
Proceedings of the 1998 Conference on Software Engineering and Knowledge Engineering

Architecture-Based Performance Analysis�

Bridget Spitznagel and David Garlan

School of Computer Science
Carnegie Mellon University

E-mail:sprite@cs.cmu.edu, garlan@cs.cmu.edu

Abstract

A software architecture should expose important system
properties for consideration and analysis. Performance-
related properties are frequently of interest in determining
the acceptability of a given software design. In this paper
we show how queueing network modeling can be adapted to
support performance analysis of software architectures. We
also describe a tool for transforming a software architecture
in a particular style into a queueing network and analyzing
its performance.

1. Introduction

An important issue for the engineering of complex soft-
ware systems is determining overall system performance.
Currently estimating performance for a system, in advance
of actually building it, is something of a black art, relying
on previous experience, local knowledge, and ad hoc tech-
niques. This is unfortunate, since for many systems, it is
often possible to make fairly good predictions of the ex-
pected performance of individual parts. At the very least, it
would be good to be able to try out various “what-if” sce-
narios, contrasting the adequacy of different designs under
different assumptions.

One emerging approach for dealing with such problems
is to take an architectural view of the software. The software
architecture of a system determines its overall structure as
a collection of interacting components. By operating at this

�This research was sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-97-2-0031, and by the National
Science Foundation under Grant No.CCR-9357792. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency Rome Laboratory or the U.S. Government.

level of abstraction, one would hope to be able to reason in
a straightforward way about overall system properties such
as performance, reliability, etc.

To take a simple example, consider the mini-architecture
illustrated in Figure 1, which contains three interacting com-
ponents: a web server, a web client, and a database. Assume
that the client makes requests of the server and receives re-
sponses asynchronously. The server may make a request of
the database in the process of filling the client’s request.

The acceptability of this design will likely depend on
several unanswered questions concerning the overall perfor-
mance of the system, such as:

� How well can this web site handle the anticipated
demand? What will the average response time be?
How large should buffers be?

� Given a maximum acceptable response time, what is
the highest demand the web site can handle?

� Suppose that the demand is expected to peak for brief
periods, and degraded performance during this time
is acceptable. How much will performance degrade?

� Which component is the bottleneck? Should it be
upgraded or replicated? How does the transmission
rate of the data affect performance?

DATABASE

SERVERCLIENT

Figure 1. An internal web site

Unfortunately, most architectural designs are character-
ized informally and provide weak support for system-level
analyses. As a result, it may be difficult to answer questions
such as these with any degree of precision.

One of the stumbling blocks is that architects have a lim-
ited arsenal of concepts and tools to carry out such analyses
at an architectural level of design. Even if good estimates of



performance can be determined for a system’s components,
it may be very difficult to derive overall system behavior.

Ideally what is needed is a way to exploit system design-
ers’ knowledge to derive the expected performance of the
system from performance-related attributes of its parts. For-
tunately, a mathematical model already exists in a similar
domain. Queueing network theory is used in computer sys-
tems performance analysis to predict attributes of a system
from attributes of its parts. A queueing network processes
jobs. The elements in a queueing network are hardware de-
vices, each of which has a queue. Jobs require service from
a set of devices and wait in a queue when a desired device is
busy. Each job exists in only one device or queue at a time.

Adaptation of this technique to software architecture
performance analysis might seem straightforward at first
glance. Hardware devices are replaced by software com-
ponents. A job is replaced by a sequence of requests for
service. Each component receives and processes requests,
and when a request is completed, the component may send
a new request for service to another component. The path
of the sequence of requests is determined by converting the
connections between components described in the architec-
ture to an acyclic directional graph.

However this adaptation is overly simplistic and incom-
plete, as becomes evident when it is applied to examples
even as simple as the web site example. In particular, the
adaptation implicitly makes several assumptions, some of
which are inappropriate in this context. For example, it
assumes that all jobs have the same service requirements,
and that connectors do not significantly affect performance.
In order to apply queueing network analysis to a software
architecture, we must examine and resolve such problems.

