
1

Wirfs-Brock Associates Copyright 2000. All rights reserved

1Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

���������	
��	��
���
	�����������������������

�
�������

����������������	��
�������� �������	��!�	"

2Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

What Is Responsibility-Driven Design?

A way to design software that…
–emphasizes modeling of objects’
roles, responsibilities, and
collaborations
–uses informal tools and techniques
–adds responsibility concepts and
thinking to any process

Object Design: Roles, Responsibilities and Collaborations,
Rebecca Wirfs-Brock and Alan McKean, Addison-Wesley, 2003

www.wirfs-brock.com for articles & presentations

2

Wirfs-Brock Associates Copyright 2000. All rights reserved

3Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

The Design Process
Design is messy and iterative

Early descriptions often are
imprecise

Deciding details too early can
constrain your choices

Key objects and their interaction
patterns have the most impact

Later descriptions add details

4Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Different Points-of-View:
Different Results

Data-Driven

Responsibility-Driven

Event-Driven

Rule-Based

Ad-Hoc

Choice of key design
abstractions

Distribution of data and
behavior

Patterns of
collaboration

Object visibilities

influence

3

Wirfs-Brock Associates Copyright 2000. All rights reserved

5Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Designing a HorseHead

Legs (4)

Tail
BodyStart

Stop

Speed Up

Slow Down

6Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Designing a Horse Responsibly

4

Wirfs-Brock Associates Copyright 2000. All rights reserved

7Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Responsibility-Driven Design Principles

Maximize Abstraction
Initially hide the distinction between data and behavior.
Think of objects responsibilities for “knowing”, “doing”,
and “deciding”

Distribute Behavior
Promote a delegated control architecture
Make objects smart— have them behave intelligently, not
just hold bundles of data

Preserve Flexibility
Design objects so interior details can be readily changed

8Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Responsibility-Driven Design Constructs
an application = a set of interacting objects

an object = an implementation of one or more roles

a role = a set of related responsibilities

a responsibility = an obligation to perform a task or know
information

a collaboration = an interaction of objects or roles (or
both)

a contract = an agreement outlining the terms of a
collaboration

5

Wirfs-Brock Associates Copyright 2000. All rights reserved

9Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Role Stereotypes: A tool for seeing and
shaping object behaviors

stereotype—A conventional, formulaic, and oversimplified
conception, opinion, or image

10Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

From Responsibility-Driven Design: Object
Role Stereotypes

Information holder - knows and
provides information
Measurement

Structurer - maintains relationships
between objects and information about
those relationships
Sensor Repository

6

Wirfs-Brock Associates Copyright 2000. All rights reserved

11Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Object Role Stereotypes

Coordinator – mechanically reacts to
events Sensor Poller

Controller - makes decisions and closely
directs others’ actions
Data Collector

12Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Object Role Stereotypes

Interfacer - transforms information and
requests between distinct parts of a
system Sensor

Service provider - performs work on
demand Confidence Rater

7

Wirfs-Brock Associates Copyright 2000. All rights reserved

13Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

1. In early modeling, stereotypes help you think about the
different kinds of objects that you need

2. You consciously blend stereotypes with a goal of making
objects more responsible and intelligent

–information holders that compute with their information
–service providers that maintain information they need
–structurers that interface to persistent stores, and derive new
relationships
–interfacers that transform information and hide many low-level details

3. Study a design to learn what types of roles predominate and
how they interact

Three Uses for Object Role Stereotypes

14Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Layered Architecture

Application
Coordination

& Control

Business
Information and

Services

Technical
Services

Presentation
User Interfacers

Controllers and
Coordinators

Information-Holders, Service-Providers, and Structurers

External Interfacers
Data Interfacers

Window

EntryField

PushButton PushButton

EntryField

Window

Registration
Coordinator

Login
Coordinator

User
Customer

Account
Transaction

User Session

dBASEConnectOracleConnect

8

Wirfs-Brock Associates Copyright 2000. All rights reserved

15Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Pulling up a level…to compare

���������	
���
��
��������������������
���������������	
���
��
�����
������� �!����"�����! ��������

���
�#���	��
	�"������
���!�$%&'(��)((*

�+���,��
#���,
�������� �-
�������	.��!��""
�".������
��/�" �)���� �%

16Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

…and characterize

Data-Driven Design
Approach

Responsibility-Driven
Design Approach

centralized control delegated control

controllers coordinators

inherited attributes inherited behavior

many low-level
messages

fewer, higher-level
messages

lots of simplistic
information holders

a few smart objects that
blend role stereotypes

9

Wirfs-Brock Associates Copyright 2000. All rights reserved

17Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

n-tier web applications

RDBMS, Queues, Enterprise
Service Bus

Service ProviderDatabase,
Enterprise Services

Resources

JavaBean, Entity EJBInformation
Holder,
Structurer

Domain ModelData Access

POJO, Session EJBControllerBusiness DelegateBusiness Logic

ServletCoordinatorCommandControl

JSPInterfacerPage LayoutPresentation

HTML, JavaScriptInterfacerUser InterfaceClient

TechniqueRoleFunctionalityLayer

18Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Exploratory Design

Characteristic:
Formative

Goal: Produce object
and interaction models

Results: Class
descriptions, object
collaborations

10

Wirfs-Brock Associates Copyright 2000. All rights reserved

19Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

A Designer’s Story: A tool for seeing what’s
important

Designer’s story—a
quickly written
paragraph or two
description of important
ideas, what you know,
and what you need to
discover

20Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Elements of a story…

What is your design supposed to do?

Is there something similar you can draw upon or
emulate?

What will make it a success?

What are the most challenging parts?

11

Wirfs-Brock Associates Copyright 2000. All rights reserved

21Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Why tell a designer’s story?

To put your spin on what’s important

Describing the problem helps you own it

Sharing them builds understanding and a common
vision

Metaphors are hard to come by…identifying themes
and key responsibilities from designer stories is one
alternative

22Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Identify Story Themes

Themes are key areas of system activity and design
focus

Online Banking themes
modeling online banking activities
representing common banking functions
configuring system behavior
accessing scarce resources

They can be broad or narrow

12

Wirfs-Brock Associates Copyright 2000. All rights reserved

23Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Finding Candidates

24Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Guidelines for Inventing Objects

An object should capture one key abstraction

Choose meaningful names

Distinguish objects by behavior differences

Fit objects into their design context

13

Wirfs-Brock Associates Copyright 2000. All rights reserved

25Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Where Do We Find Objects?

Objects that support
System behaviors
Architecture
Performance requirements
Software mechanisms and machinery

Look for
Key concepts in the domain
Things that represent the software’s view of things outside the
software in the “real world”

26Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Objects from Key Concepts—Domain
Objects

Familiar concepts to someone who knows about the kind of
problem your application is solving

In the domain of banking: account, funds, currency, financial
transaction
In the domain of railroad shipping: consist, rail yard, shipping
route

14

Wirfs-Brock Associates Copyright 2000. All rights reserved

27Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

The Whole Value* Pattern

Classes that represent meaningful quantities in your domain

Examples: currency, calendar periods, temperature, color,
weight, brightness.

Windspeed (NNW at 20 kph)

Temperature (75 degrees Fahrenheit)

Lightreading (1000 lumens)

The name whole value means object do not have an identity of
importance

*Described by Ward Cunningham in
The CHECKS Pattern Language of Information Integrity,
pages 145-156 in Pattern Languages of Program Design, volume 1
see http://c2.com/ppr/checks.html#1

28Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Domain Objects:
Entity* or Value?

*Described by Eric Evans in
Domain Driven Design, chapter on Entities

Entity object—An object distinguished by who it is
Entities have life cycles and can change form and content,
but the thread of continuity must be maintained. “You are
who you are and you are unique.”

Value object—An object that needn’t be
unique (others can share a reference to it)

It typically describes some
characteristic. “I don’t care which
blue crayon I use, just that I have

one.”

15

Wirfs-Brock Associates Copyright 2000. All rights reserved

29Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

What To Look For

Look for inventions that represent:
The work your software performs
The things your software affects or is connected to
The information that flows through your software
Your software’s decision-making, control and
coordination activities
Ways to structure and manage groups of objects
Representations of real world things your software needs to
know something about

30Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Characterizing Your Candidates

16

Wirfs-Brock Associates Copyright 2000. All rights reserved

31Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

CRC Cards: An informal design tool
Candidate, Responsibilities, Collaborators

�������
�	�
�������
�����
�����
�
�����������������
������������	
��
��������
��
���
��
����
��
��
����
����������������������
���
����������
����������������
��
�����
���
����
� �
��
���
	�� �
������
�������������
��� ���������������
����
������������������
���������������������������������	�
�
���
��������
������
����
��������������
����������
��
��������������
���������
�
��
�������!�	���������������	
� ���	��� ������� ����
���"����
���������������������
�����
�!
��
���
	����������#��������������

���������
��� �#����	�
������������ ��
��"�

�
����
�
�������������������� �$�
�������

32Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Explaining Purpose

A candidate does and knows certain things. Briefly,
say what those things are. A pattern to follow:

An object is or represents a thing that knows or does
certain things. And then mention one or two interesting
facts about the object, perhaps a detail about what it does
or who it works with.

17

Wirfs-Brock Associates Copyright 2000. All rights reserved

33Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Purpose Matches Stereotype

A service provider does specific work. The type of work it does
is important to describe:

A compiler is a program that translates source code into machine
language.

A RazzmaFrazzer is a converter that accurately and speedily
translates Razzmas into Frazzes. As it translates, it logs statistics on
how accurate the translation is and whether any information is lost.

34Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Role Stereotypes
Doing, Knowing and Deciding

Stereotypes are simplified views that help you characterize the
roles objects play in an application

Service providers do things
Interfacers translate requests and convert from one level of
abstraction to another
Information holders know things
Controllers direct activities
Coordinators delegate work
Structurers manage object relations or organize large
numbers of similar objects

18

Wirfs-Brock Associates Copyright 2000. All rights reserved

35Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

����
�������	�����
���������
��
�����
�������	�����
���������
��
�����
�������	�����
���������
��
�����
�������	�����
���������
��
�

�����������
���
�������������
���
�������������
���
�������������
���
��

����������
�������������
�������������
�������������
���

��

����
�����������	��
����
�����
�������
�����������	��
����
�����
�������
�����������	��
����
�����
�������
�����������	��
����
�����
���

%���	�����
%���	�����
%���	�����
%���	�����
��������
��
������
�������������
��
������
�������������
��
������
�������������
��
������
�����

������������������������������
��������������
����
�����
�����������
��������������
����
�����
�����������
��������������
����
�����
�����������
��������������
����
�����
�����
��
��
��
��
��
��
��
��

������������������������

CRC Cards: An informal design tool
Candidate, Responsibilities, Collaborators

���
��������
������
��������
������
��������
������
��������
���

&��������
���&��������
���&��������
���&��������
���

36Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Naming Candidates

19

Wirfs-Brock Associates Copyright 2000. All rights reserved

37Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Naming Candidates

Fit a name into some naming scheme
Calendar�GregorianCalendar�JulianCalendar?
ChineseCalendar?

Give service providers “worker” names
Service providers are “workers”, “doers”, “movers” and
“shakers”: StringTokenizer, ClassLoader, and Authenticator

Choose a name that suits a role
Objects named “Manager” organize and pool collections of
similar objects: AccountManager organizes Account objects

38Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Naming Candidates

Choose names that expand an object’s behavior
AccountRecord?—facts set down in writing
Account?—sounds livelier—an object that makes informed decisions on
the information it represents

Choose a name that lasts a lifetime
A ninety-year old named “Junior”?
ApplicationInitializer or ApplicationCoordinator?

Include facts most relevant to its users
TimerAccurateWithinPlusOrMinusTwoMilliseconds?
or simply Timer?

Eliminate naming conflicts by adding description
Rename Properties to TransactionHistoryProperties

20

Wirfs-Brock Associates Copyright 2000. All rights reserved

39Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Refining Candidates

40Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Are You Looking For Objects, Roles, or
Classes?

Candidates represent important, vivid concepts, machinery and
mechanisms

You can think concretely, identifying concrete classes that
represent things that perform some work in your application

..or more abstractly, identify abstractions that stand in for many
different variations on a theme

21

Wirfs-Brock Associates Copyright 2000. All rights reserved

41Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

When finding Common Roles

Blur distinctions — Identify categories. Let go of the little
details that make objects different

42Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Explain Key Abstractions

If a role can be played by several different classes of objects,
explain both the general characteristics and mention something
about the others that will play this role:

An AccountingService represents a single accounting transaction
performed by our online banking application. Successful transactions
result in updates to or queries to a customer's accounts. Specific
AccountingServices communicate with the banking systems to
perform the actual work. Examples of AccountingServices are
FundsTransferService, MakePaymentService, and
ViewAccountBalanceService.

