
Software Architecture Evaluation in Practice
Retrospective on more than 50 Architecture Evaluations in Industry

Jens Knodel, Matthias Naab
Fraunhofer IESE

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{jens.knodel, matthias.naab}@iese.fraunhofer.de

Abstract—Architecture evaluation has become a mature sub-
discipline in architecting with high-quality practical and
scientific literature available. However, publications on industrial
applications and concrete experiences are rare. We want to fill
this gap and share our experiences - having performed more than
50 architecture evaluations for industrial customers in the last
decade. We compiled facts and consolidated our findings about
architecture evaluations in industry. In this paper, we provide a
critical retrospective on more than 50 projects and share our
lessons learned. This industrial and practical perspective allows
practitioners to benefit from our experience in their daily
architecture work and scientific community to focus their
research work on the generalizability of our findings.

Index Terms—software architecture, architecture evaluation,
empirical evidences, experience report

I. INTRODUCTION
Software architecture evaluation is a powerful means to

make decisions about software systems, assess and mitigate
risks, and identify ways for improvement and migration of
software systems. Architecture evaluation achieves these goals
by predicting properties of software systems before they have
been built or by answering questions about existing systems.
Architecture evaluation is both effective and efficient:
effective, as it is based on abstractions of the system under
evaluation and efficient, as it can always focus only on those
facts that are relevant for answering the questions at hand.
While many publications are available on methods for
architecture evaluation, only very little is available on real and
practical examples of architecture evaluations (see Section
I.A). In this paper, we want to fill this gap and share our
experiences from more than 50 architecture evaluation projects
with other practitioners and the research community (see
Section I.B). Please note that we published an extended version
of this paper with a strong focus on software change as an
invited keynote at CSMR / WCRE 2014 [1].

A. State of the Art and State of the Practice
Architecture evaluation is, just like software architecture

itself, a well-established discipline in research and industry. In
research, several methods and many refinements were
proposed for architecture evaluation over the last 20 years. The
foundations have been published as the first method, SAAM
(Software Architecture Analysis Method) [2]. This method
introduced a key idea, which is underlying most architecture
evaluation methods: requirements, in particular quality

attributes, are made concrete and quantifiable with so-called
architecture scenarios, which are collected from stakeholders.
These scenarios are then discussed with architects in order to
identify risks, sensitivity points, and tradeoffs. SAAM has been
refined into ATAM (Architecture Tradeoff and Analysis
Method) [3], which is the de-facto standard for architecture
evaluations, published by the SEI (Software Engineering
Institute). While these methods are general-purpose methods
applicable to all types of systems and requirements, more
recent architecture evaluation methods have focused on certain
quality attributes. For example, ALMA (Architecture Level
Modifiability Analysis) [4] focuses on modifiability /
maintainability. With this restriction, more guidance is possible
in the method. Methods like Palladio [5] take this idea one step
further and provide both the requirements and the respective
aspects of the architecture as formal models and thus allow
formal predictions and simulations. More comprehensive
overviews of architecture evaluation methods can be found in
[6] and [7].

While the previous methods focused on the question of
how adequate an architecture is for a certain set of
requirements, architecture evaluation can also cover further
aspects. Only if an architecture is also implemented
consistently, it allows to achieve the requirements as intended.
Thus, reverse engineering [8], architecture reconstruction, and
architecture compliance checking approaches models [9], [10]
are other important aspects of architecture evaluation. A
comprehensive overview of architecture reconstruction can be
found in [11].

In industry, architecture evaluation is used in many
domains to mitigate risks and make well-informed decisions
about software systems. However, it is not (yet) common
practice. A study on architecture evaluation in practice is
reported in [12]. Our experiences confirm many of the aspects
reported in this article. Architecture evaluations in industry are
conducted by external entities (e.g., consulting companies,
research institutes, universities) or by other internal divisions
within the company (e.g., quality assurance groups).

B. Goals of this Paper and Contribution
From 2004 to 2013, we conducted more than 50

architecture evaluations for industry customers at Fraunhofer
IESE (an applied research institute for software engineering
located in Kaiserslautern, Germany), where at least one of the
authors has been directly or indirectly involved. These projects

2014 IEEE/IFIP Conference on Software Architecture

978-1-4799-3412-6/14 $31.00 © 2014 IEEE

DOI 10.1109/WICSA.2014.37

115

covered a large number of different types of systems, partially
evaluating more than one architecture, of industries involved,
of evaluation questions asked, and of course a whole spectrum
of different evaluation results. The contribution of this paper is
to present our experiences together with context factors,
empirical data, and lessons learned. This is how we intent to
complement the methodical publications on architecture
evaluation. Of course, the companies and systems under
evaluation have been anonymized. The target audience for this
experience report are both practitioners and researchers. On the
one hand, we aim at encouraging practitioners to conduct
architecture evaluations by showing their impact and lowering
the hurdles to making first attempts on their own. On the other
hand, we aim at giving researchers insight into industrial
architecture evaluations, which can serve as a basis to guide
research in this area.

In Section II we start with a brief overview of our approach
to architecture evaluation. Then, we sketch in Section III the
context of the architecture evaluations we conducted and
outline in Section IV how the evaluation projects were initiated
and set up. In Section V, we present an overview of the results
and of the follow-up actions. Finally, we conclude with lessons
learned in Section VI and an overall discussion in Section VII.

II. OUR ARCHITECTURE EVALUATION APPROACH
Our architecture evaluation approach RATE (Rapid

ArchiTecture Evaluation) has been developed, refined, and, of
course, applied for more than 10 years now. It is a compilation
and calibration of existing approaches. This is in line with the
philosophy of Fraunhofer to enhance, scale, and tailor existing
methods for industrial application. We only briefly sketch the
method here as this paper is mainly about our experiences
about architecture evaluations (refer to [13] for more details).

The big picture and main building blocks of RATE are
sketched in Figure 1. Architecture evaluations always originate
in evaluation goals and questions. According to these goals and
questions, stakeholder concerns are identified with
stakeholders in interviews and workshops and formulated as
architecture scenarios (as in ATAM). RATE consists of several
evaluation aspects, which are briefly explained in the
following.

