
3.2 Lecture 2: General coordinates on flat and curved manifolds

Question: Below we will discuss both flat and curved manifolds and di↵erent coordinate

systems on them. Why, in view of the discussion in the previous lecture, is it not enough to

consider only flat manifolds in the context of a theory of gravity? This question is rather

deep and we will in the coming lectures gradually develop our understanding to the point

where this becomes clear. Please discuss it with the other students!

We start the discussion, which is largely a review, of the role of coordinates by looking

at the distance d between two points in R2 is

d(r1, r2) = |r2 � r1| = |�r|. (3.57)

It is standard to call this distance s, or �s, instead so we may write it as (after squaring)

�s2 := (�s)2 = (�r)2 = (�x)2 + (�y)2. (3.58)

An even more common notation for infinitesimal distances is

ds2 := (ds)2 = (dr)2 = (dx)2 + (dy)2 := dx2 + dy2 = �ijdx
i dxj where x1 = x, x2 = y.

(3.59)

In polar coordinates (r, ✓), x = r cos ✓, y = r sin ✓, this reads, with x̃1 = r, x̃2 = ✓,

ds2 = dx2 + dy2 = dr2 + r2d✓2 = (dr, d✓)

 
1 0

0 r2

! 
dr

d✓

!
= g̃ijdx̃

idx̃j , (3.60)

where we in the 2nd equality have used the di↵erentiated form of the relations above:

dx = dr cos ✓ � d✓ r sin ✓, (3.61)

dy = dr sin ✓ + d✓ r cos ✓. (3.62)

Thus we see that this change of coordinates has the following implication for the metric g

xi = (x, y), gij = �ij ) x̃i = (r, ✓), g̃ij =

 
1 0

0 r2

!
. (3.63)

The above change of coordinates can be expressed in a general notation as

xi = xi(x̃) ) dxi =
@xi

@x̃j
dx̃j , (3.64)

which helps us construct the metric in the new coordinates x̃i

ds2 = �ijdx
idxj = �ij(

@xi

@x̃m
dx̃m)(

@xj

@x̃n
dx̃n) = dx̃mdx̃n(

@xi

@x̃m
@xj

@x̃n
�ij) := dx̃mdx̃ng̃mn.

(3.65)
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From this computation the metric in the new coordinates thus reads

g̃mn =
@xi

@x̃m
@xj

@x̃n
�ij . (3.66)

One can then check directly that the above results are obtained again:

g̃rr = (
@x

@r
)2 + (

@y

@r
)2 = cos2 ✓ + sin2 ✓ = 1, g̃✓✓ = r2, g̃r✓ = 0. (3.67)

An important fact about the factors @x
i

@x̃j appearing in the metric above is that they should

be invertible as matrices. This is needed in order for the new coordinates to span all

directions close to the point (called a patch) where it is defined. Assuming this property

we have x = x(x̃) = x(x̃(x)) and hence

dxi =
@xi

@x̃j
@x̃j

@xk
dxk )

@xi

@x̃j
@x̃j

@xk
= �i

k
. (3.68)

So if we use matrix notation and write Ai
j := @x

i

@x̃j then its inverse A�1
i
j := @x̃

i

@xj exists

at least in some patch where the transformations behave well (i.e., don’t become zero or

infinite). Are the polar coordinates above well behaved everywhere?

It is interesting to note that by taking the determinant of eq. (3.66)

det(g̃mn) = det(
@xi

@x̃m
@xj

@x̃n
�ij) = det(A1AT ) = (detA)2 > 0, (3.69)

where we have defined Am
i := @x

i

@x̃m .

