
ABSTRACT
Reliability block diagrams focus on components and
connectors as do software architectures. However, some
architectural styles possess characteristics which make
traditional reliability block diagrams unusable as an analysis
technique. In order to use the diagrams, they must be
extended to reflect common architectural choices such as
concurrency, distribution, dynamism, and implicit
connectors.

Keywords
Software architecture, software reliability, reliability block
diagrams

INTRODUCTION
Software architectures are typically chosen for their
nonfunctional properties ([GACB95]). This choice is
sometimes done in an ad hoc manner, relying on qualitative
observations. However, there is a growing body of work
which is attempting to provide a quantitative framework for
evaluating an architecture’s nonfunctional properties. One of
the most important of these properties is the architecture’s
reliability.

There are many ways to think of the reliability of a software
architecture. Software reliability is a large field, and part of
the vaster field of reliability engineering. Reliability block
diagrams, fault tolerance, fault estimation models, and
complexity-related failure prediction are just a few examples
of the breadth of software reliability work ([LYU96]). While
not as broad, there is a similar group of research efforts
within software architectures, including identification and
formalization of architectural styles, analysis of architectural
composition, and the development of architectural
description languages. Drawing a correlation between
software reliability and software architecture presents a
broad number of choices.

For our purposes, reliability block diagrams appear to be a
good starting point to examine the reliability of software
architectures because of the similarity to the ‘components
and connectors’ emphasis of software architectures. These
diagrams can be used to provide a sensitivity analysis of
different competing architectures, and they are also
amenable to the attachment of other nonfunctional
information such as performance or cost figures.

In this report, we show how reliability block diagrams can be

used to estimate the reliability of different software
architectures. We show that there is architectural information
which does not allow the straightforward use of reliability
block diagrams, and so the latter must be extended to allow
for important architectural characteristics - otherwise the
resulting reliability estimate may be severely flawed.

We begin by presenting a brief background of reliability
block diagrams and of software architectures and styles.
Next, we show how certain properties of some software
architectural styles cannot be modeled using classic
reliability block diagrams, and how to extend the diagrams
to capture those properties. A small example is given which
highlights this analysis. Finally, we summarize the primary
issues, and point out future directions.

RELIABILITY BLOCK DIAGRAMS
A reliability block diagram (RBD) is a graphical depiction of
the system’s components and connectors which can be used
to determine the overall system reliability given the
reliability of its components (figure 1). An RBD has one or

more paths through it which represent successful system
operation. Every path is constructed out of blocks
(components) and lines (connectors). Blocks represent
computational elements, and the lines are used to describe
which paths through the blocks are essential to success. If
any path is executed successfully, then the overall system is
said to succeed, otherwise if all paths fail, then the overall
system also fails.

There are several important assumptions that accompany
RBD’s ([BREA95]):

• the reliability of each individual block is known or esti-
mated

97%

80%

90%

93%

System
Reliability:
88.4%

Figure 1

Extending Reliability Block Diagrams to Software Architectures

Ahmed Abd-Allah
Center for Software Engineering
Computer Science Department

University of Southern California
Los Angeles, CA 90089 USA

aabdalla@cs.usc.edu
Technical Report: USC-CSE-97-501

• the lines have a reliability of one

• all lines share the same semantics (type-less)

• failures of blocks are statistically independent

• blocks are bimodal: they either operate or fail com-
pletely (degradation of service is not allowed for)

• all success paths are shown in the diagram

Given these assumptions, it is possible to calculate the
reliability of a system expressed in an RBD.

Using Failure Rates to Express Reliability
The reliability of each component or block in an RBD can
be given in a variety of ways: mean time to failure,
reliability percentage over a period of time, failure rate, etc.
Later in this report, we assume that failure rates are
associated with each component. From a component’s
failure rate λ, we can derive the reliability of that
component over a period of timeT using the following
equation (assuming a homogeneous failure rate):

R = e-λT

Thus, if a component is estimated to have a failure rate of 10
failures per 1000 hours, then its reliability over a 24 hour
period is calculated to be approximately 79%.

Even if a component’s failure rate is measured meticulously
using extended benchmarks and simulations, it may still
need to be modified when it is actually placed in a real
system. In fact, the estimated failure rateλ of a component
can be expressed as a function of at least four parameters
([MIO87]):

• f, the original measured failure rate of the component

• t, the fraction of time spent in the component (with
respect to the overall system execution time)

• u, the utilization or the fraction of CPU cycles consumed
by the component

• s, the relative speed of the underlying platform with
respect to the platform on which the failure rate was
originally measured

The product of these four parameters yields a more accurate
estimate of the component’s failure rate than the original
measured failure rate:

λ = ftus

Common Patterns in RBD’s
One of the simplest examples of an RBD is a system which
is composed purely out of a chain of components (blocks).
The overall reliability of such a pipeline can be calculated
as the probability of all components executing successfully,
or the product of the individual reliabilities (figure 2).