22

Wirfs-Brock Associates Copyright 2000. All rights reserved

43Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Powerful abstractions simplify
and give your design economy
of expression

Reusable roles can be identified
and shared among different
classes

44Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Keep a Candidate When You Can…
Name it

Define its purpose

Stereotype it

See it supports a particular use case

See that it is an important
architectural element

Assign it one or two initial
responsibilities

Understand how others view it

See how it behaves differently

23

Wirfs-Brock Associates Copyright 2000. All rights reserved

45Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Finding and Assigning Responsibilities

46Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Where Do We Find Responsibilities?
By looking at various descriptions of system behavior and then
modeling how a community of objects work:

Object role stereotypes and purpose statements

Use cases
Gaps in these descriptions

Other requirements, themes and stories

Following “what if…then…and how” chains
Relationships and dependencies between candidates
Candidates’ “life events”
Technical aspects of a specific software environment
A design perspective on how things should work

24

Wirfs-Brock Associates Copyright 2000. All rights reserved

47Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

The generative power of role stereotypes

Pushing on an object’s character leads to initial
responsibilities

Ask of a service provider, “what requests should it handle?” Turn
around and state these as responsibilities for “doing” or “performing”
specific services
Ask what duties does an interfacer have for translating information
and requests from one part of the system to another (and translating
between different levels of abstraction)?
What events does a controller handle and who does it direct?

48Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

How Do You State Responsibilities?

A single responsibility is larger than an operation or attribute:
Example: A DataCollector wraps operating system resources, such as
sockets or data streams, retrieves raw data and converts it (packages it)

into one or more data records from a sensing device.

Responsibilities: Receive raw data from a sensor or sensor group
Chunks data into individual readings

Use strong descriptions. The more explicit the action, the
stronger the statement.

Stronger verbs: remove, merge, calculate, credit, activate
Weaker verbs: organize, record, process, maintain, accept

25

Wirfs-Brock Associates Copyright 2000. All rights reserved

49Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Technique: Seeing at different
abstract levels

We can see objects and behavior at
different levels:

At the conceptual level- a set
of responsibilities
At the specification level- set

of methods that can be invoked
At the implementation level-

code and data

50Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Technique: Pull of a Level
Reverse engineer a class into responsibilities

public final void set(int year, int month, int date)

This method sets the values of the year, month, and day-of-the-month fields of this
Calendar.

public final void set(int year, int month, int date, int hour, int minute) This method sets the
values of the year, month, day-of-the-month, hour, and minute fields of this Calendar.

���������	
�����
������	���
����	���	�����	�

�����	��������	�� �	������	�
����	
�

This method sets the values of the year, month, day-of-the-month, hour, minute, and second
fields of this Calendar.

public void setFirstDayofWeek(int value)

This method sets the day that is considered the beginning of the week for this Calendar. This
value should be determined by the Locale of this Calendar. For example, the first day of the
week in the United States is Sunday; in France it's Monday.

public void setLenient(boolean lenient)

This method sets the leniency of this Calendar. A value of false specifies that the Calendar
throws exceptions when questionable data is passed to it, while a value of true indicates that the
Calendar makes its best guess to interpret questionable data. For example, if the Calendar is
being lenient, a date such as March 135, 1997 is interpreted as the 135th day after March 1,
1997.

public void setMinimalDaysInFirstWeek(int value)

This method sets the minimum number of days in the first week of the year. For example, a
value of 7 indicates the first week of the year must be a full week, while a value of 1 indicates
the first week of the year can contain a single day. This value should be determined by the
Locale of this Calendar.

public final void setTime(Date date)

This method sets the point in time that is represented by this

Calendar.

public void setTimeZone(TimeZone value)

This method is used to set the time zone of this Calendar.

The Java Calendar class

Internally, Calendar keeps track of a point in time in two ways. First, a “raw” value is
maintained, which is simply a count of milliseconds since midnight, January 1, 1970 GMT, or,
in other words, a Date object. Second, the calendar keeps track of a number of fields, which are
the values that are specific to the Calendar type. These are values such as day of the week, day
of the month, and month. The raw millisecond value can be calculated from the field values, or
vice versa.

Calendar also defines a number of symbolic constants. They represent either fields or values.
For example, MONTH is a field constant. It can be passed to get() and set() to retrieve and
adjust the month. AUGUST, on the other hand, represents a particular month value. Calling
get(Calendar.MONTH) could return Calendar.AUGUST.

Calendar Methods

public int getFirstDayOfWeek()

This method returns the day that is considered the beginning of the week for this Calendar.
This value is determined by the Locale of this Calendar. For example, the first day of the week
in the United States is Sunday, while in France it is Monday.

public abstract int getGreatestMinimum(int field)

This method returns the highest minimum value for the given time field, if the field has a
range of minimum values. If the field does not have a range of minimum values, this method is
equivalent to getMinimum().

public abstract int getLeastMaximum(int field)

This method returns the lowest maximum value for the given time field, if the field has a
range of maximum values. If the field does not have a range of maximum values, this method is
equivalent to getMaximum(). For example, for a GregorianCalendar, the lowest maximum
value of DATE_OF_MONTH is 28.

public abstract int getMaximum(int field)

This method returns the maximum value for the given time field. For example, for a
GregorianCalendar, the maximum value of DATE_OF_MONTH is 31.

26

Wirfs-Brock Associates Copyright 2000. All rights reserved

51Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

To get a general picture:
Calendar revealed

52Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

What’s Missing From Use Cases

Use cases are descriptive, not prescriptive

There is a gap between these descriptions and a design

Use cases rarely describe aspects of
Control and coordination
Error recovery
Visual display
Timing and synchronization

27

Wirfs-Brock Associates Copyright 2000. All rights reserved

53Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Deriving Responsibilities from Use Case
Descriptions

We bridge this gap by:
Identifying things our software does and information it needs
Restating these as responsibilities
Breaking down large statements into smaller parts
Inventing control and coordination mechanisms
Designing exceptions and exception recovery

54Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Gathering Responsibilities from Use
Cases

What you find depends on the level of use case details

Any responsibility will have to be transformed into statements
of individual objects’ responsibilities

Responsibilities may be broad statements (which need to be
decomposed)

28

Wirfs-Brock Associates Copyright 2000. All rights reserved

55Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Use Case: Report Sensor Reading

Trigger: A reporting interval has elapsed, or a sensor has been polled

1. Physical sensor transmits report, which includes: one or more raw
data values, a timestamp, sensor identification.

2. System verifies physical sensor is known to system

3. System converts raw sensor data report to measurements (which
include sensor id, normalized reading value, timestamp, location,
confidence rating)

4. System verifies that measurements are within prescribed
manufacturer’s ranges

5. System compares measurement against recent historical values and
assigns each measurement a confidence rating.

6. System stores measurements

56Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Use Case: Report Sensor Reading

Trigger: A specified interval has elapsed, or the sensor has been polled
(two ways to start…different set up for each case…but either way
should stimulate the same processing)
1. Physical sensor transmits report, which includes:one or more raw data
values, a timestamp, sensor identification. (some controlling object will
have to receive the raw data and then start the action)
2. System verifies physical sensor is known to system (need to keep
track of known sensors—a structurer/repository?)
3. System converts raw sensor data report to measurements (which
include sensor id, normalized reading value, timestamp, location,
confidence rating) (data will then have to be converted based on sensor
type and manufacturer’s characteristics)

29

Wirfs-Brock Associates Copyright 2000. All rights reserved

57Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Use Case: Report Sensor Reading

4. System verifies that measurements are within prescribed
manufacturer’s ranges (some object will have to verify and another will
have to hold onto manufacturer’s values…are these two different objects
or?)
5. System compares measurement against recent historical values and
assigns each measurement a confidence rating.(recent values—are they
stored / cached, or both? Assuming confidence thresholds can vary
based on measurement type, we’ll need different ways to determine
confidence based on measurement type)
6. System stores measurements (some interface to an external data base
is implied)

58Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Responsibilities from Objects’ “life
events”

Some objects’ responsibilities are largely shaped by how they
react to specific events

Most of the work of a controller or coordinator is in response to
events that they interpret

When an object is born and when it leaves the scene are
common places to find responsibilities for gracefully entering
and leaving the scene

30

Wirfs-Brock Associates Copyright 2000. All rights reserved

59Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

A Typical Life Cycle of a Domain Entity

�������

���	
�

������

������	����� ���������
����������	��

�������������	���
����������	��

����	
���������

�������

���	���

60Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Be Opportunistic!

Assigning one responsibility
leads you to think… what
client responsibilities will use
it … and how it will be
accomplished
(subresponsibilities assigned
to other objects in the
“neighborhood”)

31

Wirfs-Brock Associates Copyright 2000. All rights reserved

61Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Guidelines for Assigning
Responsibilities

Keep behavior with related information. This
makes objects efficient

Don’t make any one role too big. This makes
objects understandable

Distribute intelligence. This makes objects smart

Keep information about one thing in one place.
This reduces complexity

62Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Options for Fulfilling a Responsibility

An object can always do the work itself:
A single responsibility can be implemented by one or more methods
Divide any complex behavior into two parts

One part that defines the sequence of major steps + helper parts that
implement the steps

Send messages to invoke these finer-grained helper methods

Delegate part of a responsibility to one or more helper objects:
Ask them to do part of the work: make a decision or perform a service
Ask them relevant questions

32

Wirfs-Brock Associates Copyright 2000. All rights reserved

63Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Collaboration Design

64Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

What Is A Collaboration Model?

How a group of objects work together to fulfill a
specific task

It includes a description of objects, what each
does, and how they interact

We use CRC cards to record each object’s
responsibilities and collaborations and sequence
diagrams to show interactions

33

Wirfs-Brock Associates Copyright 2000. All rights reserved

65Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Early Collaboration Modeling

Concentrate on control, coordination, and important services
Don’t over specify a collaboration
Stop designing collaborations when you can show that your small set of
objects fulfills its purpose

Focus on objects you invent, not objects used from a library
Ignore GUI details – Treat the buttons and list selections and entering
data as the source of events (e.g. user indicates “Predict Fire Danger
Rating” not “user clicks on button”)

66Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Running a Modeling Session

Ask which object receives the event? Then what happens?

Stay at the same (or +-1) conceptual level
If you are exploring how to handle a Sensor reporting data, don’t dive
into the details of the database

Follow the logic closely, think critically
Are things being done in the right order? Does validating the data of a
sensor reading happen before or after a Measurement is created?
Do objects really know enough to perform the responsibility you are
asking them to?
Are you considering boundary cases?

34

Wirfs-Brock Associates Copyright 2000. All rights reserved

67Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Start with rough sketches…

68Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

then get more precise…

35

Wirfs-Brock Associates Copyright 2000. All rights reserved

69Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

by…

Showing a sequence of messages
Label message arrows with request names
Show arguments passed along with requests
Show return values for important (unobvious) information
returned
Illustrate creation of key objects

70Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Control centers and collaboration styles:
Tools for shaping solutions

control center—a place where objects
charged with controlling and coordinating
reside

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

36

Wirfs-Brock Associates Copyright 2000. All rights reserved

71Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Control Centers

Deciding on and developing a consistent control style is one
of the most important design decisions you can make. Not all
centers the same style

Handling web interactions
Managing complex software processes
Objects working together within a subsystem
Control of external devices or external applications

72Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Control Design

Involves decisions about
how to control and coordinate tasks,
where to place responsibilities for making domain-specific decisions
(rules), and
how to manage unusual conditions (the design of exception detection
and recovery)

Goal: develop patterns for distributing the flow of control and
sequencing of actions among collaborating objects. Make
similar parts of your system be consistent

37

Wirfs-Brock Associates Copyright 2000. All rights reserved

73Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Collaboration Styles

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

Centralized Delegated

Dispersed

Control styles range from
centralized to fully
dispersed

74Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Centralized Control

Generally, one object (the controller) makes most of the
important decisions. Tendencies with this strategy:

Control logic can get overly complex
Controllers can become dependent upon information holders’
contents
Objects can become coupled indirectly through the actions of their
controller
The only interesting work is done in the controller

Drawback:
Changes can ripple among controlling and controlled objects

38

Wirfs-Brock Associates Copyright 2000. All rights reserved

75Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Delegated Control

Some decision making and much of the action passed
off to objects surrounding a control center. Neighbors
have significant roles:

Coordinators tend to know about fewer objects than
dominating controllers
Messages between collaborators are higher-level

Benefits:
Changes typically localized and simpler
Easier to divide interesting design work among a team

76Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Dispersed Control

Spreads decision making and action among objects
who individually do little, but collectively their work
adds up. This can result in:

Long message chains to dig information out of
information holders
Little or no value-added by those receiving a request

Drawback:
Hardwired dependencies between objects in call chain
May break encapsulation

39

Wirfs-Brock Associates Copyright 2000. All rights reserved

77Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Trust Regions: A tool for seeing where
“defensive” behavior is or isn’t needed

trust region—an area
where trusted
collaborations occur

78Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Definition: Collaborate

To work together, especially in a joint intellectual effort
Objects or components working together toward a common

goal

40

Wirfs-Brock Associates Copyright 2000. All rights reserved

79Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Definition: Collaborate

2. To cooperate treasonably, as with an enemy
occupation force

80Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Implications of trust

Objects at the “borders” may take on extra
responsibilities

Within a trust region, collaborations can be more
collegial

Requests can be assumed to be at the right time and
contain the right information
Objects deep inside a trust region can be designed to not
check for well-formed or timely requests

41

Wirfs-Brock Associates Copyright 2000. All rights reserved

81Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Trust In A Telco Integration Application

&��������
�����&��������
�����&��������
�����&��������
�����
��
�����
��������������
�����
��������������
�����
��������������
�����
������������
�������

���������������

���������������

���������������

��������
���������
��������������
��������������
��������������
�����

�	�
��
�	�
��
�	�
��
�	�
��

&��������
�����&��������
�����&��������
�����&��������
�����
��
�����������

�����
�����������

�����
�����������

�����
�����������

���
���������#
���������������#
���������������#
���������������#
������
�

����
����������

����
����������

����
����������

����
���������
	�
�	�
��	�
�	�
��	�
�	�
��	�
�	�
��

��������	�
���
�
�

����
��

��

�������
��

����
��

��	����	��������
��

����
��

������������

����
��

��

�������
��

�������

�	�
���
�
��

���
��

��	����	�����

���
��

�������������

���
��

���
���
�	����
����
�	�

��������

82Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

When Using An Untrusted Collaborator

If a collaborator can’t be trusted, it doesn’t mean it is
inherently more unreliable. It may require extra
precautions:

Pass along a copy of data instead of sharing it
Check on conditions after the request completes
Employ alternate strategies when a request fails

42

Wirfs-Brock Associates Copyright 2000. All rights reserved

83Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Collaboration Cases To Consider

Collaborations between objects…
that interface to the user and the rest of the system
in different layers or subsystems
inside your system and objects that interface to external
systems
you design and objects designed by someone else

84Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Requests From Untrusted Sources

The receiver is likely to check for timeliness,
relevance, and correctly formed data

There are degrees of trust

Don’t design every object to behave defensively
Redundant checks are hard to keep consistent and lead to
brittle code
It leads to poor performance

43

Wirfs-Brock Associates Copyright 2000. All rights reserved

85Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Recovering From Exceptions

86Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Reasons To Think About Exceptions
Early, Often, Sooner And Later

Usability may be affected
Consider software that enables a severely disabled user to construct
messages and communicate with others. Shouting “stack overflow!”
or “network unavailable!” isn’t acceptable

The degree to which a user can or should be involved in
exception handling has profound design implications

Solutions may not be obvious or “easy”. Experimentation may
be required

44

Wirfs-Brock Associates Copyright 2000. All rights reserved

87Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

The Mismatch Between Use Case And
Program Execution

A single use case step can result in thousands of
requests between collaborating objects, any number of
which could cause numerous object exceptions

There isn’t a direct correspondence between use case
and program exceptions

88Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Exceptions for Report Sensor Reading

Sensor is unknown- Store data in “raw” form for potentially later
processing

Raw data improperly formed (bad packet)- Log error

Measurement value out of expected range- Log error and do not store
“suspect” measurement, signal possible physical sensor fault

Historical data not available- Assign measurement low confidence

Measurement value exceeds threshold for “expected value”- Assign low
confidence and signal “abnormal change in reading” event

Database unavailable- Attempt recovery, then signal database failure

45

Wirfs-Brock Associates Copyright 2000. All rights reserved

89Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

A Strategy For Handling Exceptions For
A Key Collaboration

Brainstorm most likely exception
cases. Name and describe
them first

Then address how to resolve
easy-to-recover from cases
first

Explore alternatives for tougher
ones. Test for usability and
feasibility

90Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Handle Exceptions as Close to The
Problem as You Can

There are many different ways to “handle” an exception. It
could be logged and rethrown (possibly more than once), until
some object takes corrective action

Who naturally might handle exceptions?
External interfacers often take responsibility for handling faulty
conditions in other systems
The initial requestor
As a fallback, pass the buck to some object who takes responsibility
for controlling the action

46

Wirfs-Brock Associates Copyright 2000. All rights reserved

91Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Contracts

92Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Formal Tool:
Responsibility-Driven

Design Contracts

“The ways in which a given client can interact with a given server are
described by a contract. A contract is the list of requests that a client can
make of a server. Both must fulfill the contract: the client by making only
those requests the contract specifies, and the server by responding
appropriately to those requests. …For each such request, a set of
signatures serves as the formal specification of the contract.”

—Wirfs-Brock, Wilkerson & Wiener

47

Wirfs-Brock Associates Copyright 2000. All rights reserved

93Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Finding and Preserving Contracts

A class that is viewed by all its clients identically, offers a
single contract

A class that inherits a contract should support it in its entirety.
It should not cancel out any behavior

A subclass may extend a superclass by adding new
responsibilities and defining new contracts

A class that is viewed differently by clients can offer multiple
contracts. Organize responsibilities into contracts according to
how they are used:

Example: Specify Sensor contracts
1. Manage physical characteristics
2. Manage settings
3. Conversion of raw data into measurements
4. Know manufacture info

94Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Technique: Specifying Detailed
Contracts

“Defining a precondition and a postcondition for a routine is a
way to define a contract that binds the routine and its
callers….”

—Bertrand Meyer, Object-Oriented Software Construction

Meyer’s contracts add even more details. They specify:
Obligations required of the client

Conditions that must be true before the service will be requested

Obligations required of the service provider
Conditions that must be true during and after the execution of the service

Guarantees of service

Defined for each method or service call

48

Wirfs-Brock Associates Copyright 2000. All rights reserved

95Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Example: A Contract For A Request That
Spans A Trust Boundary

Only needs to poll active
devices, no error
recovery required

(preconditions) Sensor
assigned to comm
channel

Sensor is active

(postcondition)

Returns sensor data

Service provider:
Communications
Channel

Data request
honored/poller doesn’t
have to know comm
details

(precondition)

Keeps track of valid
polling intervals and
sensor polling requests

Client: Sensor poller

BenefitsObligationsRequest:

Get

96Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Designing Responsibly

Use the best tool for the job
Tools for thinking, abstracting, modeling
Tools for analyzing
Tools for making your application flexible

Learn your tool set, and practice, practice, practice

The best designers never give up, they just know when
to call it a day!

49

Wirfs-Brock Associates Copyright 2000. All rights reserved

97Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Exercise: Write a Designer’s Story

Briefly read the problem description (pages 35-7 of
the handout)
Spend 10 minutes writing a design story that identifies
the particular challenges of the Data Collection
Problem

Share your story with someone seated near you

(As a group, we will then identify some key themes)

98Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Exercise: Identify Some Candidates

In a 5 minute brainstorm, come up with a list candidates:
What work needs to be done? (Controllers, Coordinators, Service
Providers)
What information flows around the software system? (Information
holders, Structurers)
What needs to be structured and managed? (Structurers)
What real world things does the software need to be aware
of?(Information holders, blends)
How does it connect to other systems and external devices?
(Interfacers)

50

Wirfs-Brock Associates Copyright 2000. All rights reserved

99Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Exercise: Define a Candidate

Now, pick one candidate stereotype it and write a brief
statement of purpose on the unlined side of a CRC card

Choose whether your candidate is an information
holder, structurer, controller, coordinator, interfacer or
service provider. You may list more than one
stereotype if you think your candidate might be a
“blend”

100Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Use Case: Report Sensor Reading
Actor: Physical Sensing Device

Context: Either the specified reporting interval has elapsed or the
sensor is being asked for its current reading…

1. Sensor transmits report, which includes:
one or more raw data values, a timestamp, sensor identification.
2. System verifies physical sensor is known to system
3. System converts raw sensor data packets to measurements.
4. System verifies that measurements are within prescribed
manufacturer’s ranges
5. System compares measurement against recent historical values
and assigns each measurement a confidence rating.
6. System stores measurements

Exceptions:
2. Sensor is unknown- Store data in “raw” form for potentially later
processing
Post condition: One or more measurements have been stored

51

Wirfs-Brock Associates Copyright 2000. All rights reserved

101Wirfs-Brock Associates www.wirfs-brock.com Copyright 2006

Exercise: Identify Some Responsibilities

Can you identify an object with control and coordination
responsibilities for this use case? Give it a name and list some
of its responsibilities

There may also be an object that represents what our system
knows about the physical sensors installed in the field. What
responsibilities would you give this object?

Define some responsibilities of a Measurement object? What
stereotype is it?

A Tour of Responsibility-Driven Design Tutorial Notes Page 1

Tutorial Notes for A Tour of Responsibility-Driven Design

Tools and Techniques ... 6
Tool: A Designer’s Story.. 6
Tool: Object Role Stereotypes .. 9
Tool: CRC Cards... 10
Guidelines for Finding Objects... 12
Guidelines for Finding Objects... 12
Guidelines for Assigning Responsibilities.. 19
Tool: Control Center Design... 29
Tool: Trust Regions .. 32
References... 33
Data Collection Problem OOPSLA DesignFest™ Problem... 35

The design approach known as Responsibility-Driven Design is a way of designing complex
software systems using objects and component technology. Responsibility-Driven Design was
conceived in 1990 as a shift from thinking about objects as data + algorithms, to thinking about
objects as roles + responsibilities. The principles behind Responsibility-Driven Design were first
described in an OOPSLA paper in 1989, and the book, Designing Object-Oriented Software. If
you are interested in reading more about Responsibility-Driven Design, you can find several
introductory articles about it on www.wirfs-brock.com, or read about the latest thinking tools and
techniques in Object Design: Roles, Responsibilities, and Collaborators by Rebecca Wirfs-
Brock and Alan McKean.

Responsibility-driven design draws upon the experiences of a number of very successful and
productive Smalltalk designers. The original concepts and motivation behind responsibility-
driven design were formulated when several of us developed and taught a course on object-
oriented design to Tektronix engineers in the late 1980s. These engineers were working on
object-oriented projects that would be implemented in Smalltalk, C++ and other, non-object-
oriented programming languages. Although we refined our initial thoughts and added several
techniques to our design toolkit, but the underlying values remain. Responsibility-Driven Design
emphasizes practical techniques and thinking tools.

In a responsibility-based model, objects play specific roles and occupy well-known positions in
the application architecture. It is a smoothly-running community of objects. Each object is
accountable for a specific portion of the work. Objects collaborate in clearly-defined ways,
contracting with each other to fulfill the larger goals of the application. By creating such a
“community of objects,” assigning specific responsibilities to each, you build a collaborative
model of your application.

Responsibility-Driven Design emphasizes that objects are more than simple bundles of logic and
data ... they are service-providers, information-holders, structurers, coordinators, controllers, and
interfacers to the outside world. Each must know and do its part. Thinking in terms of these
object role stereotypes enables you to conceive of how an object should be designed to fit in and
play its part. Role stereotypes, from Responsibility-Driven Design are a fundamental way of
seeing objects’ responsibilities. Think of them as “purposeful oversimplifications” that help

A Tour of Responsibility-Driven Design Tutorial Notes Page 2

designers identify the gist of what an object should accomplish. Early on, designers use
stereotypes to characterize their initial candidate objects. Later, use stereotyping to take a
broader look at implemented code and discern the kind of roles various objects fulfill.

Progression of Ideas 1990 1995 2005
Specifications Assumed pre-existing Create or restructure

into forms that guide
design

Can fit into agile and
more traditional
development practices.
Problem framing helps
ask the right questions

Finding objects Naïve-nouns Found in analysis,
design and/or concept
formation

Involves modeling
concepts and invention.
Role stereotypes and
domain objects, finding
roles that may map to
one or more classes

Refinement Inheritance,
streamlining
communications

1990+ composition &
configurable algorithms

+ hotspots and designing
to support planned
variations

Guidelines General 1990+
Values and tradeoffs,
control style

Assigning
responsibilities
according to role
stereotype, keeping
objects with a narrow
focus

Architecture Largely ignored,
subsystems given light
treatment

4 layer application
architecture, interfacers
to model non-oo
services

+Control Centers,
Trust regions.
Recovery strategies and
exception design

Values Behavior is good
(implying data focus is
bad)

Keep abstractions at
high level
Focus on behaviors

Develop consistent
patterns of collaboration
Hide details inside
objects

Table 1: Progression of Responsibility-Driven Design Ideas

Responsibilities describe what software must do to accomplish its purpose. Design work
progresses from requirements definition through roughly sketched ideas and then on to more
detailed descriptions and software models. At the beginning, we focus on describing our system
by capturing the viewpoints of many different stakeholders. We need to consider multiple
perspectives in our solutions. Responsibility-Driven Design is a clarification process. We move
from initial requirements to initial descriptions and models; from initial descriptions to more
detailed descriptions and models of objects; from candidate object models to detailed models of
their responsibilities and patterns of collaboration.

We wish to be very clear on one point: although we present object oriented development
activities in a linear fashion, this is rarely how design proceeds in practice. Software design
processes are highly fluid and opportunistic, even though the final results are firmly fixed in
code.

A Tour of Responsibility-Driven Design Tutorial Notes Page 3

Figure 1 Rigid, tightly planned development

A design journey is filled with curves, switchbacks, and side excursions. When tracking down
design solutions, you often switch among different design activities as you discover different
aspects of the problem. Be opportunistic. Use a variety of tools that help gain perspective,
discover information, and craft solutions. Design is fluid and malleable.

Figure 2 The Responsibility-Driven path is a flexible one

Ordering of activities and focus will, of necessity, change. Planning, adding new features, setting
goals, characterizing the application via a prototype, creating an object model, identifying the
hard problems—these are only some tasks. These tasks vary in their purpose, rigor, scope,
emphasis, context, and applicable tools.

With all but the simplest software, you can’t fathom what lies ahead. With so much complexity,
you won’t always make optimal decisions. Progress isn’t always steady. Along the way you
discover new information and constraints. Take time to breathe and smooth out these recurring
wrinkles.

A Tour of Responsibility-Driven Design Tutorial Notes Page 4

To address your lack of 20-20 foresight, plan pauses to reexamine, adjust, and align your work to
a changing set of conditions. This allows you to incorporate your growing understanding into
what is built. Bear in mind that design is iterative and incremental. As designers, we naturally
think that software objects are the center of the software universe. However object-oriented we
may be, though, many other participants and perspectives go into the conception, design, and
construction of a successful application. Just like a theater production, software development
involves much more than meets the eye during a performance. And although objects may take
center stage for our work, it is important to recognize the impact that different perspectives and
activities have on design.