So far we have only mentioned coordinate systems that are orthogonal so let us see how to

deal with those that are not. Consider the new coordinates (x̃, ỹ) on R2 defined by

x̃ = x+ y, ỹ = y. (3.70)

Drawing the new coordinate lines in an orthogonal system with (x, y) on the axes it is clear

that the system (x̃, ỹ) is not orthogonal. Computing the metric in the tilde system gives,

since x = x̃� ỹ and y = ỹ,

ds2 = dx2 + dy2 = (dx̃� dỹ)2 + (dỹ)2 = dx̃2 + 2dỹ2 � 2dx̃dỹ, (3.71)

which gives the metric

g̃ij =

 
1 �1

�1 2

!
. (3.72)

A crucial question is now whether or not the tilde coordinates are independent of each

other: Is @x̃

@ỹ
equal to zero or not? The correct way to answer this question is as follows

@x̃

@ỹ
=

@

@ỹ
x̃ = (

@x

@ỹ

@

@x
+

@y

@ỹ

@

@y
)(x+ y) = (�

@

@x
+

@

@y
)(x+ y) = 0. (3.73)
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The conclusion is that any change of coordinates leads to new coordinates that must be

considered independent. Note that it is not allowed to use the coordinate relations directly

in @x̃

@ỹ
(which would give a non-zero result).

We now turn to a simple example of coordinates and metric on a curved manifold, namely

the two-sphere S2. Since the easiest way to define S2 is to embed it into flat three-space

R3 we start from

ds2(R3) = dx2 + dy2 + dz2, (3.74)

and rewrite it in terms of the angular coordinates ✓,� defined by

x = a sin ✓ cos�, y = a sin ✓ sin�, z = a cos ✓, (3.75)

which tells us that x2 + y2 + z2 = a2 defining a two-sphere of radius a. Using the notation

xi = (x, y, z) and x̃a = (x̃1, x̃2) = (✓,�) and hence xi = xi(✓,�) = xi(x̃a) we have

dx = @x

@x̃adx̃
a = @x

@✓
d✓ + @x

@�
d� = a d✓ cos ✓ cos�� a d� sin ✓ sin�, (3.76)

dy = a d✓ cos ✓ sin�+ a d� sin ✓ cos�, (3.77)

dz = �a d✓ sin ✓. (3.78)

Then

ds2(S2) = (dx(✓,�))2 + (dy(✓,�))2 + (dz(✓,�))2 = a2(d✓2 + sin2 ✓d�2). (3.79)

Finally from

ds2(S2) = dx̃a dx̃bg̃ab, (3.80)

we can read o↵ the metric:

g̃ab =

 
1 0

0 sin2 ✓

!
. (3.81)

Computing the tangent vectors to the angle coordinate lines on the 2-sphere we see that

these coordinates are orthogonal, i.e., e✓ · e� = 0, where

e✓ := @r
@✓

= a(cos ✓ cos�, cos ✓ sin�,� sin ✓), (3.82)

e� := @r
@�

= a(� sin ✓ sin�, sin ✓ cos�, 0). (3.83)

Comment: Dropping the sin2 ✓ factor in the metric gives ds2(T 2) = a2(d✓2 + d�2), the

metric on the two-torus T 2. Can this two-torus be embedded in R3 like e.g. a donut?

Note that det(g̃ab(S2)) = a4 sin2 ✓ � 0 emphasising the fact that these angular coordi-

nates behave badly at some points (where g̃ab(S2)) = 0). One should also note that the

embedding is not invertible since @xi/@x̃a is not a square matrix.

It is now easy to compute distances on S2 using d :=
R
|ds|:

Ex 1: d(N ! S) = a
R
⇡

0 d✓ = a⇡ (� = �0 = fixed)
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Ex 2: d(Circles // to equator at ✓ = ✓0 = fixed) = a
R 2⇡
0 sin ✓0 d� = 2⇡ a sin ✓0.

The area is A(S2) =
R
⇡

0 d✓
R 2⇡
0 d�

p
detg̃ = a2

R
⇡

0 d✓ sin ✓
R 2⇡
0 d� = 4⇡ a2.