In this paper we show how to adapt queuing network
theory so that itcan be applied to a significant class of ar-
chitectural designs. By doing this we show how to bring
system building and analysis knowledge to bear on the de-
sign process by harnessing an existing analysis technique
for a new domain. We begin by briefly reviewing relevant
elements of queueing network theory. Next we consider the
straightforward application of this theory. Though powerful
when it can be applied, its limitations make it less than ideal.
Then we show how the basic ideas can be extended to handle
a much broader class of system, including those with cycles,
autonomous clients, replicated services, and connector de-
lays. Finally, we briefly describe the implementation of a
tool that carries out architecture-based performance analy-
sis, and outline future directions in this line of research.

2. Queueing Network Theory

To set the stage we begin with a brief introduction to
queueing theory. Wewill cover only theessentials of product

form networks.1

The basic units of a queueing network are “service cen-
ters” and “queues.” A queue is a buffer with some queueing
discipline (FIFO, round robin,LCFS preemptive resume). A
service center provides some necessary service. Examples
include a bank teller, hardware device, or database. Each
service center has a queue containing jobs to process.

A replicated service center representsm identical pro-
viders of service, which draw their jobs from a single queue.
For example, an airline’s baggage check counter has one line
of customers but many ticket agents. An infinitely replicated
service center (m =1) is called a “delay center,” and may
be used to model a transmission delay.

Queueing network analysis can produce results both for
individual queues (associated with service centers), as well
as for the network as a whole.

To derive performance characteristics forindividualser-
vice centers, two important pieces of information must be
known: the average time the service center takes to process
one job (service time), and the average rate at which jobs ar-
rive (arrival rate). The service time and the time between job
arrivals are usually taken to have exponential distributions.2

An exponential probability density function with ex-
pected value 1=� is given by

f(t) = �e��t

It is sometimes called “memoryless” because the expected
time left to wait is always 1=�, regardless of how much
time has passed. This renders the history of the system
unimportant, greatly simplifying the analysis. We assume
exponential distributions, but will return to this issue in
section 7.

From this information, results in queueing theory make
it possible to calculate for a single queue:

� Utilization (how often the service center is occupied.)
� Average time a job spends waiting in the queue.
� Average queue length.
� The probability that the queue length isn.
� Whether the system is stable or overloaded. In an

overloaded system, the queue grows faster than jobs
can be processed; the server cannot keep up.

� For a queue implemented as a buffer of lengthB,
the rate at which incoming jobs are discarded due to
buffer overflow (drop rate.)

A queueing networkis an interconnected group of these
queues. Jobs enter the network, receive service at service
centers, and leave. The average rate at which jobs enter
the network (system arrival rate) must be known. For each
service center, the service time must be known, as well as the

1For a more detailed treatment see Lazowska [8] or Sauer [9].
2Sometimes the distribution is known to be non-exponential, but close

enough. If it has a larger variance, the analysis will be too optimistic.



rate at which jobs arrive at its queue relative to the system
arrival rate (relative arrival rate). In addition to the above
results it is possible to calculate expected values for

� Latency, the time for a job to be completely processed
� Throughput, the rate at which jobs are processed
� Number of outstanding jobs in the system
� Most-utilized service center, a possible bottleneck.

The system arrival rate and a queue’s relative arrival rate
determine the actual arrival rate at that queue. The relative
arrival rate may be specified if known; otherwise it must be
derived from the probabilistic path of a job through the net-
work. For example, jobs leaving the web server may have a
60% chance of proceeding to the database. These transition
probabilities are expressed as a set of linear equations and
solved for the relative arrival rates.

Some systems process several kinds of jobs. To model
jobs with different behavior, each queue is divided into one
or more “job classes.” For the purposes of this paper, job
class will affect only the next destination of the job, not
service times or processing order. Transition probabilities
are now specified between job classes, instead of queues.