We break the object design process into two major phases: creating an initial design (exploratory
work) and then crafting more comprehensive solutions (refinement)

Activity Results
Associate domain
objects with
execution-oriented
ones.

Assign
responsibilities to
objects.

Develop initial
collaboration model.

A CRC model of
objects, roles,
responsibilities, and
collaborators

Sequence or
collaboration
diagrams

Descriptions of
subsystem
responsibilities and
collaborations

Preliminary class
definitions

Working prototypes

Table 2: Exploratory Design

At some point after you’ve developed an initial exploratory design, you want to break away from
designing and start coding. This could occur after a relatively short while, especially if your
design is straightforward or if you are doing XP (Extreme Programming) where design-test-
implement cycles are tightly integrated. Or, perhaps you want to prove part of your design by
implementing a prototype before investing energy designing other parts that rely on that proof of
concept being solid. Whether you take the time to polish your design a bit before coding or plan
on adjusting your design during implementation, your initial design ideas will change. Most
applications are too complex to “design right” the first time. Creating a workable design means
revisiting initial assumptions to make sure that your design lives up to stakeholders’
expectations. It may also mean spending extra time to design a flexible solution.

A Tour of Responsibility-Driven Design Tutorial Notes Page 5

Activity Results
Justify tradeoffs Documentation of

design decisions
Distribute application
control

Control styles
identified
Easy-to-understand
patters of decision
making and
delegation in the
object model

Revise model to make
it more maintainable,
flexible and consistent

Creation of new
object abstractions

Revision of object
roles, including
stereotype blends

Simplified,
consistent interfaces
and patterns of
collaboration

Specification of
classes that realize
roles

Application of design
patterns

Document the design
clearly

UML diagrams
describing packages,
components,
subsystems, classes,
interaction
sequences,
collaborations,
interfaces

Code

Formalize the design Contracts between
system components
and key classes

Table 3: Design Refinement

A Tour of Responsibility-Driven Design Tutorial Notes Page 6

Tools and Techniques
Responsibility-Driven Design offers techniques for honing your thinking about how to divvy an
application’s responsibilities into objects and coordinating their performance. Following are
summaries of techniques that you may want to add to your designer’s toolkit.

Tool: A Designer’s Story
A designer’s story is a way to put your own spin on the system you are work on and a substitute
for Extreme Programming’s elusive metaphor. Early on in any project I now write a design story.
Originally, I used a design story as a private way to organize my thoughts. Lately, I’ve been
encouraging teams to individually write design stories and then share them at the beginning of a
project. This has been a good way to voice individual visions that can complement and be
melded into a shared perspective. And it’s a good ice-breaker for newly formed teams or in
situations where some voices dominate and others’ voices don’t get heard.

Here are four reasons to write a design story:

• To restate any requirements from your design perspective
• To put your spin on what’s important or hard or easy or similar to what you’ve done

before
• Boiling it down helps you grasp the problem
• To own the problem

Sharing your design stories with you teammates allows you to:

• Have a voice
• Get others’ perspectives
• Develop collective thoughts
• Build mutual understanding

Technique: Write a designer’s story. The technique is very simple and even those who only
want to write code can bang out something if they know it will be short, sweet, to the point, and
only take 15 minutes. I tend to pump out lots of words when I am put in front of a word
processor. Perhaps too many. So I now prefer to write my stories by hand, especially when I
intend to share them with others. This makes it more personal and it looks rough and less
polished which is a good thing.

Here are the basic techniques in a nutshell. Quickly write a rough story—two paragraphs or less
is ideal. Write about your application’s essential characteristics: the themes. Talk about
important ideas such as:

• What is your application supposed to do? How will it support its users? Is it connected to
a real world example that you can study or emulate? Is it similar to what you’ve done
before?

• What will make your application a success? What are the most challenging things to
design?

Tell what you know and what you need to discover.

A Tour of Responsibility-Driven Design Tutorial Notes Page 7

Here is an example for an online banking application I worked on with about 10 others. It
was designed for a consortium of South American banks. After reading the spec that the
technical architect wrote after he came back from South America, I sat down and wrote a
story to wrap my head around the system (after all I was the project leader and had to
“own” the problem and the ensuing design). I never shared this story with my teammates
and I was chatty as I wrote it in a word processor. I’ll only show an excerpt:

This application provides internet access to banking services. It should be easily
configured to work for different banks. A critical element in the design is the declaration
of a common way to call into different backend banking systems. We will define a
common set of banking transactions and a framework that will call into banking-specific
code that “plugs into” the standard layer implementing the details. The rest of our
software will only interface with the bank-independent service layer…At the heart of our
system is the ability to rapidly configure our application to work for different backends
and to put a different pretty face on each. This includes customizing screen layouts,
messages and banner text. The online banking functions are fairly simple: customers
register to use the online banking services, then log in and access their accounts to make
payments, view account balances and transaction histories, and transfer funds…”

Technique: Identifying application themes. Although you could stop after merely writing and
sharing design stories, I’ve found it useful to use themes as a source of inspiration for identifying
key aspects or important areas of design focus. Design themes are what I substitute when I
cannot find any elusive metaphor to guide my design.

The key themes I pulled from the online banking story were:

• Modeling online banking activities
• Representing common bank functions
• Configuring system behavior
• Accessing scarce resources

Themes can be either broad or narrow…I find that the broader they are, the more work you have
to do to drill down to an appropriate level for identifying candidate objects, but if they are too
narrow, there aren’t many objects to harvest.

Technique: Leveraging themes to identify key areas of activity and identify initial
candidates. Once you have identified major themes, you can use them as one source of
inspiration. Make educated guesses about the kinds of inventions you’ll need in your design
based on the nature of your application and the things that are critical to it. I consider any
candidates that I haves tot of this brief dip into the system and start up my design thinking.

Consider each of these perspectives for a particular theme:

• The work your system performs
• Things affected by or connected to your application (other software or physical devices)
• Information that flows through your software
• Decision-making, control and coordination activities

A Tour of Responsibility-Driven Design Tutorial Notes Page 8

• Stuctures and groups of objects
• Representations of real-world things your application needs to know something about

Although I recommend you consider each perspective when you hunt for “seed corn” candidates,
if you find that a particular perspective doesn’t yield any insights, move on.

For example, for the theme “online banking functions” considering the work our system
performs led us to consider candidates that specifically supported performing financial
transactions and queries. Things affected by our software were the accounts and backend
banking transactions. Lots of information flowed through our system to accomplish these
activities—information about transactions, account balances, transaction amounts, account
history, payments….

Identifying candidates that support each theme is a quick brainstorming activity.
Sometimes candidates leap right out when you look at a particular perspective. Often different
themes and perspectives reiterate and reinforce the need for certain kinds of candidates. This is
good. It builds confidence in the relevance a particular candidate has. At other times, ideas do
not come so quickly and you must think more deeply to come up with potential candidates. You
won’t find all important candidates in this first pass look through your system and your initial
ideas will certainly change.

I use this as an ice breaker for identifying objects that may play a role in the design. In a
brainstorming session a team can usually work up a candidate list in a couple of hours.

A Tour of Responsibility-Driven Design Tutorial Notes Page 9

Tool: Object Role Stereotypes
Role stereotypes from Responsibility-Driven Design are a fundamental way of seeing objects’
responsibilities. Think of them as purposeful oversimplifications that help you identify the gist of
an object’s responsibilities. You can use stereotyping early on to characterize your early
candidate objects. Later, you can use stereotyping to characterize your design.

Here is a brief description of six stereotypes:

• Information holder—knows and provides information
• Structurer—maintains relationships between objects and information about those

relationships
• Service provider—performs work and in general offers services
• Controller—makes decisions and closely directs others’ actions
• Coordinator—reacts to events by delegating tasks to others
• Interfacer—transforms information and requests between distinct parts of a system. User

interfacers translate requests from the user to the system (and vice versa). External
interfacers usually “wrap” other system APIs. There are other interfacers in complex
systems that serve as the “front door” to subsystems.

Technique: Stereotyping a Candidate
Can an object have more than one stereotype? Sure. Each candidate fits at least one stereotype.
They often fit two. Common blends: service provider and information holder, interfacer and
service provider, structurer and information holder.
I recommend that you identify the major stereotype you want to emphasize and then check your
initial ideas against your current thinking from time to time.

Technique: Identifying a Candidate’s Purpose
I write a purpose statement on the unlined side of a CRC (candidate-responsibilities-
collaborators) card. Not surprisingly, the candidate’s purpose matches its stereotype. A candidate
knows and does certain things. Briefly, say what those things are. A pattern to follow:

An object is a type of think that knows or does x. And then mention one or two
interesting facts about the object, perhaps a detail about what it does or who it
collaborates with.

You might mention one or two interesting facts about the candidate, perhaps a detail about who
it works with, to provide more context:

A FinancialTransaction represents a single accounting transaction performed by our
online banking application. Successful transactions result in updates to a customer’s
accounts.

What do you do with a purpose statement? It can be recycled into a class comment, once you
believe a candidate will stick around.

Technique: Identifying Responsibilities
Whether an object primarily “knows things”, “does things”, or “controls and decides” is based on
its role stereotype. Exploring an object’s character will lead to an initial set of responsibilities.

A Tour of Responsibility-Driven Design Tutorial Notes Page 10

For example, information holders answer questions. They are responsible for maintaining certain
facts that support these questions. Rather than listing out all the “attributes” of an object, or
going into details about its variables, responsibilities are a higher level view of an object. Instead
of talking about a customer’s first name, last name, surname, nickname, etc…. you can state this
general responsibility as “knows name and preferred ways of being addressed.

When designing a service provider ask “what requests should it handle”? Then, turn around and
state these as general statements for “doing” or “performing” specific services. Again,
responsibilities can be written at a higher-level than a single method or operation. For example,
you can talk about “compares to other dates” instead of listing out “>”, “<”, “<=”, etc.

Tool: CRC Cards
CRC cards were invented by Ward Cunningham and Kent Beck in the late 1980s as a way of
teaching object concepts to newcomers. They were popularized by my first book, Designing
Object Oriented Software, and are one technique for informally specify the role and
responsibilities of an object, component or subsystem.

In my most recent design book, I’ve updated my thinking on CRC cards. Initially the first C
stood for Class, but now I consider it to stand for a Candidate, which may end up being a
component, a class, or even an interface that is shared by multiple classes of objects or
components. The R stands for responsibilities, and the second C stands for collaborators or
helpers that the candidate uses to accomplish its specific tasks.

On the unlined side of a CRC card is where you write a purpose statement. Not surprisingly, the
candidate’s purpose matches its stereotype. A candidate knows and does certain things. Briefly
say what those things are. A pattern to follow:

An object (or component) represents a thing that contains certain information or performs
specific work. And then mention one or two interesting facts about the candidate, perhaps
a detail about what it does or who it works with.

Here is a sample purpose statement:

A Financial Transaction represents a single account transaction performed by our online
banking application. Successful transactions result in updates to a customer’s accounts.

On the lined side of the card are spaces for the candidate’s responsibilities (on the left hand side).
Any objects that it uses to accomplish its tasks are listed on the right hand side of the card.
Whether an object primarily “knows things” “does things” or “controls and decides” is based on
its role stereotype. Exploring an object’s character will lead to an initial set of responsibilities.
For example, information holders answer questions. They are responsible for maintain facts that
support these questions. When assigning responsibilities to an information holder ask, “what do
other objects want to ask about?” Then turn around and state these as responsibilities for

A Tour of Responsibility-Driven Design Tutorial Notes Page 11

“knowing”. When designing a service provider asks, “What requests should it handle?” Then
restate these as responsibilities for performing specific services.

Below are the front and back sides of a CRC card.

A Tour of Responsibility-Driven Design Tutorial Notes Page 12

Guidelines for Finding Objects
The abstractions you choose greatly affect your overall design. At the beginning, you have more
options. As you look for candidate objects, you create and invent. Each invention colors and
constrains your following choices. Initially, it’s good to seek important, vivid abstractions—
those that represent domain concepts, algorithms, and software mechanisms. Highlight what’s
important. If you invent too many abstractions, your design can get overly complex. Not enough
abstraction and you’ll end up with a sea of flat, lifeless objects.
Your goal is to invent and arrange objects in a pleasing fashion. Your application will be divided
into neighborhoods where clusters of objects work toward a common goal. Your design will be
shaped by the number and quality of abstractions and by how well they complement one another.
Composition, form, and focus are everything! Here are some guidelines to help you during your
discovery and invention:

Include only the most revealing and salient facts in a name.
The downside of any descriptive scheme is that names can become lengthy. Don’t name every
distinguishing characteristic of an object; hide details that might change or should not be known
by other objects.

Should people really have to care that they are using a
MillisecondTimerAccurateWithinPlusOrMinusTwoMilliseconds, or will Timer suffice?
Detailed design decisions should not be revealed unless they are unlikely to change and
they have a known impact on the object’s users. Exposing implementation details makes
them hard to change.