Exercise 1: A trivial example in one dimension is the following. The distance in R

between x = 0 and x = 1 is given by the metric ds2 = gxxdx2 with gxx = 1. Thus

s =

Z 1

0
ds =

Z 1

0
dx = 1. (3.84)

If we introduce the inverse coordinate y = 1/x then dx = �dy/y2 and the integral becomes

s =

Z 1

1

(�
1

y2
)dy. (3.85)

What is the metric gyy in the y-coordinate system? Is the minus sign in the integral above

a problem?

The Fubini-Study metric: (For more details see the actual lecture.)

A quite di↵erent-looking metric on S2 is obtained by stereographic projection onto the

equatorial plane. Projecting a sphere of radius a onto the equatorial plane with coordi-

nates (⇠, ⌘) (along the (x, y) directions) we can use congruent triangles to conclude that

⇠ = a
x

a+ z
, ⌘ = a

y

a+ z
. (3.86)

These relations imply that ⇠2 + ⌘2 = a2 a�z

a+z
from which one can solve for z as a function

of (⇠, ⌘). The final result is written in terms of a complex coordinate z := ⇠ + i⌘ on

the equatorial plane if the projection is from the south pole (S)(with the north pole (N)

mapping to the origin and the south pole to infinity) and (w, w̄) if N and S are interchanged.

The sphere is then called the Riemann sphere (RS) with the mapping between the upper

and lower hemispheres given by z = 1/w. This construction gives the following form of the

metric, where we have put a = 1,

ds2(RS) = 4 dzdz̄

(1+z̄z)2 (3.87)

If we set z = ⇠ + i⌘ this metric can be rewritten as

ds2(RS) = 4
d⇠2 + d⌘2

(1 + ⇠2 + ⌘2)2
, (3.88)

which in polar coordinates (⇠ = r cos ✓, ⌘ = r sin ✓) becomes

ds2(RS) = 4
dr2 + r2d✓2

(1 + r2)2
. (3.89)

This last form is quite useful and its spacetime version arises in some discussions in cos-

mology.
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A way to arrive at still another form of the metric on S2 is to start from x2 + y2 + z2 = 1

and define polar coordinates in the (x, y) plane. Thus x = r cos↵ and y = r sin↵ which

gives

ds2(S2) = dx2+dy2+dz2 = dr2+ r2d↵2+dz2 = dr2+ r2d↵2+ r
2

(1�r2)dr
2 = dr

2

(1�r2) + r2d↵2.

(3.90)

where we in the 3rd equality have used that r2+z2 = 1 implies dz = �
rdr

z
and z2 = 1� r2.

One may note that the last form looks somewhat similar to the previous one, the dif-

ferences being that the denominator has di↵erent signs and how it appears in the two

terms in the metric. A natural question to ask is if there is a simple coordinate transfor-

mation between them. The answer is found if we first assume that ✓ = ↵. Then equating

the d↵2 terms, renaming the radial coordinate in the last metric r̃, gives the relation

2r

1 + r2
= r̃. (3.91)

Equating the dr2 terms implies

4

(1 + r2)2
(
dr

dr̃
)2 =

1

(1� r̃2)
. (3.92)

The last two relations must be compatible which is easily checked by computing dr̃

dr
from

the algebraic relation between r and r̃ above. It gives dr̃

dr
= 2 1�r

2

(1+r2)2 .

Inserting this into the last relation it is found to be satisfied.

Exercise 2: Check the above forms of the S2 metric.

Exercise 3: Compute the metric ds2(RS) = 4 dzdz̄

(1+z̄z) in terms of (w, w̄) where w = 1/z.

Are these two forms of the metric well-defined over the whole of S2?