Solution Adequacy Assessment is the first key evaluation
aspect, which checks how adequate an architecture is with
respect to the requirements stated as scenarios. Solution
Adequacy Assessment is done similarly as proposed by ATAM
in discussions with architects and other stakeholders to identify
risks, sensitivity points, tradeoffs, strengths, and weaknesses.
The key approach is to discuss architectural solutions for a
certain scenario to a level that gives the evaluators enough
confidence that the scenario is adequately addressed or the
relevant open questions and risks are identified. Sometimes,
discussion is not enough to obtain this confidence: For
example, if there are strict performance requirements and
architectural solutions including technologies that are not
thoroughly known, another way of gaining confidence is
necessary. This could be collecting data and building more
formal models for simulation or building architectural
prototypes to collect the necessary experiences.

Documentation Assessment checks how well the
architecture documentation suits the needs in the development
process. This does, for example, take into account which
stakeholders are intended consumers of the architecture
documentation, how well it can serve its main purposes, how
readable it is, and how up-to-date it is. Thus, the architecture
scenarios are input to the documentation assessment, too.

Compliance Assessment checks the compliance of an
implementation (with its so-called implemented architecture)
with the intended architecture. Only if architectural concepts
are implemented compliantly, the architecture has value as a
predictive and descriptive instrument in the development
process. Compliance Assessment typically requires reverse
engineering activities to collect facts about the system, mainly
from the source code but sometimes also from the running
system. Then the implemented and the intended architecture
have to be mapped to each other, and the compliance can
finally be evaluated. This is a task that strongly benefits from
tool support due to the large amount of facts typically extracted
from the source code. We use SAVE (Software Architecture
Visualization and Evaluation, see [16]) as our main tool for
compliance assessment. It is important to note that not all
architectural aspects can be checked for compliance with
standard tool support. Typically, aspects regarding the
development time structure that can be statically extracted
from the source code are more suited for automated checks
than runtime structures or data handling. If necessary and
economically feasible, we construct additional checks.

Implementation/system

Architecture

Stakeholder /
Requirements

Concerns /
Questions

Knowledge
Models
Documents

Source code
Code metrics

0110
01

Scenarios
Rating

Solution adequacy assessment

Documentation assessment

Compliance assessment 0110
01

0110
01

Interpretation

Figure 1: Architecture evaluation approach RATE

As Figure 1 shows, the individual aspects of our
architecture evaluation approach are strongly connected in
order to complement each other. First, it is made sure that
architectural requirements are available and well described.
Then, it is assessed if the architecture is adequate for the
requirements and if it is documented appropriately. Then it is
assessed how compliantly the architecture is realized in the
code. This gives us full traceability from requirements to the
code, all connected via the architecture. Sometimes, we also
complement our architecture evaluations also with assessments
of code quality in order to make sure, for example, sure that
unreadable code does not corrupt architectural concepts for
maintainability.

Of course, not every architecture evaluation contains all
these evaluation aspects. Thus, each evaluation project starts
with a tailoring phase, whose most important inputs are the
evaluation goals and questions. Additionally, the current
system state (e.g. just under development, no implementation
exists / in operation for decades and needs migration) plays a

116

major role. Further, the required confidence of the evaluation
results is necessary to determine which concrete evaluation
methods have to be chosen. Based on these inputs, the relevant
evaluation aspects and the respective methods of RATE are
selected and the evaluation project is planned. To minimize the
effort needed for the evaluation, it is always conducted along
the evaluation questions formalized as architecture scenarios.
All subsequent activities like re-documentation or compliance
checking are not conducted in full breadth but only for parts
relevant to the current scenario at hand.

The interpretation of the results is crucial for benefiting
from the evaluation results. This interpretation is typically not
easy and requires a lot of experience. Additionally, the
presentation of results and recommendations to senior
management has to be done carefully to move development
activities into the right direction. In order to be able to give
understandable presentations, we decided to depict the
outcome using traffic light colors. This is done for all types of
assessments and different levels of detail: e.g. to show the
adequacy of the architecture for single scenarios but also
aggregated for complete attributes. Abstractly spoken, the
interpretation is as follows: Green: everything alright, maybe
some minor concerns. Yellow: some concerns or risks, but we
expect that they can be removed with modest effort. Red:
major concerns that will cause serious effort for repair. Of
course, there is always a very detailed and differentiated
explanation in the rating, too.

RATE is a flexible approach that can cope with all of the
project situations we have experienced so far. A key ingredient
is not to dogmatically require certain documents or artifacts. If
we had only done those evaluation projects where the
architecture documentation provided by the customer was up-
to-date and adequate for assessing the architecture, we would
have rarely done any project at all. Instead, we always try to
compensate for missing documents and artifacts by
interviewing stakeholders and architects and / or by using
reverse engineering techniques. Tool support for architecture
evaluations always becomes highly desirable if the
implementation is involved, as the source code is typically
huge and not suited for manual analysis. While tools that
process the implementation can mainly deliver development
time related facts, sometimes facts about the runtime are
needed in order to have a sound basis for decisions. Then,
instrumentation of the source code and the collection of
runtime traces are necessary. Afterwards, processing of the
collected data is necessary; in particular the needed
architectural abstractions must be built. Further tool support is
needed for simulations: Simulations can be used to get insights
about specific quality attributes, such as performance with
different usage profiles.

III. CONTEXT OF ARCHITECTURE EVALUATIONS
Our evaluation projects have taken place in a large variety

of contexts. Thus, we briefly characterize the spectrum here.

System Types: Different industries with different types of
software-intensive systems were involved in the architecture
evaluations. Examples are: airlines, agriculture, finance and
insurance, automotive, online media and media production,

plant engineering, energy management, and mobile systems
across different industries. This covered both classical
embedded systems and information systems, but also systems
spanning both system types. The variety of industries resulted
in a wide range of quality challenges, typical architectural
solutions, and technologies.