Give service providers “worker” names.
Another English language naming convention is to end job titles with “er.” Service provider
objects are “workers,” “doers,” “movers,” and “shakers.” If you can find a “worker name” it can
be a powerful clue to the object’s role

Many Java service providers follow this “worker” naming scheme. Some examples are
StringTokenizer, SystemClassLoader, and AppletViewer.

If a worker-type name doesn’t sound right, another convention is to append Service to a name. In
the CORBA framework, this is a common convention—for example, TransactionService,
NamingService, and so on.

Look for additional objects to complement an object whose name implies broad
responsibilities.
Sometimes a candidate represents a broad concern; sometimes its focus is more narrow. If you
come across a name that implies a large set of responsibilities, check whether you’ve misnamed
a candidate. It could be that your candidate should have a narrower focus. Or it might mean that
you have uncovered a broad concept that needs to be expanded. Looking for objects that round
out or complement a broad name can lead to a family of related concepts—and a family of
related candidates. Many times we need both specific and general concepts in our design. The
more generic named thing will define responsibilities that each specific candidate has in
common.

An object named AccountingService likely performs some accounting function. The
name AccountingService isn’t specific. We cannot infer information about the kinds of

A Tour of Responsibility-Driven Design Tutorial Notes Page 13

accounting services it performs by looking only at its name. Either AccountingService is
responsible for performing every type of accounting function in our application, or it
represents an abstraction that other concrete accounting service objects will expand upon.
If this is so, we’d expect additional candidates, each with a more specific name such as
BalanceInquiryService, PaymentService, or FundsTransferService. These more
specifically named candidates would support specific accounting activities.

Highlight a general concept with more specific candidates. If you can think of at least three
different special cases, keep both the general concept and specific ones. If later on, you find that
these more specific candidates don’t share any responsibilities in common, the more abstract
concept can always be discarded. However, if you have simply assigned a candidate a name that
is too generic, by all means rename it.

If your candidate could represent historical records of many other things, better to leave it
with a more generic name, History instead. If you intend to model transaction history,
rename your candidate TransactionHistory. You decide how specific you want to be.

Therein lies the art of naming: choosing names that convey enough meaning while not being
overly restrictive. Leave open possibilities for giving a candidate as much responsibility as it can
handle, and for using it in different situations with minor tweaks. It certainly is a more powerful
design when a candidate can fit into several different situations. The alternative—having a
different kind of object for each different case—is workable, but not nearly so elegant.

Choose a name that does not limit behavior.
Don’t limit a candidate’s potential by choosing a name that implies too narrow a range of
actions.
Given the choice, pick a name that lets an object take on more responsibility.

Consider two alternatives for a candidate: Account or AccountRecord. Each could name
an object that maintains customer information. From common knowledge we know one
meaning of record is “information or facts set down in writing.” An AccountRecord isn’t
likely to have more than information holding responsibilities if we fit its role to
conventional usage of this name. The name Account, however, leaves open the
possibility for more responsibilities. An Account object could make informed decisions
on the information it represents. It sounds livelier and more active than AccountRecord.

Choose a name that lasts for a candidate’s lifetime.
Just as it seems funny to hear a 90-year old called “Junior,” it’s a mistake to name a candidate for
its earliest responsibilities, ignoring what else it may do later on. And don’t be content to stay
with the first name you give a candidate if its work changes.

An object that defines responsibilities for initializing an application and then monitoring
for external events signaling shutdown or re-initialization, is better named
ApplicationCoordinator than ApplicationInitializer. ApplicationInitializer doesn’t imply
having ongoing responsibilities after the application is up and running.
ApplicationCoordinator is a better name because its more general meaning encompasses
more responsibilities.

Choose a name that fits your current design context.

A Tour of Responsibility-Driven Design Tutorial Notes Page 14

When you choose names, select ones that fit your current design surroundings. Otherwise, your
candidates’ names may sound strange. What sounds reasonable in an accounting application may
seem jarring in an engineering application.

A seasoned Smalltalker tried hard to set aside his biases when he started working with
Java. Although he expected Java classes to have totally different responsibilities, he was
surprised to find the Java Dictionary class to be abstract. In Smalltalk, Dictionary objects
are created and used frequently.

Shed your past biases when they don’t fit your current situation.

Do not overload names.
Unlike spoken language, where words often have multiple meanings, object names should have
only one meaning. It isn’t good form to have two different types of Account objects with
radically different roles that coexist in the same application. Some object-oriented programming
languages let you assign the same name to different classes but then force you to uniquely
qualify a name when you reference a particular class in code. In Java, for example, classes from
different packages can have the same name. In order to uniquely designate a specific one, its
name must be qualified by the name of the package where it is defined.

Names of things that can simultaneously coexist within a single application should be given
different names. Don’t overload a name. Programmers have only one context—the running
application—in which to interpret names. They already have enough to think about without
adding yet another source of confusion. Compilers are good at automatically applying the correct
qualification to a name. Humans aren’t!

Eliminate name conflicts by adding an adjective.
Sometimes the best names are already chosen. Still, you need to name your candidate. By adding
a descriptive phrase to a name, you can come up with a unique name.

The synonyms for Property, a class defined in the Java libraries, include these words:
characteristic, attribute, quality, feature, and trait. Although “attribute” or “feature” might
work, “characteristic” seems stuffy, and “quality” seems strained.

Choose names that are readily understood.
A name shouldn’t be too terse. Don’t encode meaning or cut corners to save keystrokes. If you
want others to get a sense of an object’s role without having to dig into how it works, give it a
descriptive name. A name can be descriptive without being overly long.

“Acct” is too cryptic. “Account” is better.

If a common meaning suits a candidate, use it to form a basic definition.
Don’t invent jargon for invention’s sake. In the case of alternative definitions, choose one that
most closely matches your application’s themes. Start with a standard meaning, if it fits. Then
describe what makes that object unique within your application.

The American Heritage Dictionary has six definitions for account:

1. A narrative or record of events
2. A reason given for a particular action

A Tour of Responsibility-Driven Design Tutorial Notes Page 15

3. A formal banking, brokerage, or business relationship established to provide for regular
services, dealings, and other financial transactions

4. A precise list or enumeration of financial transactions
5. Money deposited for checking, savings, or brokerage use
6. A customer having a business or credit relationship with a firm

It isn’t much of a stretch to conceive of different candidates that reflect each of these definitions.
In our online banking application, accounts most likely represent money (definition 5). Rules
that govern access to and use of funds are important. Different types of accounts have different
rules. Although it is conceivable that an account could also be “a precise list of financial
transactions”, (definition 4), we reject that usage as being too far off the mark. People in the
banking business think about accounts as money, assets, or liabilities and not as a list of
transactions. In the same fashion, we reject definition 6. It doesn’t specifically mention assets.
We easily reject definitions 1 and 2 as describing something very different from our notion of
accounts in banking. In banking, accounts represent money. We choose definition 5 because it is
the most central concept to the world of banking:

An account is a record of money deposited at the bank for checking, savings, or other
purposes.

Add application-specific facts to generic definitions.
The preceding definition is OK, but it is too general for online banking. In the online banking
application, users can perform certain transactions and view their balances and transaction
histories. We add these application specifics to our original description:

An account is a record of money deposited at the bank for checking, savings, or other
purposes. In the online banking system customers can access accounts to transfer funds,
view account balances and transaction historical data, or make payments. A customer
may have several bank accounts.

The more focused a candidate is, the better. Of course, a candidate may be suited to more than
one use. Objects can be designed to fit into more than one application. A framework operates in
many different contexts. A utilitarian object can be used in many cases. If you want your
candidate to have a broader use, make this intent clear by writing the expected usage down on
the CRC card.

Distinguish candidates by how they behave in your application.
If distinctions seem blurry in the world outside your software, it is especially important to clarify
your software objects’ roles. Even if you can distinguish between a customer and an account,
you still need to decide whether it is worth having two candidates or to have one merged idea.
(Don’t expect the business experts to help make this decision. It is a purely “technical” modeling
one.) A candidate that reflects something meaningful in the world outside your application’s
borders may not be valuable to your design.

Let’s look at the sixth definition of account:

“An account is a customer having a business or credit relationship with a firm.”

A Tour of Responsibility-Driven Design Tutorial Notes Page 16

What is the difference between a customer and an account? Are they the same? If we had chosen
this definition, would we need both customer and account objects in our banking application?
When you discover overlapping candidates, refine their roles and make distinctions. Discard a
candidate or merge it with another when its purpose seems too narrow (and could easily be
subsumed by another candidate). When in doubt, keep both.

For both Customer and Account to survive candidacy and stick in a design, their roles
must be distinct and add value to the application. We could conceive of a Customer as a
structurer that manages one or more Account objects. And, in the online banking
application, one or more users can be associated with a Customer. For example, the
customer “Joe’s Trucking” might have four authorized users, each with different
privileges and access rights to different accounts. Another option would be to give an
Account responsibility for knowing the customer and users. We could then eliminate
Customer. We decide to include both Customer and Account in our design because
giving those responsibilities to Account objects doesn’t seem appropriate—we can
envision customers and users sticking around even when their accounts are closed (and
perhaps new accounts are opened). So customers are somewhat independent of accounts.

During exploratory design, expect a certain degree of ambiguity. You can always weed out
undistinguished candidates when you find they don’t add any value. Put question marks by
candidates that need more definition. A candidate is just that—a potential contributor.

Look for powerful abstractions and common roles.
Things in the real world do not directly translate to good software objects! Form candidates with
an eye toward gaining some economy of expression. Carefully consider which abstractions
belong in your object design.

In our Kriegspiel game there are various actions that a player can perform: “propose a
move,” “ask whether a pawn can capture in a move,” “suspend a game,” and so on. It’s a
pretty safe bet that we have a different candidate for each action: ProposeAMove,
SuspendAGame, and so on. Proposing a move seems quite distinct from suspending a
game. A harder question is whether we should define PlayerAction as a common role
shared by each of these action-oriented candidates? If we can write a good definition for
PlayerAction we should do so and define a role that is shared by all player action
candidates. There seem to be several things common to all actions (such as who is
making the request and how long it is active). Eventually, if we find enough common
behavior for PlayerAction, it will be realized in our detailed design as a common
interface supported by different kinds of PlayerAction objects. We may define a
superclass that defines responsibilities common to specific player action subclasses. Or
common behavior might imply the need for another candidate that is the supplier of that
shared behavior.

Look for the right level of abstraction to include in your design.
Finding the right level of abstraction for candidates takes practice and experimentation. You may
have made too many distinctions and created too many candidates—a dull design that works but
is tedious. At the end of the day, discard candidates that add no value, whether they are too
abstract or too concrete. Having too many candidates with only very minor variations doesn’t
make a good design. Identify candidates that potentially can be used in multiple scenarios.

A Tour of Responsibility-Driven Design Tutorial Notes Page 17

Certain actions affect the position of pieces on a board. Should we have different
candidates for each piece’s potential types of moves? Not likely. This solution is tedious
and offers no design economy. If you can cover more ground with a more abstract
representation of something, do so. A single candidate can always be configured to
behave differently under different situations. Objects encapsulate information that they
can use to decide how to behave. The ProposeAMove candidate can easily represent all
moves suggested by any chess piece. This single candidate will know what piece is being
moved and its proposed position.

Discard candidates if they can be replaced by a shared role
To find common ground, you need to let go of the little details that make objects different in
order to find more powerful concepts that can simplify your design.

What do books, CDs, and calendars have in common? If you are a business selling these
items over the Internet, they have a lot in common. Sure, they are different, too. Books
likely belong to their own category of items that can be searched and browsed. But all
these kind of things share much in common. They all have a description (both visual and
text), a set of classifications or search categories they belong to, an author, an availability,
a price, and a discounted price. It sounds as if their common aspects are more important,
from the Web application’s perspective, than their differences. This suggests that all these
different kinds of things could be represented by a single candidate, InventoryItem, that
knows what kind of thing it is and the categories it belongs to.

Purely and simply, you gloss over minor differences. You don’t need to include different
candidates for each category of thing. In fact, those distinctions may not be as important to your
software as they are to those who buy and use the items.

When you are shopping for items, you may be thinking of how they are used—books are
read, calendars hung on a wall, and CDs played—but those distinctions are not important
if you are designing software to sell them. Sure, you want to allow for your software to
recognize what category something belongs to. You want to list all books together. But
you probably want to categorize things in the same subcategory, whether or not they are
the same kind of thing. Books about jazz and jazz CDs are in the “jazz items” category.

Only if objects in different categories behave differently in your software do you need to keep
different categories as distinct candidates. The real test of whether a category adds value to a
design is whether it can define common responsibilities for things that belong to it.

Blur distinctions.
There are times when both concrete candidates and their shared role add value to a design. There
are times when they do not. If you clearly see that candidates that share a common role have
significantly different behavior, then keep them. Test whether the distinctions you have made are
really necessary.

What value is there in including different kinds of bank accounts, such as checking or
savings accounts, in our online banking application? Checking accounts, savings
accounts, and money market accounts have different rates of interest, account numbering
schemes, and daily account draw limits. But these distinctions aren’t important to our
online banking application. We pass transactions to the banking software to handle and

A Tour of Responsibility-Driven Design Tutorial Notes Page 18

let them adjust account balances. In fact, because our application is designed to support
different banks, each with its own account numbering scheme, a distinction made on
account type (checking or savings) isn’t meaningful. Our application doesn’t calculate
interest. So we choose to include only BankAccount as a candidate. If we were designing
backend banking software that calculated interest, our decision would be different.

