the flow of molecules across
the system border. First, an inflow and an outflow of components changes
the average concentrations of the transported components and in that way
the chemical information is changed. For a driven chemical system, with an
inflow of a fuel component and an outflow of a product, the flow across the
system boundary typically keeps the chemical information at a level sufficient
for driving the information flows in the system. But, there is also a direct
influence that the inflow may have on spatial patterns in the system. For ex-
ample, diffusion into or out of the system of a component that has a spatial
variation, directly leads to that spatial pattern being less accentuated, and
in that way the flow destroys the local information density k(r,x, t).
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The negative effect on information density k from the diffusion over the
system boundary is captured by the sink term J in the continuity equation.
For a diffusion controlled flow, as in Eq. (7.20), we get (after some calcula-
tions) the following expression for J ,

J(r,x, t) =−
∑
i

bi

(
c̃i(r,x, t) + c

(res)
i

)
(r∇ ln c̃i(r,x, t))2 ≤ 0 , (7.33)

which shows that J is a sink for information. In conclusion, we have, see
Eqs. (7.16), (7.25), (7.31), and (7.33),

k(r,x, t) = r2
∑
i

(∇c̃i(r,x))2

c̃i(r,x) , (7.34)

jr(r,x, t) =
∑
i

(
Di

(∇c̃i(x, t))2

c̃i(x, t) −
(

ln c̃i(x, t)
ci0

)
F̃i(c(x, t))

)
, (7.35)

j(r,x, t) =−r2∇
∑
i

(
F̃ (c(x, t)) ln c̃i(r,x, t)

ci0

)
, (7.36)

J(r,x, t) =−
∑
i

bi

(
c̃i(r,x, t) + c

(res)
i

)
(r∇ ln c̃i(r,x, t))2 . (7.37)

These quantities can be integrated over either position space x or resolution
length scale r in order to derive aggregated information quantities like k(r, t),
i.e., the resolution-dependent information, or k(x, t) and j(x, t) which are the
normal information density and the corresponding information flow. If we
integrate the continuity equation, Eq. (7.32), over resolution lengths r, we
get the following balance equation for the information density k(x, t),

k̇(x, t) +∇· j(x, t) +J(x, t) +σ(x, t) + k̇chem(x, t) = 0 . (7.38)

Here the entropy production and the change in chemical information come
from the upper and lower limits of the flow jr.

In the next section these information-theoretic concepts will be applied to
a simple model of a chemical self-organizing system.

7.2 Application to the self-replicating spots dynamics

We apply the formalism to the pattern formation of the ”self-replicating
spots” system [Gray and Scott, 1984, Pearson, 1993, Lee et al., 1993],

U + 2V � 3V (7.39)
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Let cU = cU(x, t) and cV = cV(x, t) denote the spatially dependent concentra-
tions of U and V, respectively. The dynamics of the concentrations is then
given by reaction-diffusion equations, cf. Eq. (7.19),

ċU =DU∇2cU− (cU +kbackcV)c2V + D̂(1− cU) (7.40)
ċV =DV∇2cV + (cV−kbackcV)c2V− (D̂+k)cV (7.41)

We have introduced a very slow back reaction (kback = 10−5) in order to get
the relationship between equilibrium concentrations of U and V defined by
the reactions.

In Figure 7.4, the dynamics is illustrated starting from an initial state (left)
with a square of high concentration of V. As the system evolves four concen-
tration peaks (spots) emerges from the square, and these spots reproduce by
growing and splitting until the system is filled with spots (middle and right).
In the process, spots may disappear, which leaves space for other spots to
reproduce. In the lower part of the figure, the decomposition of the informa-
tion in the pattern with respect to scale is plotted for the three snapshots
above (at time 0, 1000, and 7000, respectively).

Fig. 7.4 Top row: The concentration of the chemical V in the system at three times;
t= 0, t= 1000, and t= 7000 steps. White corresponds to zero concentration, and black
corresponds to a concentration of one half. Bottom row: The structural information
k(r,x), integrated over the system, as a function of the resolution r for the same time
steps as above. The length of the system is 1, DU = 2DV = 0.05, D̂ = 0.02, k = 0.058.
(Figure from Lindgren et al. [2004].)