Locations: Our customers and their development units are
located in different countries: Finland, France, Germany (with
half of the projects), Hungary, India Japan, South Korea, and
United States.

0

2

4

6

8

10

12

14

0,01 0,05 0,1 0,5 1 5 10

O
cc

ur
en

ce
s

S ize [MLoC]

0

2

4

6

8

10

12

14

16

<= 1 2 .. 5 6 .. 10 11 .. 15 > 15

O
cc

ur
en

ce
s

Age [years]
Figure 2: Size and age of evaluated systems

System Size: The size of the systems under evaluation is
roughly measured in Lines of Code (LoC). Due to different
implementation languages, this is not fully comparable and
only indicates rough ranges of size. The size of systems under
evaluation ranges from around 10 KLoC to around 10 MLoC;
the distribution is depicted in Figure 2. We cannot provide
system size for all systems under evaluation. This limitation is
due to for several reasons: In part the systems had not been
implemented and thus size and implementation language had
not been clear. In other cases, we did not analyze the source
code and thus had no access to its size figures.

System Age: The age of the systems under evaluation also
covers a large spectrum and the evaluations took place at
different points in the lifecycle of the software systems. Several
systems were evaluated very early in their lifecycle during
development, partly before they had been implemented. Other
systems were evaluated in their early years because problems
were detected after delivery of the systems. Another important
point in time is after about 10 to 15 years, when major rework,
like modernization of technologies or substantial reduction of
technical debt, becomes necessary to keep a system alive and
successful. Finally, we also had systems under evaluation with
far more than 15 years, sometimes 20 and even 30 years old,
which are still operated and undergo continuous maintenance.
Often, the question comes up how long such a system can be
operated into the future and how retirement and migration
strategies could look like. A distribution of the age of the
systems under evaluation is depicted in Figure 2.

Main Implementation Language: The systems under
development came with a variety of different implementation
technologies. The main implementation languages were (in
decreasing frequency): Java, C, C++, C#, Delphi, Fortran,
Cobol, and as well as exotic languages like Gen or Camos.

IV. SETUP OF ARCHITECTURE EVALUATIONS
Due to the large diversity, we provide an overview of who

initiated the evaluations, in which situations they took place,

117

what the evaluation goals were, and how the evaluation
projects were set up.

A. Architecture Evaluation Owners
Our architecture evaluations were initiated and owned by

very distinct stakeholder groups with different purposes in
mind. A key distinction is whether the owner is in the same
company that develops the system under evaluation or in
another company. In the same company, different groups can
have an interest in architecture evaluation, as depicted in
Figure 3. In another company, typically the customers of a
system initiate an architecture evaluation. Either they are
already customers and want to assess certain risks or identify
reasons for problems, or they are potential customers and want
to avoid risks before investment.

Owner

… in same
company

Top management

Development
management

Development
team

Method support
group

… in other
company

Current customer

Potential
customer

Figure 3: Architecture evaluation owners

B. Initial Situations
The situations of the systems in which the architecture

evaluation took place were very diverse. We classified the
evaluation projects along two dimensions, as depicted in Figure
4: “How critical was the situation?” and “Was the goal only an
evaluation or also a direct improvement?” Each of the resulting
areas has a name that indicates the project type. Clash and
Emergency are distinguished: Clash denotes a situation where
several companies are stakeholders of the evaluation, typically
a customer and a provider of the system, with an unclear
situation about the system’s quality and a high potential of
latent or current conflicts. In a similar way, emergency
characterizes critical situations, but only within an
organization. Figure 4 further depicts the rough number of
projects conducted in each of the categories.

EEmergency

Rescue (Evolution vs . Revolution)

Clash

Quality Management

Risk Management

System “out of hand”System “on plan”

E
v

a
lu

a
ti

o
n

&

 I
m

p
ro

v
e

m
e

n
t

E
v

a
lu

a
ti

o
n

 o
n

ly

Project Type

Criticality

~ 20 Projects ~ 5 Projects ~ 5 Projects

~ 15 Projects ~ 5 Projects

Figure 4: Initial situations of evaluated systems

C. Evaluation Goals and Questions
Similar to the diversity in the initial situations, there was

also a strong diversity in the evaluation goals and questions.
The following list gives an excerpt of typical and recurring
evaluation goals and questions:

� How adequate is our architecture as a basis for our future
product portfolio?

� Which framework / technology fits our needs best?
� How can we improve performance / maintainability / …?
� How can our system be modularized to meet new business

goals like separate selling?
� What is the overall quality of our system and should we

maintain it or develop from scratch?
� How adequate is the architecture just designed to meet our

key requirements?
� How can we modernize our system to meet new

requirements and use modern technologies?

D. Evaluation Project Settings
Depending on the diversity of the initial situations and the

evaluation goals, the resulting evaluation projects also exhibit
strong diversity. We want to give some basic figures to allow
better understanding of what these projects looked like.

People involved: Fraunhofer IESE typically conducts
architecture evaluation projects with two people. In situations
with very large projects, the number was also higher. The
organization that develops the system under evaluation was
involved ranged between 1 and 30, with a typical number of 8
stakeholders. If there was also a customer company involved, it
was typically involved with up to 15 stakeholders, too.

Effort spent: Fraunhofer IESE spent between 4 and 200
person-days on the architecture evaluations. Most projects
were conducted with 20 to 80 person-days; the others can be
considered as outliers. Companies that had their system’s
architecture evaluated, spent between 2 and 60 person-days.

Key factors driving effort: We identified a number of key
factors that influence the effort to be spent in an architecture
evaluation project.

� Number and type of evaluation questions
� Number of stakeholders to be involved
� Organizational complexity
� System size and complexity
� Criticality of the situation
� Need for fast results
� Required confidence and details of results

V. FACTS ABOUT ARCHITECTURE EVALUATIONS
In our architecture evaluation projects, varying parts of our

architecture evaluation method have been applied, depending
on the initial situation and the evaluation questions of the
customer. In this section, we summarize and characterize key
results according to different aspects of architecture evaluation.
Not all evaluation projects involved solution adequacy
assessments and compliance assessments. The concrete
numbers of applications are presented. Some of our evaluation

118

projects are quick walkthroughs, which provided some first
evidence but are not counted. Finally, we present an overview
of the follow-ups of the evaluation projects.

