MATHEMATICS

University of Gothenburg and Chalmers University of Technology. Examination in algebra : MMG500 and MVE 150, 2019-03-22.
No aids are allowed. Telephone 031-772 5325.

1) Let R be an integral domain with four elements $0,1, a$ and b where 1 is the neutral element for multiplication. Prove the following statements in R.
a) $1+1=0$. 2 p
b) $a+1=b$. 1 p
c) $a^{2}=b$. 2p
2) Let R be the set of all rational numbers of the form $m / 2^{n}$ for integers m and n.
a) Show that R is a subring of \mathbf{Q}. 2 p
b) Which of the integers 2,4 and 6 are irreducible in R ? 2p

Which of these three integers are units in R ?

3a) Determine the number of elements of order 5 in S_{5}. $2 p$
3b) Determine the number of subgroups of order 5 in S_{5}. $2 p$
4) Let T be the set of subgroups of order 5 of S_{5}. If $\sigma \in \mathrm{S}_{5}$, let $\pi_{\sigma}: T \rightarrow T$ be the bijective map which sends a subgroup H of order 5 to the subgroup $\sigma H \sigma^{-1}:=\left\{\sigma h \sigma^{-1}: h \in H\right\}$ in T.
a) Prove that the map $\pi: \mathrm{S}_{5} \rightarrow \operatorname{Sym}(T)$, which sends $\sigma \in \mathrm{S}_{5}$ to $\pi_{\sigma} \in \operatorname{Sym}(T) \quad 2 \mathrm{p}$ gives an action of S_{5} on T.
b) The above action of S_{5} on T is transitive by a theorem of Sylow. Use this to show that π is injective.
$5 a)$ Show that each group has at most one neutral element. 2 p
5b) Show that each element of a group has at most one inverse.
6) Prove that congruence modulo n is an equivalence relation on \mathbf{Z} for each positive integer n.

You may use the theorems in Durbin's book to solve the first 4 exercises.
But all claims should be motivated !

