MVE035/600, VT-20: IMPLICIT FUNCTION THEOREM FOR MORE THAN ONE EQUATION

Let n, k be positive integers and let F_{1}, \ldots, F_{k} be functions of $n+k$ variables $x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+k}$. Consider a system of equations, i.e.: of level surfaces,

$$
\begin{gathered}
F_{1}\left(x_{1}, \ldots, x_{n+k}\right)=c_{1} \\
\cdot \\
\cdot \\
F_{k}\left(x_{1}, \ldots, x_{n+k}\right)=c_{k}
\end{gathered}
$$

The basic question is: when can we eliminate the k variables x_{n+1}, \ldots, x_{n+k} from this system ?
Suppose each F_{i} is a C^{1}-function and, for the sake of argument, suppose we can indeed eliminate the above k variables so that there are implicitly defined C^{1}-functions f_{1}, \ldots, f_{k} of n variables such that

$$
\begin{equation*}
x_{n+m}=f_{m}\left(x_{1}, \ldots, x_{n}\right), \quad m=1, \ldots, n \tag{0.2}
\end{equation*}
$$

Substituting (0.2) into (0.1), the i : th equation, for each $i=1, \ldots, k$, reads

$$
\begin{equation*}
F_{i}\left(x_{1}, \ldots, x_{n}, f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)=c_{i} \tag{0.3}
\end{equation*}
$$

Using the chain rule, we can partially differentiate (0.3) with respect to x_{j}, for each $j=1, \ldots, n$, and find that

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial x_{j}}+\sum_{m=1}^{k} \frac{\partial F_{i}}{\partial x_{n+m}} \frac{\partial f_{m}}{\partial x_{j}}=0 \tag{0.4}
\end{equation*}
$$

Note that (0.4) describes in total a system of $k n$ equations, one for each $i=1, \ldots, k$ and $j=1, \ldots, n$. If you stare long enough, you'll see that this system can be written in matrix form as

$$
\begin{equation*}
B+A X=0 \tag{0.5}
\end{equation*}
$$

where $A=\left(a_{u v}\right)$ is a $(k \times k)$-matrix, $B=\left(b_{u v}\right)$ is a $(k \times n)$-matrix and $X=\left(c_{u v}\right)$ is a $(k \times n)$ matrix. Specifically,

$$
\begin{equation*}
a_{u v}=\frac{\partial F_{u}}{\partial x_{n+v}}, \quad b_{u v}=\frac{\partial F_{u}}{\partial x_{v}}, \quad c_{u v}=\frac{\partial f_{u}}{\partial x_{v}} \tag{0.6}
\end{equation*}
$$

Note that the only unknowns here are the functions $f_{m}, m=1, \ldots, k$, hence X is the "unknown" matrix in (0.5). Eq. (0.5) has a unique solution if and only if the matrix A is invertible, hence if and only if $\operatorname{det}(A) \neq 0$.

The Implicit Function Theorem states that, if $\operatorname{det}(A) \neq 0$ in a point $\boldsymbol{a} \in \mathbb{R}^{n+k}$ satisfying the system (0.1), then indeed there exist C^{1}-functions f_{m} satisfying (0.2) in a neighborhood of that point. Moroever the $k n$ partial derivatives $\frac{\partial f_{u}}{\partial x_{v}}, u=1, \ldots, k, v=1, \ldots, n$, which are the entries of the matrix X, are given in matrix form by $X=-A^{-1} B$.

This is the most general form of the IFT. It reduces to what we presented in class when $k=1$.

