MATHEMATICS

University of Gothenburg and Chalmers University of Technology. Examination in algebra : MMG500 and MVE 150, 2019-03-22. No aids are allowed. Telephone 031-772 5325.

1) Let R be an integral domain with four elements 0,1,a and b where 1 is the neutral element for multiplication. Prove the following statements in R.

a) 1+1=0.	2p
b) <i>a</i> +1= <i>b</i> .	1p
c) $a^2 = b$.	2p

2) Let *R* be the set of all rational numbers of the form $m/2^n$ for integers *m* and *n*.

a) Show that <i>R</i> is a subring of Q .	2p
b) Which of the integers 2, 4 and 6 are irreducible in R ?	2p
Which of these three integers are units in <i>R</i> ?	

3a) Determine the number of elements of order 5 in S_5 .	2p
3b) Determine the number of subgroups of order 5 in S_5 .	2p

4) Let *T* be the set of subgroups of order 5 of S₅. If $\sigma \in S_5$, let $\pi_{\sigma}: T \to T$ be the bijective map which sends a subgroup *H* of order 5 to the subgroup $\sigma H \sigma^{-1} := \{\sigma h \sigma^{-1} : h \in H\}$ in *T*.

a) Prove that the map $\pi: S_5 \rightarrow Sym(T)$, which sends $\sigma \in S_5$ to $\pi_{\sigma} \in Sym(T)$	2p
gives an action of S_5 on T .	
b) The above action of S_5 on <i>T</i> is transitive by a theorem of Sylow. Use	2p
this to show that π is injective.	

5a) Show that each group has at most one neutral element.	2p
5b) Show that each element of a group has at most one inverse.	2p

6) Prove that congruence modulo n is an equivalence relation on **Z** 4p for each positive integer n.

You may use the theorems in Durbin's book to solve the first 4 exercises. But all claims should be motivated !