A Tour of Responsibility-Driven Design Tutorial Notes Page 19

Guidelines for Assigning Responsibilities
Our strategy for assigning responsibilities to objects is very simple: Cover areas that have big
impacts. Look for actions to be performed and information that needs to be maintained or
created. You can glean information from several sources: Perhaps you have a specification of
your software’s usage; you may have written some use cases; or you may know of additional
requirements or desired characteristics of your software. Responsibilities emerge from these
sources and from ideas about how your software machinery should work.

You will need to reformulate demands and characteristics and software descriptions into
responsibility statements. If statements seem too broad to be assigned to individual objects,
create smaller duties that can be. These smaller subresponsibilities collectively add up to larger
ones. Formulating and assigning responsibilities to objects involves inspiration, invention, and
translation of constraints and general descriptions into specific responsibilities. Assigning
responsibilities to objects gives them shape and form. Here are some guidelines for finding
responsibilities and assigning them to objects in your candidate object model:

Responsibilities come from statements or implications of system behavior found in use
cases.
There is a gap between use case descriptions and object responsibilities. Responsibilities are
general statements about what an object knows, does, or decides. Use case descriptions are
statements about our system’s behavior and how actors interact with it. Use cases describe our
software from the perspective of an outside observer. They don’t tell how something is
accomplished. Use cases provide a rough idea of how our system will work and the tasks
involved. As designers we bridge this gap by transforming description found in use cases into
explicit statements about actions, information, or decision-making responsibilities. This is a
three-step process:

• Identify things the system does and information it manages.
• Restate these as responsibilities.
• Break them down into smaller parts if necessary, and assign them to appropriate objects.

Depending on how much detail is included in a use case, it can be more or less difficult to find
statements about our software’s behavior. Use cases aren’t packed with actions or behaviors that
are readily ascribed to individual objects. However, even from this high-level narrative we can
glean responsibilities. By intent, use cases leave out design details. They are descriptive, not
prescriptive. They tell a story. Use cases are descriptions that we use as general guides as we
build our design. Use case scenarios describe step-by-step sequences. Supposedly they include
more detail than an overview.

Additional responsibilities come from plugging inherent gaps in use case and other system
descriptions.
To gain confidence in your design, you must dig deeper into the nature of the problem and ask
questions. Just by looking at our list of responsibilities we can come up with questions leading to
more responsibilities. The sooner you ask and get answers to specific questions that will shape
your system’s behavior, the better. The answers will guide your thinking as you discover more
detailed software responsibilities.

A Tour of Responsibility-Driven Design Tutorial Notes Page 20

Use cases rarely describe aspects of control, coordination, error detection, visual display, timing,
or synchronization. Designers must figure out these details. You can push forward with assigning
responsibilities, even with many questions left answered. Tag those questions that will have the
biggest impact. If you envision a range of possible answers and guess at those that are most
likely to have the most impact, you can know where to push for answers.

Take two approaches: Identify responsibilities as well as unresolved questions. Continue to work
on what you do know. Identify questions that are most likely to significantly impact your design.
Once you get answers, you undoubtedly will refine your design. You won’t know how
comprehensive your solution needs to be until you get some answers.

Defer the specific design of control and coordination responsibilities until you make choices
about how to distribute decision-making and control responsibilities. Test your collaboration
model with both “happy path” and more complicated scenarios. For now, collect and assign as
many specific responsibilities as you can.

Design, and the assignment of responsibilities, is iterative. You make an initial pass at pinning
down responsibilities, and then you rework your ideas as you come to know more about your
objects and their interactions.

Responsibilities come from themes and design stories.
Earlier, we recommended that you write a brief story that describes the key ideas behind your
software. This design story kept you focused on what’s important and stimulated your thinking
about appropriate candidates. You can return to this story to extract some responsibilities.

Because of the story’s brevity, the responsibilities we find reflect only the highlights.

For example, from the online banking application story, we surmise that connections (and other
scarce resources) must be managed. We can assign responsibilities for managing connections to
specific connection managers. Financial transactions will be performed by the coordinated work
of many objects; each with specific responsibilities. To assign responsibilities for performing
transactions, we need to consider the details of each transaction in turn. Each transaction will
require a different sequence of work steps, although some may be in common (for instance, all
transactions are logged along with user-specific notes in the system’s database).

Responsibilities come from following “what if... and then.. and how?” chains of reasoning.
To gain even more insight, you need to consider how various requirements may impact your
design. This involves more heavy mental lifting than our other responsibility sources. In this
case, you don’t start with a specific task such as “make a loan payment” or specific action such
as “verify credit load.” Instead, you need to lay a path from a high-level goal, such as “the
software should be offline only during routine maintenance,” to a series of actions or activities
that achieve it. Only then can you make statements about what the system needs to specifically
do as a consequence. Once you’ve come up with these specific conclusions, you can formulate
specific responsibilities.

A Tour of Responsibility-Driven Design Tutorial Notes Page 21

We can think of many situations when we’ve chased design implications. Most involved short,
solo excursions. Individuals thought through the problem and followed their instincts. As a group
we might have kicked around the nature of the problem before the individuals went away and
thought through the problem. Reasoning towards a solution seems to be an individual activity or
one taken on by a small team of like-minded souls.

Often your initial design will not be as simple or as elegant or as complete as you’d like. You
don’t have time to make many wrong moves. On the online banking project, the designer
followed these principles: Keep concerns separate, and don’t intermix responsibilities. Each
object or component should do its job simply and well. Following his initial line of reasoning led
him to very specific responsibilities. His objects weren’t up to his high standards, but they did
the job.

Responsibilities naturally arise from an object’s stereotypical roles.
Whether an object primarily “knows things,” “does things,” or “controls and decides” is based on
its role stereotype. Exploring an object’s character will lead to an initial set of responsibilities.
Information holders answer questions. They are responsible for maintaining facts that support
these questions. When assigning responsibilities to an information holder, ask, “What do other
objects or parts of the system want to ask?” Restate these queries as responsibilities for
“knowing.” Look for specific information that fits each candidate’s role. Each information holder
should support a coherent, related set of responsibilities. Secondarily ask, “What else does this
information holder need to know or do in order to carry out its public obligations?” These will be
private responsibilities it undertakes to carry out its public duties.

When designing a service provider ask “What requests should it handle?” Then turn around and
state these as responsibilities for “doing” or “performing” specific services. Similarly, structurers
should have responsibilities for maintaining relationships between other objects and for
answering questions about them. Interfacers will have specific duties for translating information
and requests from one part of the system to another (and translating between different levels of
abstraction). Coordinators have specific duties for managing cooperative work. Controllers
should be responsible for fielding important events and also directing the work of others.

Look for private responsibilities that are necessary to support public responsibilities.
Even as you make general statements of responsibilities, you may think about how your objects
might accomplish them. When should you focus on these details? As a matter of principle,
concentrate first on what an object does for others. Once you’ve arranged these core, publicly
visible responsibilities, reach for additional private responsibilities that support them.

Record responsibilities as you think of them. Make sure you are comfortable with your object’s
role in its community before you work out many details. If you know these details, you can
record them. What’s the best way to do this? Should you get more specific with your
responsibility statements, or are there other options?

Earlier, we mentioned that responsibilities are recorded on CRC cards along with a statement of
purpose and a list of collaborators. Given the limited space on the CRC cards, you should use
this real estate wisely. Make responsibility statements as brief as possible. Convey necessary

A Tour of Responsibility-Driven Design Tutorial Notes Page 22

information by reworking and revising all parts of your object’s description. Don’t pack
everything into responsibilities. Record details in ways that let you remember them without
creating clutter.

Responsibilities come from examining relationships between candidates.
Examining relationships between candidates can identify additional responsibilities. Objects can
be related in complex ways: “composed of,” “uses,” “owns,” “knows about,” and “has” have
very imprecise meanings in the English language. However, objects we tag as “structurers”
nearly always have responsibilities for “maintaining” or “managing” objects they organize,
whether we think of them as being “composed of,” “owning,” “knowing,” or “aggregating” those
objects.

When an object plays the role of a structurer, it organizes groups of objects. Because of this role,
it likely has responsibilities for answering questions about the things it knows of. To make
specific responsibility assessments, we need to understand why a structurer exists and how its
responsibilities change as its composition changes.

Responsibilities may be associated with important events during an object’s lifetime.
Some objects’ responsibilities are largely shaped by how they react. These objects are spurred to
action by specific events. Controllers and coordinators fit this profile: most of the work they do
is in response to stimulus they interpret.

Not all objects are so externally driven. Some react to internal changes. When an object is create
and when it is no longer used are common places to find responsibilities for gracefully entering
and leaving the scene. In most object-oriented languages, objects are notified of their impending
exit with a “finalize” notice, allowing them to release resources before leaving.

Responsibilities may be assumed when an object fits into its technical environment.
The responsibilities we have identified up to this point have been in support of required system
behavior. We mention this source last because it yields responsibilities of a different nature:
those required for an object to fit into its software context. As a designer, you don’t invent these
responsibilities but you must understand their implications. Quite simply, your objects won’t
function properly unless they take on these implementation-specific responsibilities.
Implementation-specific responsibilities shouldn’t be your first concern. But if you know where
your objects are headed, plan for them.

To start, state responsibilities generally.
Responsibilities are best stated at a level above individual attributes or operations. Don’t get
overly specific in your statements. A statement of responsibility, if worded generally, can
encompass many specific requests. There may be 10 ways to ask for tax calculations that are
covered by the statement “Calculate all taxes based on locale.” There isn’t enough room on a
CRC card to record very many details. These lower-level details belong in an information model
or some other, more precise description. Use CRC cards for high-level descriptions. If you are
worried you’ll forget details, jot down hints on the card that will help you remember them as you
work: “knows its name and preferred ways of being addressed (e.g., title, nicknames, etc.)”.

A Tour of Responsibility-Driven Design Tutorial Notes Page 23

Space on cards is limited, so use it wisely.

Find the right level of description.
How many responsibilities do you need to shape an object’s character? Responsibilities can be
tersely worded or slightly more descriptive. It’s a matter of personal and team style. You can be
more or less brief, just as long as you and your teammates understand on another.

Use strong descriptions.
An object can seem ill defined if its responsibilities seem hazy. Behind a wall of vagueness can
lie details that should not be ignored. Avoid weakly stated responsibilities if you can find
stronger, more explicit descriptions.

Daryl Kulak and Eamonn Guiney, in their book Use Cases: Requirements in Context caution
against giving use cases weak names. They suggest that more concrete verbs make for less vague
use case names. If you use weak verbs, it may be because you are unsure of exactly what your
use case should accomplish. The same principle applies to naming responsibilities for actions.
The more strongly you can state a responsibility, the less you are fudging.
Strong Verbs: remove, merge, calculate, credit, register, debit, activate

Weak Verbs: organize, record, find, process, maintain, list, accept

Of course, there are always exceptions to the rule. A weak-sounding phrase may have specific
meaning in a certain context. In this case, don’t look for a stronger term. Listing a property has a
very specific meaning in the real estate business: It means to put a property on the market for
sale.

Be opportunistic.
Thinking about one object leads to thinking about others. When considering an object’s public
responsibilities, you think about why its clients need to call on these services and what they are
ultimately responsible for accomplishing. When you look at a single responsibility, you think
about how it might be accomplished. This shift of focus is good (as well as hard to avoid). You
test the fit of an object to its context by looking at both its use and its effects on others. If you
hop around too much, however, you might leave an object before you have a firm grasp of its
responsibilities. To avoid this, take a first pass at an object’s major responsibilities before
moving too far away from it.

Decide how an object will divide or share the work of a large or complex responsibility.
An object has three options for fulfilling any responsibility. It can either

• Do all the work itself
• Ask others for help doing portions of the work (collaborate with others)
• Delegate the entire request to a helper object

When you’re faced with a complex job, ask whether an object is up to this responsibility or
whether it is taking on too much. A responsibility that is too complex to be implemented by a
single object essentially introduces a new sub-design problem. You need to design a set of
objects that will collaborate to implement this complex responsibility. These objects will have
roles and responsibilities that contribute to the implementation of the larger responsibility.

A Tour of Responsibility-Driven Design Tutorial Notes Page 24

At this point we’re not asking you to make detailed decisions about how to design specific
collaborations between these objects, only that you think through your options for assigning
subresponsibilities. If a responsibility seems too big for one object, speculate on how you might
break that responsibility into smaller logical chunks. These can be given as work assignments to
other objects. Pursuing this line of thinking may lead you to new candidates with smaller, more
tightly focused roles.

Make sure an object isn’t doing too much.
If you find an object with a long laundry list of responsibilities, this could indicate one of two
problems: either you are stating its responsibilities in too much detail, or it is taking on too much.
It is easy to rewrite responsibilities at a higher level.

However, if your object is too busy, consider splitting it into several smaller ones that will work
together on the problem. Expect these objects to collaborate with one another. Although it may
require more study before you obtain an overall understanding of this new system of objects,
distributing the work among a number of objects allows each object to know about relatively
fewer things. It results in a system that is more flexible and easier to modify.