A. Results on Architectural Requirements
Sound knowledge of architectural requirements is a

fundamental prerequisite for an architecture evaluation. There
was not a single project among the ones under evaluation that
had a documentation of architectural requirements that could
be used as the basis for a solution adequacy assessment. Thus,
in all relevant projects we had to compensate for identification
and documentation of architectural requirements, at least to
some extent. In the context of systems that had been developed
a decade and more ago, it is less astonishing that no complete
and up-to-date documentation of architectural requirements
exists. However, one might wonder why the architectural
requirements are also not known in detail in the context of a
new development, when a new architecture is currently being
designed.

Architectural scenarios as an established means for
documenting architectural requirements were rarely used by
the industry customers before we came in to do the evaluation
project. The result is that architectural requirements are often
not detailed and elaborated enough. In about 10% of the
evaluations, we found documentations of architectural
requirements that read more or less like this: “Our system has
to be fast, maintainable, secure, highly availably and has to
provide great user experience”. While this is, of course, an
extreme case, only rarely can a good level of detail be found
that could serve as a profound basis for discussion about
architectural solutions. In particular, aspects like the concrete
stimulus, environment, and a concrete system response and its
measure are often missing.

In stakeholder workshops and interviews, we identified and
prioritized the relevant architectural requirements as a basis for
the architecture evaluations. In typical projects, 10 to 20
stakeholders contributed architectural requirements. This
approach typically works well and with some guidance,
stakeholders can contribute architectural requirements at an
adequate level of detail. We always document architectural
requirements as architectural scenarios in evaluation projects.
We can observe some differences in the knowledge about
different types of quality attributes.

Runtime quality attributes like performance or availability
are typically known best. As they are observable in the running
system, stakeholders have the best understanding of these
quality attributes. However, differences can also be observed
between systems that have been in operation for a long time
and systems that are c under development. For systems already
being operated, stakeholders can typically name the
requirements that are critical or not fulfilled very well.
Requirements that are fulfilled well become hygiene factors
and are not recognized in that much detail. For systems that are
currently under development, the known level of detail is
typically lower but rather homogeneous.

Development time quality attributes are often not known so
well. Only technical stakeholders have a clear understanding:
management people sometimes have an abstract understanding

that the maintainability or testability has to be high. In general,
it can be observed that development time quality attributes are
much more difficult to quantify.

Operation time quality attributes are another type we
consider explicitly here. These are quality attributes that deal
with a system being operated. These quality attributes (e.g.,
how a system is monitored or updated) are often neglected and
also not known in detail. We experienced that in mature
organizations operation departments are recognized as
stakeholders, but they are often neglected and would not even
be invited to the workshops for requirements collection.

B. Results of Solution Adequacy Assessment
In 34 architecture evaluation projects, we conducted a

solution adequacy assessment. In two other projects, a solution
adequacy assessment was ordered but there was so little
information and input that no solution adequacy assessment
could be performed. 19 of the projects covered the evaluation
of a broad range of quality attributes, which were expressed as
architecture scenarios. The average number of elicited
architecture scenarios was 33, with a minimum of 7 scenarios
and a maximum of 82 scenarios. Out of these elicited
scenarios, an average of 18 scenarios were evaluated in detail;
they were selected according to the prioritization of the
stakeholders. In terms of the overall rating of solution
adequacy, we found the following distribution across the
projects:

Rating # eval.
Green Everything alright with only some minor concerns � for
the elicited architecture scenarios, architects can explain with
confidence how the architecture addresses the requirements with
design decisions. No major risks are identified and no important
questions are left open.

17

Yellow Some concerns or risks that can be removed with modest
effort � for the elicited architecture scenarios, architects can explain
with confidence how the architecture addresses the requirements with
design decisions. Some risks or open questions have been identified,
but no show stoppers. With modest rework, the problems can be
solved.

11

Red Major concerns or risks that cause serious effort for repair
� there are architecture scenarios that are not or not sufficiently
addressed by architecture decisions. Overall, the architecture is in a
state that requires major rework.

6

In the category of projects with green solution adequacy,
we see many systems (13 out of 17) aged between 0 and 5
years, that were thoroughly designed. The reason for the
evaluation was typically Risk Management and Quality
Management (see categories in Figure 4). Additionally, there
are 4 projects aged 8 to 20 years, which were well maintained
with continuous effort spent on architectural improvements.

In the category of projects with yellow solution adequacy,
we see 4 out of 11 projects aged between 10 and 15 years that
have undergone some serious change in architectural
requirements, which are not fully reflected in the systems’
current architecture. Typically, this situation was recognized by
the architecture evaluation owner and the evaluation was
intended as the start of improvement. Additionally, there are 7
projects between 2 and 5 years that show some deficiencies in
the initial architecture definition.

119

In the category of projects with red solution adequacy, we
see 3 out of 6 projects that are in an early stage of the product
lifecycle, 2 even before system delivery. It was recognized or
suspected by the owner of the architecture evaluation that there
could be serious problems. However, the development team
did not agree and the results had to be delivered by the
architecture evaluation project. 2 other projects had come into a
difficult development situation after years of opportunistic
development without much care about the architecture.

 Another aspect was remarkable in the solution adequacy
assessments: We found that, on average, there is a much
stronger focus on the technical and infrastructure aspects of an
architecture than on the business aspects. That is, we found
projects that spent nearly their whole effort on the specification
of technical styles in the architecture and on the profound
selection of technologies like Enterprise Service Buses (ESB).
On the other hand, they neglected the definition of concrete
business logic components or at least rules for defining them.
Additionally, they neglected how the business logic should be
mapped to the technologies they selected. In the solution
adequacy assessment workshops several times this led to the
situation that architects explained: “That is all covered by the
Enterprise Service Bus for us”. The 3 projects rated red in their
early lifecycle stage all suffered from the problem that
selecting a technology was the only key architecting effort.