For example, in the context of our example architecture,
it may be that a job which was classc1 at the web server is
likely to proceed to the database, while a job that was class
c2 at the server will always proceed to the client.

3. Application To Software Architecture

We begin with the simplest possible translation of queue-
ing analysis into architectural terms. Though this simple
analysis is sufficient for some systems, it is too weak for
others. We will resolve these problems by extending the
translation in the next section.

This translation is based on a “distributed message pass-
ing” architectural style, in which a design is fairly close
to its queueing network equivalent. The components rep-
resent distributed processes. Connectors in this style are
directional and represent asynchronous message streams;
the messages are queued for processing by the components.

We assume that each component has a single queue, and
that messages are processed in FIFO order.3 When a com-
ponent processes a message, it may produce 0 or 1 new
messages as a result. A message entering the system thus
corresponds to a queueing network job; when the first com-
ponent finishes processing it and sends a new message to
another component, then the new message represents that
same job. The job exists as a sequence in time of individual
messages, and is completed when the sequence terminates.

To illustrate, consider the following simplification of the
example in Figure1. Jobs (or messages) arrive from outside;
each visits the clientC, the serverS, and the databaseD,

3Other queueing disciplines would be permissible; see section 2.

and is finished.R jobs arrive in the system per second, soR
jobs/s arrive in each component’s queue. The components’
service times areSC ; SS ; andSD . For the automated anal-
ysis, we add a service time property to each component, and
an arrival rate property to the system.

The utilization of a componenti isui = RSi, its average
queue length isqi = u2

i
=(1� ui), and its average response

time isSi=(1� ui). The average population ofi is pi =
ui=(1�ui), comprising jobs in its queue and jobs receiving
its service. The probability thatpi � n is un

i
. The system

populationP is the sum of the components’ populations,
and the system response time isP=R.

SupposeR = 9:5 / s,SC = 65; SS = 20; SD = 103 ms.
Then we expect a system response time of 5 s. The utiliza-
tion of the database component is 98%. This component
is close to overloaded, and is likely to have a long queue
and a high latency. On average the queue length will be
44 elements; there is a 27% probability that the length will
be 60 or more. If the estimatedSD turns out to be slightly
larger, the database will be unable to keep up. The system
will be acceptable only if the database isupgraded.

While these results are useful, the technique is of limited
applicability for several reasons.

� It assumes that the set of services required by a job is
implicit in the architecture, such that each job visits
each service center once. This is not always the case.

� There is no notion of autonomous clients. Jobs must
arrive from outside at a known rate; components can-
not issue new jobs as in the original example.

� When a bottleneck is found in a system, sometimes
the component responsible is replicated to distribute
its load across more than one device. Modeling this
at the software architecture level is desirable but will
require careful consideration.

� Connectors between components can add delays, af-
fecting the system’s response time. They should cer-
tainly be included in the model.

� There are further complications in understanding, at
the level of software architecture, the requirements
and assumptions which are natural at a mathematical
level and may be inherent at a hardware component
level; e.g., the degree to which one service center is
loaded must not affect the service time of another.

4. Extending The Model

Having observed the inadequacies of the simple transla-
tion illustrated above, we now describe several key exten-
sions which make the translation more widely applicable.



4.1. Cycles

The original architecture processed two kinds of jobs. A
“fetch” visits the client, the server, and the client again; a
“query” visits the client, server, database, server, and client.

To analyze the performance of this system, it is nec-
essary to attach additional information to the architecture:
each component will have a list of the kinds of messages
(corresponding to job classes) it services and their transition
probabilities, and the system will have a list of the incom-
ing job classes and their arrival rates. These properties are
used to create a set of linear equations for the components’
relative arrival rates, enabling analysis as before.

For the example system, this information might be as fol-
lows. The server can receive three kinds of messages:f etch
and query from the client andanswerfrom the database.
The client can receivestartfrom outside andendfrom the
server. Suppose that 40% of jobs are “fetch” and the rest are
“query”. When the client finishes processing astart, there is
a 40% probability that it sends the serverf etch; otherwise, it
sendsquery. When the server finishesf etchoranswer, it al-
ways sends the clientend. When the server finishesquery, it
sends a message to the database; when the database finishes
that message, it will send the serveranswer.