It is clear that the initial state has a longer characteristic length as de-
tected by the information density. When the system produces the spots at
the significantly shorter length scale, information is found both at the old
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length, now due to the size of the cluster (middle), and at the length scale
of the spots. When the square distribution has been completely decomposed
into spots, no information is left at the initial length scale.

In Figure 7.5, we show the information density over the system for three
different length scales after long time (upper part), and the information flow
in scale, jr, for the same state (lower part). At low resolution, or large r
(right), the information density is low and captures structures of longer
lengths, while at finer resolution, small r (left), the information density is
large and reflects the pattern of spots. Note that each spot is seen as a cir-
cle in the information density picture, since the information is sensitive to
gradients in the pattern. The information flow in scale, jr, is close to ho-
mogenous for large r (right), but when information moves on to finer scales
of resolution, the spatial flow j redistributes the flow so that a higher flow jr
is obtained at the concentration peaks. At finest resolution, r = 0, the infor-
mation leaves the system as entropy production, which is mainly located to
the concentration peaks where the chemical activity is high.

Fig. 7.5 Top row: The structural information in the system at t= 10000 steps, for three
values of the resolution, r = 0.01, r = 0.05, and r = 0.10. Bottom row: The information
flow jr(r,x, t). The length of the system is 1, DU = 2,DU = 0.05,D̂ = 0.02,k = 0.058.
(Figure from Lindgren et al. [2004].)
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Problems

7.1.
Prove the equality between the two expressions in Eqs. (7.16) and (7.17).

7.2. Show how the entropy production, Eq. (7.23), is related to the decay
of total information (d/dt)

∫
dxK[c0;c(x, t)], using the reaction-diffusion dy-

namics for a closed system.

7.3. Suppose that the concentration of a chemical component in a one-
dimensional system can be described as a concentration peak of a Gaussian
form, with an initial width (standard deviation) σ0. Suppose further that
the width σ0 is much smaller than the length of the system and discuss how
information is flowing in (x,r)-space when diffusion is acting on the concen-
tration distribution. Start, for example, by showing that diffusion (without
chemical reactions) does not destroy the Gaussian form of the distribution,
but that the width grows like

√
t+ b. Then derive an expression for jr(r;x, t).



Chapter 8
Chaos and information

Abstract Chaotic systems are characterised by their sensitivity to small dis-
turbances in initial position, which results in diverging trajectories, with the
exponential rate of divergence given by the Lyapunov exponent. This amplifi-
cation of the details in the initial position can be seen as a flow of information
from smaller to larger length scales in state space, and it can be quantified
using information theory. This flow can also be quantified as an entropy that
is generated by the chaotic system, despite the fact that the dynamics is de-
terministic. The formalism is based on symbol sequences generated by the
chaotic system, which makes it possible to use information theory for symbol
sequences in the analysis.

In chemical self-organizing systems one can identify a tendency of information
to flow from larger to smaller length scales, as we have discussed in the last
Chapter. Still, it is clear that noise or fluctuations are important to break
symmetries and to initiate the formation of spatial structure. Quantitatively
this information flow from the noise, or from the microscales of the system,
is very small and is hidden by the much larger thermodynamically related
flow towards the microscales.

In chaotic systems, noise is of an even higher importance. Chaos may even
be characterized by the extent to which a system is sensitive to noise. The
Lyapunov exponents of a dynamical system quantifies how noise is amplified
in the dynamics. In this Chapter, we shall make an information-theoretic
interpretation of these exponents and relate them to an entropy concept, the
measure entropy.

121
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8.1 Basic dynamical systems concepts

Only a short condensed introduction to the basic concepts in dynamical sys-
tems is given here—sufficient for making the connection to the information-
theoretic concepts we have introduced before, especially to the ones presented
in Chapter 3 on symbol sequences.

8.1.1 Iterated maps, fixed points, and periodic orbits

In this presentation, we only consider time-discrete systems in one variable,
where the state x(t) ∈R, with a dynamics given by the an iterated map

x(t+ 1) = f(x(t)) , (8.1)

where f is a differentiable real-valued function on R,f :R→R. The formalism
can be extended to higher dimensions and to continuous time, see for example
the classic review by Eckmann and Ruelle [1985].