Another simple example is a system of components running
in parallel. In this case, the overall reliability is 1 minus the

Figure 2

R2 RnR1 R Ri
i 1=

n

∏=

probability of all the components failing (figure 3).

The serial and parallel configurations are useful, and they
turn up in many different systems, however there are many
systems which cannot be reduced to alternating sequences
of serial and/or parallel subsystems. Those types of systems
can still be analyzed by using a Karnaugh map which
reflects all the paths through the system, and which
identifies which paths are successful and which are not.
Each path can be expressed in terms of the components
which it does or does not traverse, and this information is
used to generate a reliability estimate for that path in terms
of a simple product of terms. For each component which is
traversed, we factor in that component’s reliability, and for
each component which is not traversed, we factor in that
component’s probability of failing (or one minus its
reliability). The overall reliability of the system is given by
the sum of the reliabilities of the successful paths through
the RBD (see [MIO87] for an example).

SOFTWARE ARCHITECTURES AND STYLES
A software architecture is composed of many views which
revolve around the components and connectors in the
system ([GACB95]). Traditional views include structure,
topology, and behavior, and these have been modeled in
many different ways (see [ABDA96] for a bibliography).
Many systems are known to possess similar architectures,
and this has led to the identification of architectural styles
([GASH93]). Each style is a collection of attributes and
constraints which are shared by all instantiations or
architectures of that style.

There are many examples of known styles (table 1), and
there are likely many others to be identified. It is not
immediately clear how the different styles are related to one
another, especially since many of them have attributes and
constraints which are apparently orthogonal to one another.
For example, a layered architecture describes a general
topological constraint with respect to some type of
connector, whereas an event-based system places
constraints on the type of communication which is allowed
(messages or events) as well as specifying the presence of
implicit invocations.

The orthogonality of the styles is an obstacle if we are to
determine a reliability estimate for different architectures.

R2

Rn

R1

Figure 3

R 1 1 Ri–()
i 1=

n

∏–=

For that reason, we utilize a previously established common
foundation of architectural styles to surmount this problem
([ABDA96]). This foundation is composed of two different
parts: - a base set of architectural entities - a recurring set of
conceptual features

The first part observes that there are essentially eight base
entities which underly many different styles. These entities
are: port, data component, control component, object, data
connector, control connector, trigger, and system. Style-
specific entities can be derived from these eight by adding
additional constraints. For example, a pipe in the pipe and
filter style is a refinement of the base entity data connector.
Similarly, an event queue in the event-based style is a
refinement of the base entity port.

The second part of the common foundation is also an
observation that certain attributes and constraints occur over
and over again across many different styles. These recurring
attributes and constraints can be used to identify a set of
seven conceptual features which act as the dimensions of an
architectural style space (table 2). Each feature has a small

Table 1: Examples of Architectural Styles

Main/Subroutine Pipe & Filter

Layered Software Bus

Multi-threaded Feedback System

Rule-based Blackboard

Distributed Processes Event-based

Object-oriented Logic Computing

Database Real-time System

Table 2: Recurring Architectural Conceptual Features

Feature Choices

Dynamism of
Computations

static, dynamic

Supported Data Transfers implicit global data dis-
tributor, explicit data chan-
nels, shared variables

Triggering Capability yes/no

Concurrency of
Computations

single-threaded,
multi-threaded

Distribution single node,
multiple nodes

Layering yes (connector-specific),
no

Encapsulation yes/no

set of choices associated with it, and it is mainly the choices
in these features which determine the style which is being
applied in a particular system ([ABDA96]).

IMPACT OF ARCHITECTURE ON RBD’ s
Certain software architectural styles possess characteristics
which make them difficult to model using reliability block
diagrams. Though both software architectures and RBD’s
seem to share a common focus on ‘boxes and lines’, there
are enough semantic differences between the two that one
cannot assume a simple mapping.

The common foundation described above can be used to
highlight the issues which make classic RBD’s
incompatible with certain styles. The incompatibility
invariably stems from a particular style’s noncompliance
with one or more of the assumptions for RBD’s. In the
discussion below, we examine the impact of the base
entities and the conceptual features on the failure rates of
components in an RBD.

