MATHEMATICS

Univ. of Gothenburg and Chalmers University of Technology
Brief solutions to examination in algebra: MMG500 and MVE 150, 2019-06-10.
1a) False. If p is a prime, then $\mathbf{Z}_{p}[x]$ is an integral domain of characteristic p, but not a field.
1b) True. If $a \neq 0, b$ are elements in a field K, then $a b=0 \Rightarrow a^{-1}(a b)=0 \Rightarrow\left(a^{-1} a\right) b=0 \Rightarrow b=0$.
1c) False. \mathbf{Z}_{6} is a finite commutative ring with [2][3]=[0] in \mathbf{Z}_{6}.
2) There exists by Euclid's algorithm integers a, b with $m a+n b=(m, n)$. We have, therefore, if $g^{m}, g^{n} \in H$ that $g^{(m, n)}=g^{m a+n b}=\left(g^{m}\right)^{a}\left(g^{n}\right)^{b} \in H$. So if m and n are coprime, then $g \in H$.
3) If all $I_{m}=\{0\}$, then there is nothing to prove. We may hence assume that $I_{k} \neq\{0\}$ for some k. Then I_{m} is generated by a monic polynomial for all $m \geq k$ with f_{m+1} dividing f_{m} as $I_{m} \subseteq I_{m+1}$. We have therefore a sequence of non-negative integers $\operatorname{deg} f_{k} \geq \operatorname{deg} f_{k+1} \geq \ldots$, which will become stationary $\operatorname{deg} f_{n}=\operatorname{deg} f_{n+1}=\ldots$ after some $n \geq k$. As f_{m+1} divides f_{m} for all m we have thus that $f_{n}=f_{n+1}=\ldots$ and $I_{n}=I_{n+1}=\ldots$, as was to be proved.
4) There are 24 rotations of the cube. They are (see Example 57.3 in Durbin's book)

1. The identity.
2. Three 180° rotations around lines joining the centers of opposite faces.
3. Six 90° rotations around lines joining the centers of opposite faces.
4. Six 180° rotations around lines joining the midpoints of opposite edges.
5. Eight 120° rotations around lines joining opposite vertices.

These rotations form a group G acting on the set T of 3 -colourings of the sides. For $g \in G$, let $\Psi(g)$ be the number of 3-colourings preserved by g. It is equal to $3^{n(g)}$ for the number $n(g)$ of orbits of the action of $\langle g\rangle$ on the set S of the six sides of the cube.

We have for g of type $1,2,3,4$ resp. 5 the following $\langle g\rangle-$ orbits on S.

1. Six orbits of length 1 .
2. Two orbits of length 1 and two orbits of length 2 .
3. Two orbits of length 1 and one orbit of length 4.
4. Three orbits of length 2 .
5. Two orbits of length 3 .

In particular, $\Psi(\mathrm{g})=3^{6}, 3^{4}, 3^{4}, 3^{3}$ resp. 3^{2} such that $o(G)^{-1} \sum_{\mathrm{g} \in G} \Psi(g)=\frac{1}{24} \sum_{g \in G} 3^{n(g)}=$ $\frac{1}{24}\left(1 \times 3^{6}+3 \times 3^{4}+6 \times 3^{3}+6 \times 3^{3}+8 \times 3^{2}\right)=\frac{3^{2}}{24}\left(1 \times 3^{4}+3 \times 3^{2}+6 \times 3^{1}+6 \times 3^{1}+8 \times 3^{0}\right)=\frac{3}{8} 152=57$.

There are thus by Burnside's lemma 57 inequivalent 3-colourings of the six sides.

5 See Durbin's book
6 See Durbin's book