A dynamical system of this type has a number of possible types of be-
haviour. The system can be in a fixed point, x∗= f(x∗), and nothing changes.
The trajectory of the system may also be on a cycle with a certain period T ,
characterized by x(T ) = fT (x(0)) = x(0) and x(k) 6= x(0) for 0<k <T . Fixed
points and periodic orbits may be stable or unstable. Instability means that
an arbitrarily small disturbance is sufficient for taking the system away from
the point (or the orbit). A fixed point x∗ is unstable if |f ′(x∗)|> 1, since any
disturbance will result in a trajectory that moves away from x∗. Similarly, a
periodic orbit of period T is unstable if the corresponding fixed point of fT
is unstable.

The dynamics can be said to be chaotic if the trajectory does not approach
a fixed point or a periodic orbit and if it does not diverge. In this case, the
trajectory of the system is approaching a (usually complex) set of points in
state space, called a strange attractor.

8.1.2 Probability densities and measures on the state
space

Dynamical systems are often characterized by quantities that are averages
over either time or state space (here R). Using the terminology and notation
from dynamical systems, such a spatial average is based on a probability
measure µ on the state space, such that µ(E) can be interpreted as the
probability for finding the system in a certain subset E ⊆R. We are usually
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interested in an invariant measure1, i.e., a probability measure that does not
change under the dynamics of Eq. (8.1),

µ(f−1(E)) = µ(E) , (8.2)

where E is a set of points in R, and f−1(E) is the set of points that under
the map f is transformed to E, i.e., f−1(E) = {x : f(x) ∈ E}. This can also
be expressed as f(f−1(E)) =E. There may be several invariant measures for
a dynamical system. If there is a fixed point x∗, then a point distribution
δ(x− x∗) in that point is an invariant measure, even if the fixed point is
unstable. Any linear combination of invariant measures is also an invariant
measure.

In order to eliminate invariant measures that correspond to unstable modes
of the dynamics one may introduce the so-called physical measure, by adding
noise to the dynamics and using the resulting measure when reducing the
noise to zero. In this way, the physical measure does not include contributions
from any of the unstable modes (unstable fixed points or periodic orbits), but
if the system is chaotic the resulting measure is reflecting how the states are
spread over the attractor. The physical measure can be composed of several
invariant measures (for example from several stable fixed points or periodic
orbits).

If an invariant measure cannot be decomposed into parts that are invari-
ant, the measure is called ergodic. The implications of this is that an average
(of any function φ) calculated using the ergodic measure is identical (al-
most always) to a temporal average following the trajectory of the system,
(f(x(0)),f2(x(0)),f3(x(0)), ...). This is the ergodicity theorem,∫

dxµ(x)φ(x) = lim
T→∞

1
T

T∑
k=1

φ(fk (x(0))) , (8.3)

for almost all initial states x(0). This is the same connection between a prob-
abilistic and a trajectory based average that was discussed for the ergodicity
property in stochastic processes in Chapter 3, see Eq. (3.7).

8.1.3 Lyapunov exponent

The trajectory in a chaotic system is sensitive to small disturbances in the
initial state. The tendency to amplify small perturbations is quantified by
the Lyapunov exponent of the system (or several exponents in the case of
systems in higher dimensions).

1 This corresponds to a stationary probability distribution when one has a system with
a finite state space, for example a finite automaton
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Suppose that there is a small change δx(0) in the initial state x(0). By
using a linear expansion, we find that at time t this has led to a change δx(t)
compared to the point at time t starting from x(0), given by

δx(t)≈ δx(0)
∣∣∣∣df tdx

(x(0))
∣∣∣∣=

= δx(0)
∣∣f ′(x(t−1))f ′(x(t−2))...f ′(x(0))

∣∣ , (8.4)

where we have used the chain rule to expand the derivative of f t. In the
limit of infinitesimal perturbations δx(0) and infinite time, we get an average
exponential amplification, the Lyapunov exponent λ,