Concurrency is a recurring conceptual feature in many
architectures. From a reliability standpoint, the immediate
effect of running two components concurrently on a single
platform is to reduce the CPU utilization of each component
(figure 4). This means that the effective failure rate of each

component will be reduced, and consequently the reliability
will be increased (with a performance penalty as the
tradeoff).

Another conceptual feature,distribution, has the opposite
effect of concurrency. A simple distributed system built out
of two components where each component runs on its own
separate platform will allow each component to reach
maximum utilization of their respective CPU’s (figure 5).

The additional processing power allows more instructions
to be executed, increasing the effective failure rate and
decreasing the reliability (with a performance gain as the
tradeoff in this case).

Dynamism is a third conceptual feature which affects

1 2

single platform
Figure 4

λ1 f1t1u1s=

λ2 f2t2u2s=

λsystem λ1 λ2+=

u1 u2+ 1≤

1 2

dual platforms
Figure 5

λ1 f1t1u1s1=

λ2 f2t2u2s2=

λsystem λ1 λ2+=

u1 u2+ 2≤

RBD’s, and the first one to really break one of the
assumptions of RBD’s. It is a conceptual feature which is
also reflected in the set of base entities because the latter
includes as one of its members control connectors which
can be non-blocking spawns. These spawns give an
architecture the ability to be dynamic. However, the
presence of different connectors violates the type-less
connector assumption of RBD’s, and the presence of
spawns in particular poses certain difficulties.

A spawn connector between two components can be
traversed more than once during runtime, producing many
copies of the same component running concurrently (with
concurrency’s utilization-limiting effect noted above). As
more copies are instantiated, the effective failure rate will
increase if we assume for the moment that these
components are running on a lightly loaded machine or on
different machines entirely. Thus, whereas an RBD is
usually used to give a point estimate of a system’s
reliability, a dynamic architecture with spawns will have its
reliability given as a function of how many copies of a
component are expected to be instantiated (figure 6).

One of the main choices present in software architectural
styles is the type ofsupported data transfers, another
conceptual feature. If a style utilizes an implicit global data
distributor (e.g. the event manager in the event-based style),
this may violate the ‘all components shown’ assumption of
RBD’s. The implicit distributor is a useful architectural
abstraction, however the reality is that there is some hidden
component which is managing the transfer of data between
all the ‘explicit’ components (figure 7). For some types of

systems (e.g. specialized embedded applications), ignoring
the reliability of the implicit distributor is unrealistic. Hence
if there is a global data distributor, it needs to be explicitly
shown in the RBD, as it may potentially increase the
effective failure rate of the overall system.

Evaluating the Suitability of RBD’s for Specific Styles
Different architectural styles make different choices on the
conceptual features. The choices made will affect the

1 2

Figure 6

λ1 f1t1u1s1=

λ2 f2t2u2s2=

λsystem λ1 nλ2+=

n

n 0≥()

1 2

Figure 7

λ1 f1t1u1s1=

λ2 f2t2u2s2=

λsystem λ1 λ2 λ3+ +=

λ3 f3t3u3s3=

3

suitability of ‘simple’ reliability block diagrams for
architectures of that style. Some styles make choices on the
conceptual features which make it necessary to draw upon
the extensions to RBD’s described above if they are used to
estimate the reliability of architectures in those styles. On
the following page, table 3 illustrates this for a few styles
with gray cells indicating choices which require an
extended RBD to model their effects.

For example, a distributed processes architecture may have
concurrent, dynamic, and distributed components. Together,
these features can produce a complex reliability estimate.
However, a main/subroutine architecture is ideally suited
for ‘simple’ RBD analysis because of its lack of
concurrency, distribution, dynamism, and an implicit global
data distributor. This style was more or less assumed in
early RBD analyses of software systems ([LLLI62]).

EXAMPLE
The following example illustrates the impact of
architectural considerations on the RBD analysis of a
simple system. Consider a system of five components
arranged as shown in (figure 8). All five components are

assumed to be vital to the success of the system, thus there
is only one success path through the diagram and we can
treat it as a system of five components arranged in a serial
arrangement. The resulting reliability of this system over a
10 hour period is calculated by the product of all the
individual component reliabilities. If we only use the
original measured failure rates, then this very simplified
analysis yields a point estimate of 83.5% reliability over a
10 hour period.