Keep behavior with related information.
If an object is responsible for maintaining certain information, it is logical to assign it
responsibilities for performing any operations on that information. This makes the object
smarter; not only does it know things, but it also can do things with what it knows! Conversely,
if an object requires certain information to do its job, it is logical (other things being equal) to
assign it the responsibility for maintaining that information. In this way, if the information
changes, no update messages need to be sent between objects.

Distribute system intelligence.
A system can be thought of as having a certain amount of intelligence. The sum of a system’s
intelligence is what it knows, the actions it can perform, and the impact it has on other systems
and its users. Given their roles within a system, some objects can be viewed as being relatively
“smart,” whereas others seem less so. An object incorporates more or less intelligence according
to how much it knows or can do and how many other objects it affects. For example, structuring
objects such as sets or arrays are usually not viewed as particularly intelligent: They store and
retrieve objects but have relatively little impact on the objects they store or any other parts of the
system. Other structurers can be more intelligent. They have responsibilities not only for
maintaining their contents, but also for answering questions about them collectively.

Objects with responsibilities for controlling activity can be more or less intelligent, depending on
how much work they delegate and how much they know about the work of those they manage.
Guard against the tendency to make controllers too intelligent. We prefer to give the
collaborating objects as much responsibility as they can handle. The more intelligent controllers
are, the less intelligent are those that surround them. If you place too much responsibility in a
controller, you lose design flexibility. Our goal isn’t to evenly distribute intelligence, but to give
objects those responsibilities they can handle.

A Tour of Responsibility-Driven Design Tutorial Notes Page 25

Keep information about one thing in one place.
In general, meeting the responsibility for maintaining specific information is easier if that
information isn’t shared. Sharing implies a duplication that can lead to inconsistency. Part of
making software easier to maintain is eliminating potential discrepancies. If more than one object
must know the same information to perform an action, three possible solutions exist:

A new object could be created with the responsibility for being the sole repository of this
information. This information holder would be shared among those who have a “need to know.”
It may be that the information “fits” with the existing responsibilities of one of the existing
objects. In that case, it could assume the added responsibility of maintaining the information.
Others could request this information when they need it.

It may be appropriate to collapse various objects that require the same information into a single
object. This means encapsulating the behavior that requires the information into a single object
and obliterating the distinction between the collapsed objects. Sometimes we go overboard,
factoring out responsibilities into roles that are too small. In that case it is better to pull them
back into a single, more responsible object.

Make an object’s responsibilities coherent.
They should all relate in some way to the overall role of the object. An object as a whole should
be the sum of its responsibilities. These responsibilities should complement one another.
Everything an object knows or does should contribute to its purpose or fit into your design
model.

Restrict an object’s responsibilities to a single domain.
Meilir Page-Jones in Fundamentals of Object-Oriented Design in UML introduces a way of
dividing a software system (and the objects that live within it) into domains. Domains are Page-
Jones’s way of dividing the machinery of an application into different contexts. According to
Page-Jones, objects that live in lower domains shouldn’t have responsibilities that tie them to
objects in a higher domain. The more you tie objects in a lower domain to a higher one, the
harder it is to reuse them in different contexts.

Page-Jones’s divisions (from higher to lower level domains) are as follows:

• Application: objects valuable for one application
• Business: objects valuable for one industry or company
• Architectural: objects valuable for one implementation architecture
• Foundation: objects valuable across all business and architectures
• Foundation objects are further divided into three categories or subdomains:
• Fundamental: objects so basic that many programming languages include them as

primitive data types, such as integers or reals
• Structural: objects that organize others, such as sets, collections, hashtables or queues
• Semantic objects: objects that represent basic concepts with specific meaning, such as

date, time, or money
To test whether two different objects are in the same domain, ask, “Can one object be built
without any knowledge of the other?” If so, these two objects aren’t likely to be in the same

A Tour of Responsibility-Driven Design Tutorial Notes Page 26

domain. But there are still places where you could tangle domains if you aren’t careful—for
example, when you need to convert from one type of object to another.

Avoid taking on nonessential responsibilities.
Avoid diluting an object’s purpose by having it take on responsibilities that aren’t central to its
main purpose. Taking on responsibilities is easy to do, especially when you’re deciding who
should be responsible for maintaining a relationship. The obvious first answer is to make one or
the other, or both, related objects be responsible.

The easy first answer isn’t always the best. Each new responsibility needs to be considered
carefully. It is easy to “slip one in” as an easy solution and avoid thinking through the
consequences. An object that has a lot of links to others is going to be harder to maintain and
move to a new context.

Consider creating a new object that is responsible for structuring the relation between people and
dogs, another for people and valued property, and so on. Each of these new objects knows of a
specific relationship. Instead of one big object knowing many others, the net result is a few
simpler objects, each knowing some specific relationship. This is one way to “straddle” objects
in separate domains. It results in a trimmer Person, unburdened with responsibilities that aren’t
intrinsic to its nature. Of course, this too, can be carried to extremes. Too many objects with
responsibilities to “glue” others together can also make a design brittle and hard to understand.

Decide what relations are intrinsic to an object in the context of your application and which are
not. Assign responsibilities for maintaining nonessential relations to new structurers.

Don’t overlap responsibilities.
Sometimes you aren’t sure which object should check, guarantee, or ensure that things are done
the right way. Who should be ultimately responsible? If you want a robust system, you must
make your objects and neighborhoods resistant to careless mistakes and errors.

Should you make the client check before it calls on the services of another? Should you give
service providers responsibilities for checking that their requests are properly formed? If you’re
not sure whom the clients are or under what situations a responsibility will be carried out, you
might be inclined to put in safety checks everywhere.

This line of reasoning leads to overly zealous objects, all of them fretting about the state of the
system. It can be extremely costly to maintain such a complex system of objects. You are better
off developing a simple, consistent strategy for checking and recovering, and sticking with that.
Not everyone needs to be involved or “share in an important responsibility.”

If you want an object to be impervious to malicious requests, give it responsibilities for detecting
and deflecting them. Once you’ve given an object that responsibility, design its clients to be
more cavalier; they need only react to bounced requests, not prevent them. We will return to this
topic, when we design collaborations. But for now, consider that when you give one object a
responsibility, you are potentially relieving the workload of another. It isn’t necessary to build in
overlapping responsibilities unless your system explicitly demands redundancy.

A Tour of Responsibility-Driven Design Tutorial Notes Page 27

Problem: You have a big responsibility that doesn’t seem to belong to any candidate.
Who should be responsible for solving world peace or ending world hunger? There aren’t simple
answers because these are extremely broad problems. If you really wanted to tackle world peace
or hunger, you’d have to break these enormous problems into smaller factors that, if solved,
might contribute to lessening friction or reducing hunger. Divide a big problem into smaller
problems, and solve those.

Big software responsibilities can seem equally daunting to those tasked with solving them. What
object should be responsible for “interacting with the user” or “performing business functions”
or “managing resources” or “doing the work”? If a responsibility seems too big or too vague,
break it into smaller, more specific ones that can be assigned to individual objects. Treat the “big
responsibility” as a problem statement and reiterate through identifying specific objects with
smaller responsibilities that add up to the larger responsibility.

Problem: You don’t know what to do with a vague responsibility.
If you can’t get more concrete, perhaps you are trying to add precision to a statement that is so
general that you can’t get any traction. You don’t know enough to break it down into subparts.
Before you can design a solution, you may need further definition from someone who knows
more about the problem than you do. It’s always fair to ask, “Can you be more specific about
what you mean by performing business functions?” If you are lucky, your statement may not
really be a problem at all. You may already have assigned specific responsibilities that are
subsumed by a broad unapproachable statement.

Problem: You can’t decide between one of several likely candidates.
Sometimes it isn’t obvious which candidate should be assigned a specific responsibility. When
you’re choosing which of several objects to assign a responsibility, ask, “What are all my options
for assignment? If I choose this possibility, what does that imply for its surrounding neighbors?”
If you have trouble assigning a particular responsibility, the solution is simple: Make an arbitrary
assignment and walk through the system to see how it feels. There isn’t necessarily a single
“right” answer. Don’t get in a jam thinking that you must optimally solve the problem or that
there is only one optimal assignment. There may be several, or none.

Problem: You have trouble assigning a specific responsibility.
You may get stuck on a responsibility that seems to be reasonably stated but has nowhere to go.
This could mean that you are covering new territory and may need to invent a new candidate.
Great! This is progress. Or it could be that even though the responsibility is specific, your
existing candidates’ responsibilities are stated at a higher level of detail. If so, remember that
responsibilities are general statements; what you think of as a specific responsibility you have
trouble assigning may actually be an implementation detail that doesn’t really belong on a CRC
card. If so, save it for later.

Problem: You are worried about how a responsibility is actually going to be accomplished.
You’ve stated responsibilities generally, but you have nagging doubts. How will each object
carry out its duties? Are you concerned because you suspect that something is missing? If so,
follow your instincts and figure that out. Are you a stickler for details? Until you see running

A Tour of Responsibility-Driven Design Tutorial Notes Page 28

code, you never believe a design will work. If so, relax. Your design isn’t finished quite yet. And
it will change as you design collaborations, too. Once you are comfortable with how you’ve
arranged responsibilities among a set of collaborators, then you can pin down responsibilities to
a specific implementation. A responsibility for maintaining knowledge could mean that

• The object holds on to the fact directly.
• It could derive it from other information sources.
• When asked, it turns around and collaborates with another that can compute (and is

responsible for reporting the results to others).
At this point, all your options are open. Stating that a MonetaryTransaction “knows its applicable
taxes” could mean that it stores its taxes directly in variables or that, when asked, it turns around
and delegates this request to a tax calculator object that does all the work. We don’t have to
decide these things just yet. In fact, until we know our candidates and all the dimensions of the
problem better, we don’t know enough to make informed decisions about how “knowing”
responsibilities are best implemented.

A Tour of Responsibility-Driven Design Tutorial Notes Page 29

Tool: Control Center Design

Deciding on and developing a consistent control style is one of the most important decision a
designer makes. A control center is a place where objects charged with controlling and
coordinating reside.

Developing a control style involves decisions about:

• How to control and coordinate application tasks
• Where to place responsibilities for making domain-specific decisions (rules), and
• How to manage unusual conditions (the design of exception detection and recovery)

While it is true that many frameworks make some of these decisions for you, there is much room
for judgment (and lots of options to explore). It isn’t just a matter of style. Control design affects
complexity and ease or difficulty of your design to change. Your goal should be to develop a
dominant, simple enough pattern for distributing the flow of control and sequencing of actions
among collaborating objects.

A control style can be centralized, delegated, or dispersed. But there is a continuum of
solutions. One design can be said to be more centralized or delegated than another.
Your goal should be to develop a dominant pattern for distributing the flow of control and
sequencing actions among collaborating objects.

If you adopt a centralized control style, you place major decision-making responsibilities in
only a few objects—those stereotyped as controllers. These decisions can be simple or complex,
but with centralized control, most objects that are used by controllers are devoid of any
significant decision-making responsibilities. They do their job, but generally are told by the
controller how to do it.

Choosing a delegated control style, you make a concerted effort to delegate decisions among
objects. Decisions made by controllers will be limited to deciding what should be done and
handling exceptions. Following this style, objects with control responsibilities tend to be
coordinators rather than controllers controlling every action.

Choosing a dispersed control style means distributing decision-making across many objects
involved in a task. I haven’t worked on systems where I’ve consciously use this style, although
you could consider a pipes-and-filter architecture or chain-of-responsibilities pattern to be a
dispersed control style.

Nothing is inherently good about any particular style. They all have plusses, minuses, and things
to watch out for. But generally, I prefer a delegated control style as it seems to give more life
(and responsibilities) to objects outside a control center and avoids what Martin Fowler calls
“anemic domain models”. In a nutshell, here are characteristics of each style.

A Tour of Responsibility-Driven Design Tutorial Notes Page 30

Centralized Contol. Generally one object (the controller) makes most of the important
decisions. Decisions may be delegated, but most often the controller figures out what to do next.
Tendencies to watch out for with this strategy:

• Control logic getting overly complex
• Controllers becoming dependent on information holders’ contents
• Objects becoming indirectly coupled as a result of the controller getting information out

of one object and stuffing it into another
• Changes rippling among controller and controlled objects
• The only interesting work (and programming effort) being done in the controller

Delegated Control. A delegated control style passes some of the decision making and much of
the action off to objects surrounding a control center. Each neighboring object has a significant
role to play:

• Message between coordinators and the objects they collaborate tend to be higher level
requests (e.g. instead of setters and getters and minute calls, there are more “Nike”
requests—justDoIt()).

• Changes are typically more localized and simpler
• Easier to divide interesting work among a team

Dispersed Control. A dispersed control style spreads decision making and action among objects
that individually do little, but collectively, their work adds up. This isn’t an inherently bad
strategy; but avoid these tendencies:

• Little or no value added by those receiving a message and merely delegating to the next
object in the chain

• Hardwiring dependencies between objects in long collaboration chains

The Pipes and Filters architectural pattern exemplifies well-designed dispersed control. It divides
the task of a system into several sequential processing steps. These steps are connected by the
data flow through the system. The output of a step is “piped” to another processing step (“a
filter”). A filter consumes and delivers data incrementally—in contrast to consuming all its input
before producing any output—to enable parallel processing. The input to the system is provided
by a data source such as a text file. The output flows into a data sink such as a file or display
device. The data source, the filters and the data sink are connected by pipes.