λ= lim
t→∞

1
t

ln
∣∣∣∣ δx(t)
δx(0)

∣∣∣∣= lim
t→∞

1
t

ln
∣∣∣∣df tdx

(x(0))
∣∣∣∣=

= lim
t→∞

1
t

t−1∑
k=0

ln
∣∣f ′(x(k))

∣∣ . (8.5)

If the system is characterized by an ergodic measure µ we can use the ergod-
icity theorem to express the Lyapunov exponent as

λ= lim
t→∞

1
t

t−1∑
k=0

ln
∣∣f ′(x(k))

∣∣=
∫

dxµ(x) ln
∣∣f ′(x)

∣∣ . (8.6)

If the Lyapunov exponent is larger than zero, the system amplifies small
perturbations and we have chaos, while if the exponent is negative the system
is stable, and that it is characterised by a fixed point or a periodic orbit.

8.1.4 The Lyapunov exponent as an information flow
from ”micro” to ”macro”

An illustration of the Lyapunov exponent as an information flow from smaller
to larger length scales in state space is given by the following example. Sup-
pose that we determine the position of the system at a certain time t0, with
some resolution δ, implying that we can describe the position as a uniform
probability density over a certain interval I0 = [x0−δ,x0 +δ]. In n time steps,
the dynamics will roughly transform this uncertainty interval to

In ≈
[
fn(x0)− δ

∣∣∣∣dfn(x0)
dx

∣∣∣∣ , fn(x0) + δ

∣∣∣∣dfn(x0)
dx

∣∣∣∣] , (8.7)

if δ is small enough. Assuming a chaotic system, the new interval will be
larger, which means that we have a less good descriptions of the future po-
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sition of the system, based on our information of the position at time t0 and
the knowledge about the dynamics, Eq. (8.1). Let us use this as an a priori
description of the system position at this future point in time, using a uniform
probability distribution p0(x) = p0 in the interval In that (by normalization)
equals

p0 = 1
2δ
∣∣∣ dfn(x0)

dx

∣∣∣ . (8.8)

In these n time steps the dynamics will bring the system to some point within
this interval. If we observe the system at the new time, using the same level
of resolution, we get a new (better) estimate of the position, characterized
by a smaller interval (length 2δ) and a uniform probability p = 1/(2δ). The
relative information associated with this observation is then

K[p0;p] =
∫

dx p ln p

p0
= ln

∣∣∣∣dfn(x0)
dx

∣∣∣∣ . (8.9)

In the limit of arbitrarily fine resolution and infinite time, the information I
gained per time step is

I = lim
n→∞

1
n
K[p0;p] = lim

n→∞
ln
∣∣∣∣dfn(x0)

dx

∣∣∣∣= λ . (8.10)

This illustrates the interpretation of the Lyapunov exponent as a measure of
information flow from smaller to larger length scales in state space.

8.2 Dynamical systems entropy and information flow

In earlier chapters we have characterised disorder in symbol sequences by the
use of entropies. We shall make a similar approach here, to characterise the
noise amplification in dynamical systems in information-theoretic terms. This
presentation builds on the formalism presented in the review by Eckmann and
Ruelle [1985].

Consider again a dynamical system characterised by the iterated map f(x),
and suppose that it generates an ergodic measure µ. In order to transform the
dynamics in the continuous state space into a dynamical system of discrete
symbols, we make a decomposition, or a partition, of the state space into r
non-overlapping subsets. The partition is denoted A = (A1,A2, ...,Ar) and it
covers the whole state space. A trajectory in state space then jumps between
these subsets which can be expressed as a sequence of discrete states (or
subsets).