The analysis is considerably different if we introduce
additional architectural information into the diagram (figure
9). Though the original topology of connectors is the same,
the new diagram identifies different types of connectors,
and a distributed, concurrent system. The system can now
be identified as a simple abstraction of a popular

1
2

4
1

2
10

3
3

5
2

Failure rate per
1000 hours

λsystem fi
i 1=

5

∑ 18 1000hrs⁄= =

Rsystem 10() e
λsystem10–

83.5%= =

Figure 8

architecture found on the World Wide Web, that of a Java-
based client/server architecture.

In this particular example, there is a server machine
executing the Web server and three local repositories, and
there is also a client machine executing the Java client. For
simplicity, we assume that the server and repositories are in
constant and concurrent usage, and that they share the CPU
equally. The effective failure rate on the server then is given
by the sum of its component’s failure rates divided by the
number of components (four). The effective failure rate on
the client is simply that of the client itself (assuming no
other applications are running on that machine). The overall
effective failure rate of the system is a function of the
number of clients which are accessing the server, and it
increases as the number of clients (which are distributed)
increases (figure 10). The reliability estimate now becomes
a decreasing function, starting at 88.7% for one client,
dropping to 80.3% for two clients, and so on.

1
2

WWW Server
2

10

Java Client

3
3

Database A
4

1

Database B
5

2

Database C

spawn

pipes

Server Machine

Client Machine

λServer
2 3 1 2+ + +

4
------------------------------- 2= =

λClient 10=

λsystem λServer nλClient+= n 0≥()

clients

reliability
after 10
hours

Figure 9 CONCLUSION
We have seen how reliability block diagrams can be
extended to software architectures. Different conceptual
features that span many architectural styles can have
positive or negative effects on the effective failure rates of
architectural components modeled in an RBD. The
assumptions of RBD’s may also be violated by the choices
made on the conceptual features, as well as by the choice of
different architectural connectors. As software systems
increase in complexity via the use of distribution,
concurrency, dynamism, and packaged middleware
solutions, estimating the reliability of these systems using
RBD’s will also become more complex.

Our approach is a step towards quantitative evaluation of
software architectures. It is more useful to use an RBD
analysis of an architecture if we can also do a similar
performance and/or cost analysis. The presence of these
types of analyses will give architects an opportunity to
explore design tradeoffs early in the software lifecycle.

Searching for analytical methods for additional
nonfunctional attributes is just one of the future research
steps to take. Another step is to integrate the extensions to

100%

75

50

25

88.7

80.3
72.6 65.7 59.5

83.5

(12) (22) (32) (42) (52)

1 2 3 4 5

Figure 10

Reliability after 10 hours as a
function of the number of clients

(Total system failure rate)

Table 3: Suitability of Reliability Block Diagrams to Certain Architectural Styles

Pipe & Filter Main/Subroutine Distributed Processes Event-Based

Dynamism of
Computations

static static dynamic static

Supported Data
Transfers

explicit data connec-
tors

shared data variables explicit data connec-
tors

implicit network,
shared data variables

Triggering Capability no N/A no yes

Concurrency of
Computations

multi-threaded single-threaded multi-threaded single-threaded

Distribution unconstrained single node multiple nodes unconstrained

Layering unconstrained unconstrained unconstrained unconstrained

Encapsulation no no no yes

RBD’s into an architectural analysis tool. Currently, work is
proceeding on such a tool at USC. Finally, another
promising step is to look for additional correlations between
software architecture and software reliability (e.g. using the
architecture to drive a reliability estimate based on software
complexity metrics).

REFERENCES
[ABDA96] A. Abd-Allah. “Composing Heterogeneous
Software Architectures”, Doctoral dissertation, University
of Southern California, August 1996

[BREA95] B. Bream, curator. “Reliability Block Diagrams
and Reliability Modeling”, Office of Safety and Mission
Assurance, NASA Lewis Research Center, May 1995, http:/
/www-osma.lerc.nasa.gov/rbd/

[GACB95] C. Gacek, A. Abd-Allah, B. Clark, B. Boehm.
“On the Definition of Software Architecture”, ICSE 17
Software Architecture Workshop, April 1995

[GASH93] D. Garlan and M. Shaw. “An Introduction to
Software Architecture” Advances in Software Engineering
and Knowledge Engineering, World Scientific Publishing
Co., 1993

[MIO87] J. Musa, A. Iannino, K. Okumuto. “Software
Reliability: Measurement, Prediction, Application”,
McGraw-Hill, 1987

[LLLI62] D. Lloyd, M. Lipow. “Reliability: management,
methods, and mathematics”, Prentice-Hall, 1962

[LYU96] M. Lyu, editor. “Handbook of Software Reliability
Engineering”, McGraw-Hill, 1996