C. Results of Documentation Assessment
Similar to the architectural requirements, there was no

single project, in which we found an architecture
documentation that could have served as a basis for the
architecture evaluation. This does not mean that there is
generally no architecture documentation, but it typically does
not cover enough or the right type of information to explain
how architectural requirements are supposed to be addressed.

Consequently, we had to recover the current architecture
with the help of the customers’ architects in the course of the
evaluation projects. This typically works well and we met
many very knowledgeable architects. As architecture re-
documentation was necessary to a larger or smaller extent in all
architecture evaluation projects, our customers got, besides the
benefits of the evaluation insights, another advantage: They got
a starting point of explicit documentation with a lot of relevant
information that had only been known implicitly before.

In nearly all evaluation projects we found that architecture
documentation needs strong improvement. In about half of the
projects, no architecture documentation was available at all. In
the other projects, the documentation was mostly not up-to-
date, not adequate for specific usages, and did not contain
enough information.

D. Results of Compliance Assessment
In 26 architecture evaluation projects, we conducted a

compliance assessment. This number is smaller than that of the
solution adequacy assessments as not all customers ordered a
compliance assessment and some projects were so early in the
lifecycle that no implementation existed yet.

In terms of the overall rating of compliance between
intended and implemented architecture, we found the following
distribution across the projects:

Rating # eval.
Green Everything alright with only some minor concerns � no
or only minor deviations between intended and implemented
architecture are found.

10

Yellow Some concerns or risks that can be removed with modest
effort � overall, the implemented architecture is compliant to the
intended architecture. However, some deviations have been identified
that should be removed and will cause modest effort.

7

Red Najor concerns or risks that cause serious effort for repair
� overall, there are major deficiencies in the compliance between
intended and implemented architecture. There is a large number of
architecture violations or those found are very critical, or both. It is
expected that repairing the implementation will entail significant
effort.

9

For architecture violations identified with tool support, a
thorough analysis, categorization, and interpretation is
necessary. Sometimes, the architecture violations are very
systematic and can even be an indication that the intended
architecture should be adapted. Sometimes, the architecture
violations have only minimal impact and can even be repaired
with automated refactoring. However, there are as well
architecture violations that are highly critical in terms of their
negative impact on software quality and in terms of their
removal costs.

In the category of projects with green compliance, we had
projects that typically came with good or even very good
overall quality. In these companies, there was high awareness
for quality. Nevertheless, architecture compliance was mostly
not enforced with manual inspections or even tool support.

In the category of projects with yellow compliance, the
projects are very diverse and no clear characteristics can be
observed.

In the category of projects with red compliance, we see 5
out of 9 systems that are aged between 7 and 15 years. It is
clearly visible that during maintenance and evolution, more
and more architecture violations are introduced. The results in
these cases were several ten thousands of architecture
violations, which can only be repaired with extremely high
effort. Additionally, there were systems of younger age, which
also suffered from bad compliance. These cases mainly
resulted from ill-defined or badly understood architectural
concepts so that even during initial development, a high
number of architecture violations were introduced. When there
was such low architecture compliance, the overall quality of
the software was adversely influenced. In most cases, even the
users perceived problems, e.g. in the form of insufficient
availability or performance. This was because the architecture
violations corrupted key architectural concepts.

E. Follow-ups on Evaluation Projects
Architecture evaluations are performed to increase

confidence regarding decision-making about the system under
evaluation. After presenting the outcome in a final meeting, our
customers had to decide what to do next. We did a post-
mortem analysis to find out what actions were taken

120

afterwards. We found the following distribution of action item
categories performed by the customers (please note that
multiple actions were possible):

Follow-Up Action # eval.
COACH Initiative for coaching architecture capabilities 3
SELECT Selection of one of the systems / technology 5
REMOVE Project for removing architecture violations 5
IMPROVE Improvement of existing architecture 14
NEW Project to design next generation architecture 5
STOP Project stopped 3
NONE OK None (because everything was OK) 11
NOTHING None (although actions would be necessary) 8

In the category COACH, an initiative for training and
improvement of architecture capabilities in the organization
was started. Coaching was never done in isolation, in one case
it was performed together with an improvement of the existing
architecture, and in 2 cases it was performed together with the
design of the new next generation architecture and a dedicated
project for removing architecture violations.

In the category SELECT, one of the candidate systems /
technologies being evaluated was actually selected. In 5 cases
the architecture evaluation provided valuable input to decision-
making and management found itself confident to select one
winner out of the alternatives offered.

In the category REMOVE, we observed the definition of an
explicit project for removing architecture violations. This
happened in 3 cases where significant amounts of time and
effort (e.g., 1 team working for 6 months) were spent on the
removal of architecture violations (i.e., changing the code to
remove violations by refactoring or re-implementing).

In the category IMPROVE, we dedicated effort was spent
on improving the existing architecture. This was in particularly
true for projects in an early stage (without an implementation
or at the beginning of development). At this point in time,
corrective decisions regarding the design could be integrated in
the development process. In one case, the improvement took
place on both levels, the architecture and the implementation.
On the one hand, the architecture was changed to
accommodate the findings of the architecture evaluation, and
on the other hand, significant numbers of architectural
violations in the implementation were removed at the same
time.

In the category NEW, we list projects where the need for a
complete redesign of the architecture has been accepted and
decided. In 5 cases, instead of improving the existing
architecture, the findings and insights on the existing systems
served as input to the design of a new architecture (followed by
a re-implementation from scratch). Although conceptual reuse
and very limited code reuse took place, fundamental design
decisions were made in the light of the findings from the
architecture evaluation.

In the category STOP, we had 3 cases where all
engineering activities were canceled and the product
development (or the next release) was stopped completely.
Management was convinced that achieving adequate quality
was no longer possible with reasonable effort in reasonable
time. In these cases, the implementation exhibited such severe

flaws in the architecture and a high number of violations in the
implementation that it was decided, it would be better to stop
altogether.