4.2. Autonomous Clients

In the original architecture, jobs were generated by the
web client. This system can be easily transformed to one
in which jobs arrive from the outside. However, a more
complex system, in which many components initiate jobs of
various classes, would be tedious to transform by hand. Job
generation can remain associated with these components if
this transformation is added to the automated analysis.

We add to each client properties specifying the classes
and generation rates of initiated jobs. The system properties
added above are no longer specified, since they will be cal-
culated from these client properties. The effective system
arrival rateR is the sum of the clients’ generation rates.

One open question is whether request generation should
take the usual service time, or a negligible amount of time4.
In the example system, the latter is more appropriate.

4.3. Replication

There are several obvious ways to deal with a bottleneck
component: replicate it, speed it up, or reduce the demand
on the system. These options may vary in expense and
difficulty, or even feasability, for a given system. When
considering these tradeoffs it is helpful to compare the per-
formance improvement that will result from applying each

4Specifyinga different service time for requestgenerationwould violate
an assumption needed to keep the mathematics simple.

option at some level of expense. The results of the latter two
can be calculated using the techniques already discussed.

For the purposes of analysis, the instances of the repli-
cated component should be identical. This creates a prob-
lem: jobs processed by some systems do distinguish be-
tween instances of replicated components. In the web ex-
ample, a job initiated by the client returns to that client for
final processing and display. Replicating the client could re-
sult in an optimisticprediction, since the model will attribute
the final processing to any client that is not busy.

We must also consider the rate at which this replicated
client generates requests. The generation rater will be rede-
fined as the rate of one instance; then the overall rate ismr.
The alternative is to simply specify the overall rate, which
is inconvenient if the degree of replicationm is changed.

The individual analysis for a replicated component is
somewhat more complicated than for an ordinary compo-
nent; the queue does not grow untilm jobs are in service.

4.4. Delay in Connectors

In our example, the connectors are an abstraction for
creating, sending, and enqueueing messages. So far their
effect on system performance has been neglected. In reality,
transmission delays can increase the system response time.

Service centers could be used to model connectors; this
model assumes that only one message can be in transit at a
time, and may produce inflated response times. Instead, we
model a connector as a delay center. Its arrival rate is equal
to the arrival rate at the component fed by the connector.
Each connector has a delay time property, representing the
average time it takes a message to traverse the connector.

A connector’s transmission delay affects the system re-
sponse time: the delay time ofeach connector traversed by
a job is added to the job’s response time. It does not affect
component performance or bottlenecks.

5. Example Revisited

Consider a new version of the example used in section
3. Messages traversing connectors now incur a transmission
delay. Jobs are no longer required to visiteach component
exactly once: each job returns to the client for final process-
ing, and some jobs never visit the database. Replication is a
permissible option. To illustrate these extensions, in terms
of a model, assume that the following is true for this system.

Estimated service times areSC = 65 ms,SS = 20 ms,
SD = 103 ms. The delayDCS for the connectors between
the client and server is 1.5 s, and the delayDSD for the
connectors between the server and database is 50 ms. The
client generates the two kinds of jobs, “fetch” and “query,”
described in section 4.1. The client generates 3 fetches and



7 queries per second. With this information we can now
calculate various performance characteristics of the system.

The effective arrival rate of the system is the sum of all
generation rates: 10. Transition probabilities for the system
arrivals are calculated from the generation rates. In this
system, request generation takes essentially no time, so the
system arrivals will all be sent to the server; otherwise, they
would be sent to the client for service. (Section 4.2)

Now it is possible to calculate relative arrival rates from
transition probabilities. The relative arrival rate at the server
is 1� 3

10 fetch+2� 7
10 query= 1:7. At the database it is

0 fetch + 0:7 query. At the client it is 1, because the system
arrivals are sent to the server to mimic a negligible client
generation time; otherwise, it would be 2. (Section 4.1)

The relative arrival rates of the connectors are the same
as the components whose queues they feed. (Section 4.4)

Now we return to the equations of section 3. The uti-
lization of the database is 7� 0:103= 72%. The server’s
is 17� 0:020= 34%. The client’s is 10� 0:065= 65%.
The database, closest to being a bottleneck, is of greatest
interest. Its average queue length is 1.85 messages, and its
response time is 103=(1� 0:72) = 370 ms.