For each subset Aj we let f−k(Aj) denote the set of points that after k
steps end up in Aj , i.e., fk(f−k(Aj)) =Aj . Based on this we construct a new
decomposition B(n) of the state space, using the subsets Bi1...in , defined by
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Bi1...in =Ai1 ∩f
−1(Ai2)∩ ... ∩f−n+2(Ain−1)∩f−n+1(Ain) , (8.11)

where the indices ik ∈ {1, ...,r}. A subset Bσ in B(n) is then characterised
by a sequence of indices σ = i1, ..., in. The interpretation is as follows. If the
system starts at time t= 1 with a state in Bσ, the system will in n consecutive
time steps be found in the subsets: Ai1 at time 1, Ai2 at time 2, etc., until
finally it reaches Ain at time n, i.e., x(t)∈Ait . This means that the sequence
σ = i1, ..., in can be viewed as a symbol sequence generated by the dynamics,
given a certain basic partition of the state space A.

In other words, the components in the partition B(n) are the subsets Bσ.
Each subset corresponds to certain n-length symbol sequences σ = i1, ..., in
generated by the dynamics. The ergodic measure µ of the dynamics then
implies that each subset Bσ is characterised by a certain probability, µ(Bσ),
and we use this to define an entropy H for the partition B(n),

H(B(n)) =
∑
σ

µ(Bσ) ln 1
µ(Bσ) , (8.12)

corresponding to the block entropy, Eq. (3.8). We now define an entropy per
time step (or symbol), h(µ,A), in the same way as we defined the entropy
of a stochastic process in Eq. (3.9), by taking the limit of infinite time (or
symbol block length),

h(µ,A) = lim
n→∞

1
n
H(B(n)) = lim

n→∞

(
H(B(n+1))−H(B(n))

)
. (8.13)

This entropy depends on how we have chosen to make the partition A and
which invariant measure µ that is used. Next, we take the limit of this entropy
when the partition is made arbitrarily fine, i.e., the size of the subsets in A
tends to zero, which defines the measure entropy,

sµ = lim
diam(A)→0

h(µ,A) , (8.14)

where diam(A) denotes the largest distance between two points in any subset
Aj ∈A.

The entropy h(µ,A) is the average entropy per time step when observing
the symbols (defined by the partition A) that are generated by the dynamics.
If the system stabilizes at a fixed point or a periodic orbit the symbol sequence
will certainly have zero entropy. If the system is chaotic, the result may
depend on how the partition is made, and therefore the limit used in the
definition of measure entropy is needed. If sµ > 0, we cannot (always) tell
which part of A the system will visit in the next time step, regardless of
how many previous steps we have observed, and regardless of how fine we
make the partition. Thus, there is a ”creation” of information through the
dynamics, and sµ can be said to quantify the average rate of creation of
information.
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In some cases the limit diam(A)→ 0 is not necessary, but a finite partition
may be sufficient. If the partition A is done so that diam(B(n))→ 0 when
n→∞, then the measure entropy is determined already by the entropy based
on A, Eq. (8.13). If this holds, A is a generating partition. In this case we
have a finite decomposition of state space, each part represented by a certain
symbol. The dynamics x(t) is then represented by a sequence of symbols s(t).
The longer sequence we observe, for a chaotic system, the more accurate will
our knowledge be about the real position of the system at t = 0. Each time
step may bring us new information, in average sµ. A chaotic system has
sµ > 0, and this can be viewed as an information flow from smaller to larger
length scales in state space. It is reasonable to expect that if the Lyapunov
exponent corresponds to a divergence of a factor of two (λ= ln2), then there
is one bit of information creation per time step (sµ = ln2). In fact, it often
holds (in all examples that we will discuss) that the measure entropy equals
the Lyapunov exponent if it is larger than 0,

sµ = λ . (8.15)

If λ < 0, though, the measure entropy is zero, sµ = 0, since the symbol se-
quence that is produced will be periodic (or consists of only the repetition
of one symbol). Eq. (8.15), is an instance of Pesin’s theorem stating that the
measure entropy equals the sum of the positive Lyapunov exponents.