In the category NONE OK, we listed the 11 cases where
nothing was done, because the architecture evaluation basically
did not reveal any severe findings. There were only minor
points (if at all), which could be addressed as part of regular
development

In the last category NOTHING, we have 8 cases where
nothing happened after the evaluations – although the results
revealed many action items, either in the architecture or in the
implementation. We have explicit confirmation by the
customers that – in fact – nothing happened afterwards
(although it might be that we were not informed on purpose).
The need was recognized and acknowledged, but no budget or
time was allocated to actually doing something about it.

VI. LESSONS LEARNED
All of our lessons learned have been derived from the

practical experiences made in the projects. At least one of the
authors has been directly or indirectly involved in each of the
projects. We are aware of the limitations that our lessons
learned might not be valid in projects settings with other
context factors. And of course, we do not claim
generalizability. Nevertheless, we perceive each single lesson
learned as a valuable piece of experience that might help other
researchers and practitioners to avoid pitfalls and facilitate their
own evaluations. We explicitly encourage practitioners to
complement our experiences with their experiences. Further,
we aim at inspiring other researcher in investigating the
generalizability of our lessons learned.

A. What We Learned about Architectures in Practice
Early and essential architecture design decisions are

indeed fundamental. No matter how long the system has
evolved, the initial description of the architecture still is valid
(and used) for communicating the basic ideas and key
functions of the systems. This means we can confirm the
common belief that architectures stick to their initial ideas for a
long time in the system lifecycle, at least for the 13 systems
aged ten or more years. In these cases, the fundamental
decisions were really fundamental. In some cases, it was even
attempted to change these core design concepts of the system,
but more often than not these projects failed or got canceled
because they exceeded the allocated time and/or efforts
significantly.

Architectural diagrams are helpful, but require
explanations. Diagrams often lack textual descriptions. They
show the manifestation of design decisions, and almost never
document the decisions and their rationales leading to the
manifestation. This is something we experienced quite often in
our projects. Even after spending hours questioning the team of
architects about the content of a diagram, nobody bothered
with updating the descriptions of the diagrams. Although the
need became obvious during the discussion, the diagrams
remained without explanations.

121

Standard templates are frequently used but often
misunderstood. Architecture documentation templates exist in
many industrial companies, either standard templates published
in literature or custom templates defined internally. Many
architects stick to the templates for compliance reasons but
misunderstand or misuse the rules and policies of the template.
This undermines the purpose of sharing information among
different projects by using templates.

B. What We Learned about Architecting in Practice
Architecting is a first-class role during development,

but not during maintenance. Over the years, architecting has
become established as a first-class role during initial
development. In many cases, experienced developers are
promoted to be responsible for architecting. However, during
maintenance the situation is different: No architects are
available to review change requests or design solutions. Over
time, this, leads to a drift between architecture and
implementation and confirms the fact of architecture erosion.

Development becomes agile, but architecting in sprints
only is not enough. Reviewing the past decade of architecture
evaluation projects, we can see that more and more of our
customers have adopted agile development processes.
Architecting has to be “re-defined” or “re-invented” in the
context of more and more companies “going agile”. The main
point we observed is that if architecting is performed in the
scope of the current sprint only, it does not help to solve
problems that arise across individual sprints, across teams, and
in distributed development. This holds especially true for
quality requirements, which cannot be solved in one sprint
only.

C. What We Learned about Evaluations
Some architecture problems can be fixed easily. In our

experience, problems like missing documentation or missing
support for several new scenarios can be fixed as long as the
basic knowledge about the system is up-to-date and implicitly
known by the architects. The same holds for minor
incompliance in the code, which typically can be addressed in
the next iteration of development.

Some architecture problems can’t be fixed (easily).
Problems like major incompliance in the code or a strong
degree of degeneration of the architecture over time show a
systemic misunderstanding of the architectural concepts among
architects and developers and would require enormous effort to
remove. In our evaluations, we had just one case where such
effort was actually spent without any other action (like
improvement and coaching). In this case, there was an urgent
need to reduce side-effects in the implementation, as a change
in one place in most cases resulted in a problem in another
place. Another problem that is difficult to fix afterwards is a
missing thoroughness in definition of the initial architecture.
This holds especially true for agile development organizations,
where the decisions in sprint one are just made, without
considering the architectural needs of upcoming sprints.

Better an end with terror than terror without an end.
Some architecture problems could be fixed, but they were not
addressed. Missing commitment of management in the fixing

phase leads to the 8 cases where the need of fighting the
architecture problems has been acknowledged but nonetheless
no concrete actions were performed. In our opinion, it is better
to make a painful break (by investing effort to get the
architecture right instead of delivering the next set of features)
than to remain in the status quo.

Having one’s own tool is beneficial for fast
customization of analyses. Having full control over the tool
(in our case SAVE) enabled us to tweak the extractors,
analyzers, and the visualization of the tool to the evaluation at
hand. In many cases, the standard features and capabilities
were not sufficient and required case-specific adaptations.
Being able to adapt the tooling empowered us to deliver fast
results in many projects.

D. What We Learned about Interpretations
No standard interpretation of evaluation results is

possible | Interpretation has to consider evaluation
questions and context factors. Even when there are
quantitative results (e.g., the number of architecture violations),
the interpretation of the results remains a difficult but crucial
step in architecture evaluations. Due to the nature of software
architecture and software architecture evaluation methods, the
evaluation results often cannot be fully objective and
quantifiable. It is very important for evaluators to manage the
expectations of evaluation owners and stakeholders and to
clearly communicate this. For instance, it is not possible to
establish standard thresholds for the number of acceptable
architecture violations. Rather, it is always necessary to keep
the goals and the context of the customer in mind to answer the
question in a way that is most beneficial for him. Over time,
we learned that interpretation comprises the preparation of
potential follow-up decisions, and that this was the customer’s
expectation towards us. Just providing facts and findings is not
enough. Today, we consider an architecture evaluation to be
successful when at least one of the action items proposed has
been implemented or one of the recommendations made leads
to a decision.