An interesting and extremely useful phenomenon will appear if we flip the sign in the

denominator of the Fubini-Study metric above. This gives the metric for the so called

hyperbolic plane

ds2(GBL) = 4
dr2 + r2d✓2

(1� r2)2
. (3.93)

This geometry was discovered in the beginning of the 19’th century about two thousand

years after Euclid found a logical problem with one of his 5’th axiom when trying construct

an axiomatic approach to geometry. The main reason (perhaps) why this geometry took

so long to find, by Gauss, Bolyai and Lobachevski, becomes clear when we ask how one can

derive it from an embedding space. The surprising answer is that ordinary three-space does

not work. Instead one has to use a three-dimensional with Minkowski signature: Introduce

the defining constraint

x2 + y2 � z2 = �1, (3.94)
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then setting r2 = x2 + y2 we get z2 = 1 + r2 and dz = rdr

z
. Thus

ds2(GBL) = dx2+dy2�dz2 = dr2+r2d↵2
�dz2 = dr2+r2d↵2

�
r
2

(1+r2)dr
2 = 1

(1+r2)dr
2+r2d↵2.

(3.95)

By a coordinate transformations relating this radial coordinate to a di↵erent one similar

to what we did above for S2, we can prove that the GBL metric can also be written as

above, i.e., ds2(GBL) = 4dr
2+r

2
d✓

2

(1�r2)2 .

Exercise 4: Prove the last statement.

Comment 1: Note that while the signature is the same as for S2, i.e., the euclidean

(+,+), what di↵ers is the the curvature. The curvature (we will define this once we the

mathematics of Riemannian geometry under control) is positive and constant over the

whole of S2 while for GBL it is negative and constant over the whole space. The reason

”constant of the whole space” is emphasised here is that sometimes the GBL space is said

to be like the surface of a horse saddle which obviously is embeddable in R3. However, the

saddle does have negative curvature but it is not constant over the whole saddle. This fact

makes the GBL space impossible to embed in R3.

NOTE: In the conventions used in Weinberg’s book the sign of the curvature is oppo-

site to the one used in these notes and in the lectures!

Comment 2: The GBL metric is sometimes referred to as the hyperbolic space H2.

The three-dimensional version H3 is in fact a well-known thing for a physicist. Recall the

equation satisfied by the relativistic 4-momentum pµ: p2 +m2 = 0. Explicitly this reads

(p1)2 + (p2)2 + (p3)2 � (p0)2 = �m2, (3.96)

which defines the hyperbolic nature of the surface of possible momenta satisfying the mass-

square condition in special relativity.

Comment 3: It is now easy to write all three geometries discussed here in one formula

by introducing a parameter k = 0,±1 as follows

ds2(k) =
dr2

(1� kr2/a2)
+ r2d↵2, (3.97)

where k = 0 corresponds to flat euclidean space and k = ± to S2 and H2, respectively.

Radial distances as a function of r are then given by

s(r) =

Z
r

0

dr0p
(1� kr02/a2)

=

8
>><

>>:

= a arcsin r

a
, k = 1 (r  a), S2

= r k = 0, R2

= a arcsinh r

a
, k = �1, H2.

(3.98)

On S2 the distance from the north pole to the equator is s = ⇡

2a. From the formula given
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above we get s(a) = a arcsin a

a
, i.e., sin s(a)

a
= 1 giving the same result.

Exercise 5: Compute the distance to r = 1 in the hyperbolic case. The answer is

probably the expected one but as we will see later in the context of cosmology there is a

very strange and interesting twist to this result for manifolds with Lorentzian signature.

Exercise 6: The two manifolds S2 and H2 are called maximally symmetric manifolds

(more later in the course) and can be characterised by their symmetry groups: S2 has

symmetry group SO(3). What is the symmetry group of H2?

Question 1: As we have seen above there are many, in fact infinitely many, coordinate

choices on any manifold. Therefore it is natural to ask how one can obtain coordinate

independent information about the geometry?

Question 2: A question related to the previous one is the following one. How does

one describe a manifold without referring to how it is embedded in a bigger space?

Question 3 (to keep in mind for later): Why do we have to consider manifolds

that are not flat in formulating a theory of gravity?
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