8.2.1 Extended example of a generating partition for a
skew roof map

Consider an iterated map defined by f(0) = a, f(a) = 1, f(1) = 0 (where
0<a< 1), with f(x) being linear in the intervals [0,a] and [a,1], as illustrated
in Fig. 8.1. By defining a partition so that points x in the first interval
generate symbol A and in the second interval symbol B, the iterated map
is transformed into a symbolic dynamics with the alphabet {A,B}. We let
the symbols denote the intervals they correspond to: A = [0,a] and B =]a,1].
Following the procedure summarized in Eq. (8.11), we construct the subsets
of A and B corresponding to increasing lengths of sequences generated in the
symbolic dynamics. For example, the set BBA is the subset that starts in B,
in one iteration maps to B again, but in the next iteration is mapped to A,

BBA = B∩f−1(B)∩f−2(A) . (8.16)

By taking such sequences x1x2...xm of increasing length m, where xj ∈
{A,B}, we see that the corresponding sets decreases in size, formally ex-
pressed by diam(x1x2...xm)→ 0, as m→∞. This means that we have a
generating partition.
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Fig. 8.1 The graph shows an iterated map with f(0) = a,f(a) = 1,f(1) = 0, along with
a partition associating points to the left and to the right of the peak with A and B,
respectively. Two the right the corresponding symbolic dynamics is illustrated. The sets
corresponding to A and B are then refined by finding subsets that in one iteration are
mapped to the A and B, respectively. In this case it turns out that no points in A are
mapped to A so there is no such subset. A continued refinement leads to decreasing
subsets sizes, and we have a generating partition.

In this system, with the present choice of partition, we have a have a
simple way in which the sets A and B map onto these sets or unions of them.
We note that the set A maps onto the set B, so that if we have a uniform
probability density (uniform measure) over A, that is evenly distributed in
one iteration over the set B. Similarly, a uniform measure over B is evenly
distributed over A∪B, the whole unit interval, in one iteration. The fraction
of the probability density from B that ends up in A is then |A|, i.e., the
length of the A interval, and the corresponding fraction for B is |B|. Because
of this, we can easily find an invariant distribution, since the requirement on
invariant measure from Eq. (8.2),

µ
(
f−1(B)

)
= µ(B) , (8.17)

µ
(
f−1(A)

)
= µ(A) , (8.18)

together with the result for this specific map f
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µ
(
f−1(B)

)
= µ(A) + |B|µ(B) , (8.19)

µ
(
f−1(A)

)
= |A|µ(B) , (8.20)

results in the equations

µ(B) = µ(A) + |B|µ(B) , (8.21)
µ(A) = |A|µ(B) , (8.22)

The constraint that the total measure is 1, µ(A) +µ(B) = 1, replaces the
last equation and we find that µ(A) = (1−|B|)/(2−|B|) and µ(B) = 1/((2−
|B|)). This procedure, with its solution, is equivalent to our analysis of finite
state automata and the stationary distribution over the nodes, discussed
in Chapter 3. In this example, the symbolic dynamics is in the form of a
Markov process, defined by Eqs. (8.21-8.22), and illustrated in Fig. (8.2). This
type of partition, resulting in a Markov process for the symbolic dynamics is
also called a Markov partition. The invariant measure for the sets A and B
correspond to the stationary probability distribution over the nodes A and
B, respectively.

Fig. 8.2 The finite state automaton representing the symbolic dynamics of Fig. 8.1
with an invariant measure that is uniform within A and B.

This means that the measure entropy sµ, for this invariant measure, equals
the entropy s of the stochastic process of Fig. (8.2). Based on our previous
discussion on these processes, see Eq. (3.22), we conclude that

sµ = s= µ(B)
(
|B| ln 1

|B|
+ (1−|B|) ln 1

1−|B|

)
. (8.23)

From Eq. (8.15), we can determine the Lyapunov exponent, λ= sµ.
When we know the invariant measure, we can also calculate the Lyapunov

exponent directly from Eq. (8.6), using the fact that the slope |f ′(x)| equals
(1−|A|)/|A|= |B|/(1−|B|) in A and 1/|B| in B. Then λ can be written

λ=
∫

dxµ(x) ln |f ′(x)|=
∫
A

dxµ(x) ln |B|
1−|B| +

∫
B

dxµ(x) ln 1
|B|

=

= 1−|B|
1−|B| ln

|B|
1−|B| +

1
2−|B| ln

1
|B|

= s . (8.24)
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Next, we discuss in what way a badly chosen partition can go wrong.