Source code measurement provides data and
confidence, but its value is overestimated. We experienced
several times that measurement programs collecting tons of
metrics (e.g., lines of code, cyclomatic complexity) had been
established in customer companies. Management was
confident to being to control what could be measured.
However, most of the time, the interpretation of the
measurement results was not connected to the architecture (and
thus could not be used as input). Thus, the measurement results
were more or less useless in the context of architecture
evaluations.

Tool-based reverse engineering often leads to
impressive but useless visualizations. Reverse engineering of
implementation artifacts is often used in architecture
evaluations and partially also in the development process of
our customers. We experienced that whenever such reverse
engineering activities were not driven by clear evaluation
questions, complex and threatening visualizations resulted.
Such visualizations serve to increase awareness, but do not
serve to guide any improvements. Thus, our evaluation

122

approach has a strong focus on guiding the evaluation with
evaluation questions and architectural requirements.

Representation of evaluation results for management
people and non-technical decision makers is challenging.
Often, the sponsors of an architecture evaluation are people
from senior management. Architectures – even though
abstracting from the system under evaluation –are still
technical constructs. Presenting the evaluation results to such
stakeholders, who typically do not have much of technological
background, is very challenging. On the one hand, the results
have to be very condensed and easily understandable.
Recommendations and alternative ways should be shown and
supported with quantitative data. On the other hand, evaluators
have to be careful to present subtle differences in an
understandable way as these can have a substantial impact on
far-reaching decisions. This holds especially true for qualities
at development time (e.g., maintainability, reusability). Our
traffic-light colored rating was motivated by the need to give
clear presentations.

E. What We Learned from More Than 50 Other Evaluations
that We Offered but which did Not Take Place1
Patient died on the way to the hospital. In some cases,

the project was even stopped by management before the
architecture evaluation (already under discussion) could take
place and potential improvements could have been identified.

Daily workload wins over architecture evaluations.
There was often the willingness to do an architecture
evaluation project, but time and effort could not be spent (by
the way, this is a fact that corresponds to typical architecture
practice in these companies as well). Instead of analyzing the
root cause, firefighting work was performed at the symptoms.

Rather refactor in the small than challenge your own
decisions made in the past. In some cases architects did not
dare to question their own decisions from the past. They
ignored the possibility that decisions that once were correct in
the past might not be correct any more in the present, as the
context and the system has evolved.

Plain numbers are preferred over statements and
interpretations provided by architecture evaluations. Many
customers decided to buy a code metric tool instead of
performing an architecture evaluation. We value the
capabilities of metrics and continuous measurement, but we
doubt their use in deriving answers to any of the typical
architecture evaluation questions (as discussed in Section 4.3).

F. What We Learned about Industry
Evaluation results are expected to be delivered

immediately. Despite feeling and communicating the pressing
need for having an architectural evaluation (or rather having
important questions or doubts in decision making), ordering an
architecture evaluation projects for some reasons can take up to
several months. Once ordered, expectations regarding the
delivery results do not accommodate the long waiting time for
being allowed to start the evaluation. Industry customers

1 Note in this section we discuss situations where customers had an interest in an
architecture evaluation, but, in the end, the project did not take place.

expect evaluation results to be delivered promptly, which is
contrary to other architecture-related projects we did in the past
(e.g., supporting the design of an architecture or coaching of
architecture capabilities).

Stakeholders sometimes try to influence the
interpretation to achieve their own goals. Such attempts are
not very frequent but they do occur (as the result of
architecture evaluations can have significant impact on
stakeholders). Being neutral is a key prerequisite for evaluators
and, external evaluators are often hired exactly for this reason.

 “It depends” is not a good final answer. Although true in
many cases, it is important to clearly distinguish and delineate
alternatives among follow-up actions. Companies want to
know what they can do next. Findings and recommendations
ideally should be translated into business terms (gain or loss of
money, meeting or failing deadlines, etc.).

Industry likes Word, PowerPoint and UML modeling
tools for documenting architectures. In none of our projects
were formal architecture description languages used. Most of
our customers applied a mix of Word, PowerPoint and UML
diagrams to document their architecture (if it was documented
at all). This gives evidence that architecture description
languages (ADLs) have not (yet) been adopted in industry.

New features kill architecture work. As architecture does
not deliver any direct end customer value, it is at risk of being
put off or getting dropped. However, the insight that
architecting delivers business value to the developing company
(if it is going to maintain the software) by preparing the future
or making development more efficient is often neglected. Even
if customers were made aware of critical issues by us, we had 8
cases where nothing was done afterwards.

Architecting lacks a clear mission in software projects.
Our experiences show that architecting typically goes slowly
because it lacks a goal-oriented focus. Architects in industry
often spend a lot of time on designing templates, evaluating
several technologies, modeling and pimping diagrams, but
forget the point of architecting: delivering solutions for current
and future design problems. As there are always a lot of
problems, we think it is important to explicitly focus, plan and
track architecture work. For this reason, we proposed the
construct of architecture engagement purposes (see [14]), an
auxiliary construct to align architecting with other engineering
activities in the product lifecycle.

G. What We Learned about Architecting in Research
Academia likes toy examples, but industry requires

solutions with practical scalability. Toy examples are great
for explaining new ideas and approaches, but do not serve nor
scale when adopting approaches in industry. Many major
issues of an approach only arise when dealing with problems
exceeding a certain scale. Academia in many cases fails to give
guidance on how to scale up their approaches and techniques.
Moreover, many (junior) researchers in in the field of
architecture do not really know the practical challenges and
thus, cannot try to solve them. Of course, we do not believe
that academia should solve all architecting problems in
industry, but publications in research should state more

123

honestly to which level they really scale. More often than not,
we perceive that more is claimed than is actually delivered.