Filter components are the processing units of the pipeline. A filter enriches, refines or transforms
input data. It enriches data by computing and adding information, refines data by concentrating
or extracting data, and transforms it by delivering it in some other format. A filter may do all
three activities.

Technique: Control Center Design
Don’t adopt the same control style everywhere. Develop a control style suited to each situation:

• Adopt a centralized style when you want to localize decisions in one place
• Develop a delegated style when work can be assigned to specialized objects
• Several styles can and should co-exist in a complex application
• Look at how a particular framework (or accepted style of programming, say, how a J2EE

application “typically does things”) impacts the control styles you adopt and whether it

A Tour of Responsibility-Driven Design Tutorial Notes Page 31

injects undue complexity into your design. For example, a style that separates business
rules from information holder objects results in 2x the number of classes, but arguably
makes it easier to unit test information holders.

• Assess whether your ideas about control style line up with other experts or pattern
authors

Control styles within subsystems vary widely. As a general design rule, make analogous parts of
your design work in similar ways.

A Tour of Responsibility-Driven Design Tutorial Notes Page 32

Tool: Trust Regions
One way to get a handle on where collaborations might be streamlined and simplified is to carve
your software into regions where trusted communications occur. Generally, objects located with
the same trust region communicate collegially, although they still encounter exceptions and
errors as they do their work. Within a system there are several cases to consider:

• Collaborations among objects that interface to the user and the rest of the system (unless
information it is verified before it is sent to the rest of the system, it shouldn’t be trusted
to be valid)

• Collaborations among objects within the system and objects that interface with external
systems

• Collaborations among objects outside a neighborhood or subsystem and objects inside
• Collaborations among objects in different layers
• Collaboration among objects you design and objects designed by someone else
• Collaborations with library objects

Whom an object receives a request from is a good indicator of how likely it is to accept a request
at face value. Whom an object calls on determines how confident it can be that the collaborator
will field the request to the best of its ability. It’s a matter of trust. In general, when objects are in
the same layer or neighborhood, they can be more trusting of their collaborators. And they can
assume that objects that use their services call on them appropriately.

If a request is from an untrusted or unknown source, extra checks may be made before a request
is honored.

Technique: Identify trust regions. Carve your software into regions where “trusted”
communications occur. Objects in the same trust region communicate collegially, although they
may still encounter exceptions and errors. When an object uses a collaborator that is outside of
its trust region it may take extra precautions, especially if it has responsibilities for making the
system more reliable. It may need to:

• Pass along a copy instead of sharing data
• Check on conditions after the request completes
• Employ alternate strategies when a request fails

Objects at the “edges” of a trust region typically take on more responsibilities. For example, an
object that receives a message from an “outsider” may make initial checks, then only pass along
known good requests to others.

A Tour of Responsibility-Driven Design Tutorial Notes Page 33

References
Responsibility-Driven Design
The most recent source on Responsibility-Driven Design can be found in the book:

R. Wirfs-Brock and A. McKean, Object Design: Roles, Responsibilities, and
Collaborations, Addison-Wesley, 2003.
ISBN 0-20-137943-0

Errata can be found at http://www.wirfs-brock.com/PDFs/Book%20Corrections.pdf

Responsibility-Driven Design has been written about in several “old classics”. The original
OOPSLA paper appeared in 1989 and a book (still in print) in 1990.

R. Wirfs-Brock and B. Wilkerson, “Object-Oriented Design: A Responsibility-Driven Approach,”
OOPSLA ‘89 Conference Proceedings, SIGPLAN Notices, 24(10), pp. 71-76, 1989.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software, Prentice Hall, 1990.
ISBN 0-13-629825-7

More recently, I have been writing about design in general (and responsibility-driven design
principles) in IEEE Software as its Design Editor. A copy of my columns can be found on my
website: www.wirfs-brock.com/resources

A variety of magazine articles and tutorial presentations also talk about certain ideas conceived
since 1990. Many of the articles can be downloaded from www.wirfs-brock.com/resources

R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software, Prentice Hall, 1990.
ISBN 0-13-629825-7

J. Carroll, Editor, Chapter 13, “Designing Objects and Their Interactions: A Brief Look at Responsibility-
Driven Design”, pp. 337-360, in Use Case-Based Design: Envisioning Work and Technology in System
Development, John Wiley & Sons, 1995.
ISBN 0-471-07659-7

From The Report on Object Analysis and Design:
R. Wirfs-Brock, “How Designs Differ,” vol. 1, no. 4.

R. Wirfs-Brock, “Adding to your Conceptual Tool Kit: What’s Important about Responsibility-Driven
Design”, vol. 1, no. 2.

R. Wirfs-Brock, “Characterizing Your Application’s Control Style”
From the Smalltalk Report:
R. Wirfs-Brock, “Designing Use Cases: Making the Case for a Use Case Framework,” vol. 3, no. 3.

R. Wirfs-Brock, “The Art of Designing Meaningful Conversations,” vol. 3, no. 5.

R. Wirfs-Brock, “Characterizing Your Objects,” vol. 2, no. 5.

R. Wirfs-Brock, “Characterizing Object Interactions,” vol. 2, no. 6.

R. Wirfs-Brock, “Object Visibility: Making the Necessary Connections,” vol. 2, no. 2.
From Object Magazine:

A Tour of Responsibility-Driven Design Tutorial Notes Page 34

Wirfs-Brock, “Stereotyping: A Technique for Characterizing Objects and their Interactions,” Nov/Dec.
1993.

CRC Cards
Ward Cunningham and Kent Beck introduced the idea of CRC cards in their OOPSLA paper.
This OOPSLA paper was written when Ward was at Tektronix, the same year the Rebecca and
Brian Wilkerson wrote about Responsibility-Driven Design. CRC cards were originally
conceived as a teaching tool; they since have evolved into a widely used design aid.

K. Beck and W. Cunningham, “A Laboratory for Teaching Object Oriented Thinking,” OOPSLA ‘89
Conference Proceedings, SIGPLAN Notices, 24(10), pp. 1-6, 1989.

Nancy Wilkerson has written an entire book on using CRC cards. She has added to the ‘lore’ of
CRC cards with practical tips and the notion of detailed design cards.

N. Wilkinson, Using CRC Cards An Informal Approach to Object-Oriented Development, SIGS Books,
1995.
ISBN 1-884842-07-0

Design Principles, Libraries and Contracts
Bertrand Meyer’s books aren’t just about Eiffel. He introduced the notion of formally specifying
the contractual relationships between objects. His monumental achievements are documented in
1200+ pages of Object-Oriented Software Construction, Second Edition.

B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice Hall, 1998.
ISBN 0-13-629155-4

B. Meyer “Design by Contract,” in Advances in Object-Oriented Software Engineering, D. Mandrioli and
B. Meyer, editors, Prentice Hall, 1992, pp. 1-50.

B. Meyer, “Applying ‘Design By Contract’,” IEEE Computer, vol. 25, no. 10, pp. 40-51.

ISBN 1-884777-10-4

Design in General
Donald Norman writes about why designers’ creations are hard to use. His examples come from
industrial design, but his design principles are appropriate to object and framework designers.
We recommend his books to anyone interested in making designs easier to use.

 D. Norman, The Design of Everyday Things, Bantam Doubleday, 1988
ISBN 0-38-52677-64

Reading for Pleasure
You can tell that I am a true bibliophile when I include references to a book that appears to have
nothing to do with design. This book has influenced me my thinking about design, writing style,
natural language, poetry, and Italian music. It is dense and beautiful. He has an intuition that it
might be the best book that he will ever write. For the creator of Godel, Escher, Bach, that is
saying something. An astounding book!

D. R. Hofstadter, Le Ton beau de Marot, Basic Books, 1998
ISBN 0-465-08645-4

A Tour of Responsibility-Driven Design Tutorial Notes Page 35

Data Collection Problem OOPSLA DesignFest™ Problem

Background
A local forest technology company, Forests ‘R’ Us, wants to build and sell a system for
gathering and analyzing weather information to predict forest fires and help with water table
management. The Arbor2000 will be sold to National Forests, Environment Canada, the U.S.
Forest Service, and large private landowners. It will consist of hardware and software both
locally in the owner’s office building and remotely in the forests.

The data sensors in the forest report at various intervals to the central computer via satellite,
packet radio, cell phone, dial-up phone, or dedicated line. The central computer stores and
analyzes the information. The users run a wide variety of reports, browsers, historical trend
analysis, and future prediction algorithms over the data. Furthermore, given the inherently
geographic nature of the data, many of the reports incorporate maps.

The sensors, such as temperature, sunlight intensity, wind speed and direction, rainfall, and so
on, com in three basic types:

1. those that report on a regular basis (every minute, hour, day, month),
2. those that only report when a significant event occurs (a certain amount of rain has
fallen, the temperature rises above a threshold), and
3. those that must be queried.

Some sensors fall in multiple groups; for example, they report events but can also be queried.

The sensors are produced by different manufacturers and return numeric values in a wide variety
of units (miles/hour, km/hour, lumens, watts, calories/day, etc.) and at widely varying intervals
and tolerances.

Additionally, the data links are not necessarily reliable, and yet the system must deal with all
these issues while presenting both a uniform and a detailed view of the data to the user and his or
her agent/analysis programs.

Desired Programs
Forests ‘R’ Us needs three categories of programs:

1. one to gather the sensor data as it arrives and store it in a database,
2. one to configure the field sensors, and
3. the one to provide the user interface for browsing and analyzing the data.

Gathering the sensor data is relatively simple: the field sensors send information packets to the
central computer, and the central computer stores them. Each packet contains the sensor ID, the
time stamp, and the numeric sensor measurement. For cost reasons, many sensors are grouped
into sensing units which send their data together (e.g., wind speed, direction, humidity, and
temperature) via one phone call rather than four separate calls.

A Tour of Responsibility-Driven Design Tutorial Notes Page 36

Configuring the field sensors consists of telling the software where each sensor is physically
located and what type of sensor it is. Additionally, many sensors have different settings for
measurement units and errors, reporting intervals, etc., so these too are configured. Because this
is a 7 x 24 system, sensors can be replaced at any time, usually with an upgraded model and thus
with different measurement units, error tolerances, etc.

The browsing and analyzing programs are the heart of the system. The analysis algorithms
provide fire danger ratings, water table estimates, flash flood warnings, and so on. The browsing
interfaces provide detailed information, both tabular and geographic, from the database. For
example, the temperature maps similar to those seen on the evening news are one of the possible
graphical outputs. The user should be able to navigate through the information in many ways
including:

1. Map browsing multiple sensor types (temperature and rainfall) or multiple time periods
(temperature over the previous month).
2. Browsing the type and status of the sensors at any location or locations.
3. Browsing the reliability and age of the information for any sensor and/or location.

To provide for future expansion, each of the predicted values available for display (e.g.
temperature, rainfall, fire danger, flash flood risk, etc.) should be computed via a plug-in module.
(Forests ‘R’ Us intends to sell additional modules for other risk factors, such as earthquake
prediction, in the future.)

Common Situations
The following are typical scenarios and conditions that the Arbor2000 software is expected to
handle.

Situation #1
There are sixteen sensor groups, each with three or four sensors, placed in the Rumbling Range
National Forest. The sensors are randomly chosen from rainfall, temperature, sunlight, wind
speed, wind direction, and snowpack sensors. The sensors report from once a minute to once a
day and in a variety of units.

Jane Arden, a National Park Service Ranger, wants to post the fire danger results outside the
Visitor Information Center, so she uses the Arbor2000 to examine the graphical view of fire
danger in the forest. Overall, the fire danger is “moderate” with one area of “low danger + high
uncertainty”. Looking into the uncertain area, she finds that a number of the sensors have not
reported for quite a while, leading to the uncertainty. Further investigation reveals that none of
the sensors in group 2 and 4 have reported, and further checking shows that groups 2 and 4 are
the only two which use the 555-3473 phone modem. She dispatches a repair crew to figure out
the problem with the phone line while she posts the “moderate” fire danger sign in front of the
visitor’s center. She also checks the fire danger last year, and finds out that it was “low” over the
entire forest, so she calls the Rumbling Range Spokesman-Review and asks them to print a story
about how the fire danger is higher this year due to lower than expected rainfall.

A Tour of Responsibility-Driven Design Tutorial Notes Page 37

Situation #2
The Rumbling Range National Forest buys two additional sensor arrays and hires a helicopter
crew to plant them in the forest. After they return with Global Positioning System confirmation
of the latitude and longitude of the sensors, Jane configures the system to receive the new data.
Fortunately, the Arbor2000 is clever enough to store the unidentified incoming data until Jane
had time to indicate where the arrays were located and what sensor types they were.

Situation #3
Forests ‘R’ Us comes out with a new plug-in module that it generously gives away free over the
Internet. This new module computes trend analysis of the sunlight sensors to detect premature
failure. Ms. Arden downloads and runs the module against the Rumbling Range database, only to
discover that sensor #372 on Bald Mountain shows signs of age—its measured output has slowly
declined over the past four years. Jane decides to hike to the top of the mountain and replace the
sensor.

When she reaches the top, she discovers that the problem is not the sensor, but rather a
small pine tree shielding the sensor from the sun. Unwilling to cut down the only tree on
Bald Mountain, she relocates the sunlight sensor 100 meters to the south. When she
returns to base, she updates the database with the sensor’s new location.

