Solutions to examination in algebra: MMG500/MVE 150, 2019-08-21.

where all polynomials p(x) should be interpreted as the coset $p(x)+(x^2+1)$ in $\mathbb{Z}_2[x]/(x^2+1)$

- 2. There are two trivial subgroups $\{([0], [0])\}$ and $\mathbf{Z}_2 \times \mathbf{Z}_4$, three cyclic subgroups of order 2: <([0], [2])>, <([1], [0])>, and <([1], [2])>. one non-cyclic subgroup $\mathbf{Z}_2 \times <([2])>$ of order 4 given by the elements ([0], [0]), ([0], [2]), ([1], [0]) and ([1], [2]). and two cyclic subgroups of order 4: <([0], [1])> =<([0], [3])> and <([1], [1])> =<([1], [3])>.
- 3. If we represent the points on the unit circle by complex number $e^{i\phi}=\cos \phi+i\sin \phi$, $\phi \in \mathbf{R}/2\pi\mathbf{Z}$, then a rotation on S^1 will send $e^{i\phi}$ to $e^{i(\phi+\alpha)}$ for some $\alpha \in \mathbf{R}/2\pi\mathbf{Z}$. The composition $e^{i\phi} \to e^{i(\phi+\alpha)} \to e^{i(\phi+\alpha+\beta)}$ of two such rotations correspond to the sum $\alpha+\beta$ in $\mathbf{R}/2\pi\mathbf{Z}$ such that G is isomorphic to the additive group $A=\mathbf{R}/2\pi\mathbf{Z}$. But any coset $\alpha \in \mathbf{R}/2\pi\mathbf{Z}$ with $n\alpha=0$ in $\mathbf{R}/2\pi\mathbf{Z}$ can be represented by exactly one of the real numbers $\frac{k}{n}2\pi$ for some $k \in \{0, ..., n-1\}$ and $\frac{k}{n}2\pi+2\pi\mathbf{Z}$ is of order n in $\mathbf{R}/2\pi\mathbf{Z}$ if and only if (k, n)=1. If $n=10^6$, then (k, n)=1 if and only $k\equiv 1,3,7$ or 9 (mod 10). There are thus 4×10^5 elements of order 10^6 in $\mathbf{R}/2\pi\mathbf{Z}$ and in G.

4a) Let
$$a+b\varepsilon$$
 and $c+d\varepsilon$ be elements to D . Then,
$$(a+b\varepsilon)+(c+d\varepsilon)=(a+c)+(b+d)\varepsilon\in D,$$

$$(a+b\varepsilon)-(c+d\varepsilon)=(a-c)+(b-d)\varepsilon\in D \text{ and }$$

$$(a+b\varepsilon)(c+d\varepsilon)=ac+(ad+bc)\varepsilon+bd\varepsilon^2=ac-bd+(ad+bc-bd)\varepsilon\in D.$$

Hence R is a subring of C by the subring criterion.

- 4b) There are two conditions for a function $\delta: D\setminus\{0\} \to \mathbf{N}$ to be Euclidean. To verify these, let w and $z=a+b\epsilon\in D\setminus\{0\}$. Then $\delta(z)\geq 1$ as $\delta(z)=a^2-ab+b^2\in \mathbf{Z}$ and $\delta(z)=|z|^2>0$. We have therefore that
- (i) $\delta(wz) = |wz|^2 = |w|^2 |z|^2 = \delta(w)\delta(z) \ge \delta(w)$

To prove the second property of Euclidean functions, we use that the fact the elements in D divide the complex plane into equilateral triangles with side 1. We may therefore approximate $w/z \in \mathbb{C}$ by an element $q \in D$ with |w/z-q| < 1. For r:=w-qz we have hence that

(ii)
$$\delta(r)=|w-qz|^2=|w/z-q|^2|z|^2<|z|^2=\delta(z)$$
, which implies that D is a Euclidean domain.

- 5. See page 114 in Durbin's book.
- 6. See page 179 in Durbin's book.