Eat your own dog food. The architecture of prototypes and
tools for architects (e.g., modeling, analysis, or reconstruction
tools) would benefit if researchers and vendors would actually
do what they tell others and publish in papers. Many widely
accepted concepts (like view-based architecture) could be used
for publications on these tools. We fear that if researchers do
not use our own best practices, this could undermine the
reputation of our field.

H. How Our Evaluation Approach Evolved
Architecture evaluations have to evaluate implicit

decisions made in the heads, explicit decisions found in
documentation, and manifested decisions in system
implementations. The big picture and integration of
assessment techniques (as depicted in Figure 1) emerged over
time. At Fraunhofer IESE, architecture evaluation research was
driven from three directions: reconstruction (see [15]), tool
development [16], and literature about architecture in general
(e.g. [17], [3], [18], to name but a few). In our first evaluation
projects, we started with coarse-grained recovery and
reconstruction. Over time, we learned that customers rather
require one concrete answer to one current, urgent, and
pressing question (where architecture evaluation may or may
not be the means to answer their question). They do not care
about exploiting the power of reconstruction for other parts.
This resulted in our request-driven reverse engineering
approach where we always have concrete stakeholder scenarios
guiding all subsequent analysis. Hence, this manifests the need
to evaluate implicit decisions in architects’ minds, explicit
decision described in documentation, and last but not least, the
source code and the running system.

All architecture evaluation is not the same. We are
covering more and more initial situations in which architecture
evaluation can provide benefits. Furthermore, in any new
projects, we learn about something that is different than before.
Every software system is unique in its characteristics, lifecycle,
and context including the people and organization behind the
system, and the same holds true for the evaluation of the
system. In this way, architecture evaluations are always
interesting, as the evaluators learn about something new in a
rather short period of time.

VII. CONCLUSIONS
With this paper, we strongly recommend to all

practitioners: “Evaluate your architecture – early and
regularly!”. Our experiences from more than 50 architecture
evaluations give evidence that it can be an extremely useful
instrument to support architecture decision making and to
guide strategic alignment of business and technologies in a
software system.

We will continue to collect further data on architecture
evaluations as future projects take place. We hope this
experience report complements the existing body of knowledge
on architecture evaluation. From a research point of view, we
see the need to extend and scale existing methods on how to

evaluate systems that are part of interconnected, integrated and
complex software ecosystems. This holds also for architecture
analysis tools which need to keep pace with new technologies
and programming paradigms. With experience reports like this
we intend to pave the way towards increased industrial
applications of architecture evaluations as an instrument to
support decision making.

We would like to acknowledge all colleagues, researchers
and practitioners who provided us with inspiration, ideas,
discussions and feedback on architecture evaluation.

REFERENCES
[1] J. Knodel, M. Naab, “Mitigating the Risk of Software Change in

Practice - Retrospective on More Than 50 Architecture Evaluations in
Industry (Keynote Paper)”, IEEE CSMR-18/WCRE-21 Software
Evolution Week, 2014.

[2] R. Kazman, L. Bass, M. Webb, G. Abowd, “SAAM: a method for
analyzing the properties of software architectures”, 16th International
Conference on Software Engineering (ICSE), 1994.

[3] P. Clements, R. Kazman, L. Bass, “Evaluating Software Architectures”,
Addison Wesley, 2001.

[4] P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet, “Architecture-level
modifiability analysis (ALMA)”, Journal of Systems and Software, vol
69(1-2), pp. 129-147, January 2004.

[5] S. Becker, H. Koziolek, R. Reussner, “The Palladio component model
for model-driven performance prediction“, Journal of Systems and
Software, vol. 82(1), pp. 3-22, January 2009.

[6] L. Dobrica, E. Niemala, “A survey on software architecture analysis
methods”, IEEE Transactions on Software Engineering, vol 28(7), pp.
638-653, July 2002.

[7] M.A. Babar, I. Gorton, “Comparison of scenario.based software
architecture evaluation methods, 11th Asia-Pacific Software Engineering
Conference, 2004

[8] E. J. Chikofsky, J. H. Cross II, “Reverse Engineering and Design
Recovery: A Taxonomy” (Vol. 7, pp. 13-17): IEEE Computer Society
Press, 1990.

[9] G. C.Murphy, D. Notkin, K. J. Sullivan, “Software reflexion models:
bridging the gap between design and implementation”. IEEE
Transactions on Software Engineering, 27(4), 364-380, 2001

[10] J. Knodel, D. Popescu, “A Comparison of Static Architecture
Compliance Checking Approaches”. Sixth Working IEEE/IFIP
Conference on Software Architecture (WICSA), 2007.

[11] D. Pollet, S. Ducasse, et al. “Towards A Process-Oriented Software
Architecture Reconstruction Taxonomy”. 11th European Conference on
Software Maintenance and Reengineering (CSMR) 2007.

[12] M.A. Babar, I. Gorton, “Software Architecture Reviews: The State of
the Practice”, IEEE Computer, 42(7): pp. 26-32, 2009

[13] J. Knodel, “Rapid ArchiTecture Evaluation (RATE)”, IESE-Report;
105.11/E), 2011

[14] T. Keuler, J. Knodel, M. Naab, D. Rost, “Architecture Engagement
Purposes: Towards a Framework for Planning "Just Enough"-
Architecting in Software Engineering”, WICSA/ECSA, 2012

[15] J. Knodel, D. Muthig, “A Decade of Reverse Engineering at Fraunhofer
IESE - The Changing Role of Reverse Engineering in Applied
Research”, 10th Workshop Software Reengineering (WSR), 2008.

[16] J. Knodel, S. Duszynski, M. Lindvall, “SAVE: Software Architecture
Visualization and Evaluation” 13th European Conference on Software
Maintenance and Reengineering (CSMR 2009), Kaiserslautern,
Germany, 2009.

[17] P. Clements, D.. Garlan et al., “Documenting Software Architectures:
Views and Beyond”. Pearson Education, 2002.

[18] P. Clements, R. Kazman, “Software Architecture in Practices”. Addison-
Wesley Longman Publishing Co., Inc., 2003

124