8.2.2 An example of a partition that is not generating

Consider the tent map, f(x) = 1−|2x−1|, see Fig. (8.3). Since this is a map
with slope |f ′| = 2 everywhere we know that all fixed points and periodic
orbits are unstable. Furthermore, Eq. (8.6) says that any ergodic invariant
measure results in a Lyapunov exponent λ = ln2. Then, from Eq. (8.15) we
also know that the measure entropy is the same, sµ = ln2.

All this can be verified with the approach above, for example, by making
a partition dividing the unit interval in two equal halves. Here, though, we
will discuss what happens when one chooses a different partition, that is
not necessarily generating. Therefore, we make a partition by dividing the
unit interval at x = 3/4, so that A is the interval [0,3/4] and B is ]3/4,1].
This partition with two steps of refinements are shown in Fig. (8.3). We note
already at symbol sequences of length 2 that there is a set AA (corresponding
to points for which the map generates a pair of A’s in two iterations) that
is not connected. A further refinement, going to symbol sequences of length
3 shows that this set is further split up in disconnected part and same holds
now for the set AAB. This means that there will exist sequences x1x2...xm
for which we do not have diam(x1x2...xm)→ 0, as m→∞. (The largest
distance between two points in the set will typically be finitely separated
since many sequences will have disconnected parts spread out over the unit
interval.) Thus, this partition is not generating.

The symbolic dynamics resulting from this partition can still be analyzed
using the approach of the previous section. If the interval A is divided in
three equal parts (at the points x= 1/4 and x= 1/2), A1,A2, and A3, then
the partition (A1,A2,A3,B) is in fact generating. From the tent map we see
that these intervals are mapped in one iteration as follows,

A1→A1∪A2 , (8.25)
A2→A3∪B , (8.26)
A3→A3∪B , (8.27)
B→A1∪A2 . (8.28)

This means, using similar arguments as for the skew roof map, that the
partition results in the symbolic dynamics being a Markov process with an
automaton representation as in Fig. (8.4)a. Since all intervals are of equal
length, the transition probabilities are all 1/2. This Markov process has an
entropy of ln2, and gives the correct values for sµ and thus also for λ.

The non-generating partition (A,B) has a symbolic dynamics that results
from changing any symbol Ak to A. This means that the symbolic dynamics
is a Hidden Markov model, shown in Fig. (8.4)b, with an equivalent, more
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Fig. 8.3 The partition (A,B), applied to the tent map, is not generating.

Fig. 8.4 (a) The finite state automaton corresponding to the symbolic dynamics of the
generating partition (A1,A2,A3,B). (b) The hidden Markov model corresponding to
the symbolic dynamics of the non-generating partition (A,B) of Fig. (8.3), and (c) an
equivalent representation of the hidden Markov model.
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compact, representation in Fig. (8.4)c. Even though the entropy involved in
the choices in this automaton is still ln2 the entropy of the symbol sequence
(the Hidden Markov model) is smaller. This follows from the fact that there
are different combinations of choices in the two A nodes (in Fig. (8.4)c) that
result in the same symbol sequence, i.e., some of the choices made does not
show up in the symbol sequence, and the entropy of the symbolic dynamics
is then smaller.

Problems

8.1.
Let a mapping f(x) be defined by the figure below, where f(1/3) = 1,f(2/3) =
2/3, and f(0) = f(1) = 0.

Consider the dynamical system xt+1 = f(xt).

(a) Find the invariant measure µ that characterises the chaotic behaviour,
and determine the corresponding Lyapunov exponent λ by using that mea-
sure.
(b) Show that there is a partition that has a symbolic dynamics with a mea-
sure entropy sµ that equals the Lyapunov exponent (as one should expect).
(c) Suppose that we at a certain time t observe the system in the region given
by x > 2/3. If we find the system in this region again two time steps later,
how much information do we gain by this observation?

8.2.
Let a piecewise linear mapping f(x) be defined by the figure below, where
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0 < a < 1, and where the mapping is determined by f(0) = 3/4,f(3/4) = 1,
and f(1) = a.

Consider the dynamical system xt+1 = f(xt).