The average population of the system is about 58 mes-
sages; of these, 17� 1:5� 2 = 51 are in transit betweenC
andS, and one is betweenS andD. (Section 4.4)

The average system response time is 58=10= 5:8 s. (3 s
are due to the delay between client and server).

Now let us suppose that the database is being considered
for an upgrade. Assume that it will be replaced by either a
single instance with a service time of 75 ms, or two identical
instances, each with service time of 110 ms. We would
like to compare the performance of the two options while
assuming the rest of the system remains unchanged.

The first option will have an average of 1.1 messages
present in the queue and receiving service, and an average
queue length of .58. The second option will have 3.8 present,
and a queue length of 2.2. The utilizations are 53% and
39%; the second option will be better able to handle an
above-average load. The response times are 160 ms and
141 ms. From a performance standpoint, the second option
seems the better choice; other factors such as expense may
also factor into the final decision. (cf. Section 4.3)

6. Implementation Status

The distributed message passing style described above
has been implemented as a style in Aesop [3]. The basic
component type is a Process, and the connector type is a
MessageStream. MessageStreams are directional.

The Aesop environment allows a user to graphically con-
struct a software architecture in this style, enter the numbers
needed for analysis in component and connector “work-
shops,” and run analysis tools on the architecture. Numeric

ACME

ACME

Analysis
ToolAesop

Importer

Exporter

Figure 2. Performance analysis via Aesop

analysis results such as expected queue length are displayed
in the workshops. Other results are indicated graphically;
overloaded components, which will be unable to keep up
with the anticipated demand, are highlighted.

The style also provides an option on components to set
the degree of replication. The effect of this option is to
alter the component’s appearance and change the predicted
performance as described in section 4.3.

The analysis tool automatically performs the transforma-
tions described above. It reads in a text file containing an
architecture described in Acme [4], determines which trans-
formations to apply, analyzes the resulting network, and
outputs an Acme description annotated with the results of
the analysis. Aesop exports and imports these Acme de-
scriptions (Figure 2), making the results visible to the user.

In a typical scenario, the user begins the iterative design
process by constructing the top level design. He estimates
the service times of the components, names the job classes,
and fills in their transition probabilities. The user then runs
the performance analysis tool. Based on the results he may
replicate bottleneck components, decompose some compo-
nents to provide estimates at a lower level, or otherwise
refine the design. After making informed modifications, he
repeats the process until an acceptable architecture is found.

7. Discussion And Future Work

We have shown how to apply queueing network model-
ing to software architectures in a particular style. A naive
adaptation is sufficient for a few simple architectures, but
proves inadequate for more interesting designs. It becomes
much more useful with the extensions we have illustrated.

Three concerns remain. The performance predictions
are based on unreliable estimates supplied by the user. The
application above is restricted to one style. The underlying
mathematical assumptions further restrict the systems that
can be modeled. We will consider each of these in turn.

Dependence on unreliabledata is unavoidable. Estimates
made early in the design process cannot be completely ac-
curate, and the performance analysis relies on these inputs.
However, there is no reason to take this for the final answer.
The performance analysis tool can be rerun as the design
is altered and as more accurate estimates become available,
providing the user with incrementally improving feedback.

The application of queueing network analysis can be ex-
tended to other architectural styles. The distributed message



passing style was intended to mesh with the usual assump-
tions of the most simple queueing network model. We
expect other styles to violate one or more of these; further
style-specific transformation of the original architecture will
be needed to produce a tractable queueing network.