(a) At what value on a does the system become chaotic (starting with a
being close to 1)? Characterize the dynamics for a above the critical value
for chaos (stable/unstable fixed point and/or periodic). Is there any other
value on a that corresponds to a change in the dynamics in the non-chaotic
regime?
(b) Suppose that a = 0. Determine the invariant measure that characterizes
the chaotic behaviour, and calculate the Lyapunov exponent λ. Calculate also
the measure entropy from the finite state automaton describing the symbolic
dynamics (for a generating partition).
(c) If you know that the system is in the region x > 3/4 at time t, how much
information do you get if you observe the system in the region x < 3/4 at
time t+ 3 (again assuming a= 0)?

8.3.
Let a piecewise linear mapping f(x) be defined by the figure below, where
0< a< 1, and where the mapping is determined by f(0) = a,f(1/4) = 0, and
f(1) = 1/4.
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Consider the dynamical system xt+1 = f(xt).

(a) At what value on a does the system become chaotic (starting with a
being small)? Characterize the dynamics for a below the critical value for
chaos (stable/unstable fixed point and/or periodic). Is there any other value
on a that correspond to a drastic change in the dynamics in the non-chaotic
regime?
(b) Suppose that a = 1. Determine the invariant measure that characterizes
the chaotic behaviour, and calculate the Lyapunov exponent λ. Calculate also
the measure entropy from the finite state automaton describing the symbolic
dynamics (for a generating partition).
(c) If you know that the system is in the region x < 1/4 at time t, how much
information do you get if you observe the system in the same region again at
time t+ 3 (again assuming a= 1)?

8.4.
Let a mapping f(x) be defined by the figure below, where 1/2< a < 1.
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Consider the dynamical system xt+1 = f(xt).

(a) At what value on a does the system become chaotic?
(b) Suppose that a= 7/8. Determine the invariant measure that characterizes
the chaotic behaviour, and calculate the Lyapunov exponent λ. Calculate also
the measure entropy from the finite state automaton describing the symbolic
dynamics (for a generating partition).
(c) If you know that the system is in the region x < 1/4 at time t, how much
information do you get if you observe the system in the same region again at
time t+ 3?

8.5.
Let a mapping f(x) be defined by the figure below (so that f(0) = a,f(1/4) =
1/2,f(3/4) = 1,f(1) = 0, with 0≤ a≤ 1/2.

Consider the dynamical system xt+1 = f(xt).

(a) At which value of a < 1/2 does the system become chaotic when de-
creasing from 1/2?
(b) What is the behaviour for a close to 1/2 (above the critical value derived
above). Describe qualitatively only.
Assume from now on that a= 0.
(c) Find the invariant measure µ that characterizes the chaotic behaviour, and
determine the corresponding Lyapunov exponent λ by using that measure.
Find a partition that has a symbolic dynamics with a measure entropy sµ?
that equals the Lyapunov exponent (as one should expect).
(d) Suppose that we at a certain time t observe the system in the region
given by x > 3/4. If we find the system in this region again three time steps
later (at t+ 3), how much information do we gain by this observation?
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8.6.
Suppose that for a continuous mapping f(x), 0 ≤ x ≤ 1, holds f2(0) =
1,f3(0) = 0, and that the function is linearly increasing in the interval
0≤ x≤ f(0), and linearly decreasing in the interval f(0)≤ x≤ 1.

Consider the dynamical system xt+1 = f(xt).

(a) Determine at what value f(0) the Lyapunov exponent λ has its maxi-
mum. What is the value λ?
(b) If an observer knows that the system at time t is found in the interval
0 ≤ x ≤ f(0), how much information does the observer gain when she also
learns that the same holds at time t+ 4?

8.7.
Let a mapping f(x) be defined by the figure below, where f(1) = a and
f(2/5) = 0.

Consider the dynamical system xt+1 = f(xt).

(a) Describe the behaviour when a is small? At what value on a becomes
the system chaotic?
(b) Suppose that a= 2/7. Calculate the Lyapunov exponent λ. What does a
generating partition of the interval [0,1] look like, and what is the measure
entropy sµ?
(c) What is the Lyapunov exponent if a= 2/5?
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