In the pipe and filter style, for example, modeling systems
with fan-out and fan-in presents a problem; they do not meet
the assumption that jobs exist in exactly one queue or service
center at a time. Fortunately, techniques exist for repeatedly
collapsing subnetworks into an approximately equivalent
composite queue, and for allowing a job to occupy a set
of service centers simultaneously by declaring all but one
“passive resources.” Such systems could be approximated
by applying these techniques. We believe that many other
styles would be amenable to similar adaptation of our results.
However, this remains an area for future research.

Earlier we made several mathematical assumptions; in
particular, probability distributions are assumed to be ex-
ponential. Results in queueing theory that we have not
discussed here include the analysis of queues with known
nonexponential distributions. This could also be adapted to
software architecture – following the same approach that we
have described here – thereby allowing users to estimate the
performance of systems with nonexponential distributions.
Working out the details of using nonexponential distribu-
tions, however, is an item for future research.

The style in which an architecture is designed constrains
the design in particular ways. We have described here only
the most basic of queueing analyses; other, more powerful,
queueing theory results exist and can be incorporated in the
tool. Using the knowledge of a style’s constraints to select
appropriate queueing theory techniques, automatic transfor-
mation and analysis may be made feasible for designs in that
style. Conversely, an architect’s criteria for selecting a style
to use may include its amenability to analysis.

8. Related Work

Two bodies of related work exist.
The first area is classical results in queueing theory. A

great deal of work has been done in queueing theory, and
many texts are available (e.g., Lazowska [8], Sauer [9], Jain
[5]). We build on this work by applying it in a different
domain and interpreting the results in the software design
world. As we have noted, several issues must be resolved in
order to do this.

The second area is architecture-based analysis. Architec-
ture based static analysis is an important and growing area.
Types of analyses include real-time systems in Unicon [10]
and Aesop [3], component-connector protocol compatibil-
ity [2], reliability block diagrams [1], and adaptability in
SAAM [6, 7]. Our adaptation of queueing network model-
ing adds to the repertoire of available static analysis tools,

complementing the growing body of architecture-based no-
tations and toolsets.

9. Acknowledgements

We would like to thank the developers of the Acme Li-
brary – Bob Monroe and Drew Kompanek – who provided
much of the infrastructure on which our analysis tool is
based. We also acknowledge the developers of the Aesop
Environment, which provided the front end to the tool.

References

[1] A. Abd-Allah. Extending reliability block diagrams to
software architectures. Technical Report USC-CSE-
97-501, University of Southern California, Mar. 1997.

[2] R. Allen and D. Garlan. A formal basis for archi-
tectural connection.ACM Transactions on Software
Engineering and Methodology, July 1997.

[3] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments. InPro-
ceedings of SIGSOFT’94: The Second ACM SIGSOFT
Symposium on the Foundations of Software Engineer-
ing, pages 179–185. ACM Press, Dec. 1994.

[4] D. Garlan, R. Monroe, and D. Wile. ACME : An
architecture description interchange language. InPro-
ceedings of CASCON’ 97, Nov. 1997.

[5] R. Jain. The art of computer systems performance
analysis. John Wiley & Sons, New York, NY, 1991.

[6] R. Kazman, G. Abowd, L. Bass, and P. Clements.
Scenario-based analysis of softwarearchitecture.IEEE
Software, pages 47–55, Nov. 1996.

[7] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM
: A method for analyzing the properties of software
architectures. InProceedings of the 16th International
Conference on Software Engineering, pages 81–90,
Sorrento, Italy, May 1994.

[8] E. D. Lazowska et al.Quantitative system performance
: Computer system analysis using queueing network
models. Prentice-Hall, Englewood Cliffs, NJ, 1984.

[9] C. H. Sauer and K. M. Chandy.Computer systems per-
formance modeling. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

[10] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for software
architecture and tools to support them.IEEE Transac-
tions on Software Engineering, Special Issue on Soft-
ware Architecture, 21(4):314–335, Apr. 1995.


