QUESTIONS ON TENSOR ANALYSIS -GRAVITATION AND COSMOLOGY (FFM071)-

LECTURER: DANIEL PERSSON

Here are some questions on tensors that might come up on the oral exam.

Problem 1. Indicate whether the following statements are true or false.

- \bullet The Minkowski metric $\eta_{\alpha\beta}$ is invariant under Lorentz transformations.
- An arbitrary spacetime 4-vector x^{α} is invariant under Lorentz transformations.
- The first postulate of special relativity states that the outcome of a physical experiment will depend on the coordinate system you use.
- Your worldline lies inside of the lightcone.
- An observer at rest measures the lifetime of a muon in motion to be longer than that of a muon at rest.
- Maxwell's equations are Lorentz invariant but Newton's laws are not.
- The affine connection $\Gamma^{\lambda}_{\mu\nu}$ is a mixed (1,2)-tensor with respect to general coordinate transformations.
- The object $\partial_{\alpha}V^{\beta}$ does not transform as a tensor under Lorentz transformations.
- ullet The components of the Kronecker delta symbol δ^{μ}_{ν} are the same in all coordinate systems.
- ullet The epsilon-symbol $\epsilon^{\mu\nu\rho\sigma}$ is invariant under general coordinate transformations.

Problem 2. Do any of the following equations fail to make sense for generic¹ coordinate systems? If yes, indicate which ones.

(1)
$$\eta_{\alpha\beta}\Phi^{\beta} = \Phi_{\alpha}$$
(2)
$$\Lambda^{\alpha_{1}}{}_{\beta_{1}}\Lambda^{\alpha_{2}}{}_{\beta_{2}}\eta_{\alpha_{1}\alpha_{2}}\Lambda^{\beta_{1}}{}_{\gamma_{1}}\Lambda^{\beta_{2}}{}_{\gamma_{2}}dx^{\gamma_{1}}dx^{\gamma_{2}} = \eta_{\delta_{1}\delta_{2}}dx^{\delta_{1}}dx^{\delta_{2}}$$
(3)
$$V^{\alpha\alpha} = \text{Tr}V$$
(4)
$$V_{i}V^{i} = V_{\alpha}V^{\alpha}$$
(5)
$$d\tau^{2} = 0.12$$
(6)
$$T^{\mu\nu} = 196883$$
(7)
$$\partial_{\alpha}F_{\alpha\beta} = -J_{\beta}$$
(8)
$$D_{\nu}V_{\mu} = \partial_{\nu}V_{\mu} - \Gamma^{\sigma}_{\mu\nu}V_{\rho}$$
(9)
$$g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}_{\rho}$$
(10)
$$D_{\mu}V_{\nu} - D_{\nu}V_{\mu} = \partial_{\mu}V_{\nu} - \partial_{\nu}V_{\mu}$$

Problem 3.

- (a) Let $g_{\mu\nu}$ be the metric tensor in D dimensions and $g^{\mu\nu}$ its inverse. Calculate $g^{\mu\nu}g_{\mu\nu}$.
- (b) Let T_{μ}^{ν} be a tensor. Write down its transformation under general coordinate transformations $x^{\mu} \to x'^{\mu}$. Suggest at least one way (but more if you can) in which you can construct something coordinate *invariant* from T_{μ}^{ν} .
- (c) Show that $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$ is invariant under general coordinate transformations.
- (d) Let V_{μ} be a covariant vector. Construct $V^{\mu} \equiv g^{\mu\nu}V_{\nu}$ and show that it transforms correctly as a contravariant vector.
- (e) Let V_{μ} be a covariant vector. Compute the general coordinate transformation of $\partial_{\mu}V_{\nu}$. Is $\partial_{\mu}V_{\nu}$ a tensor?
- (f) The affine connection is defined by

(11)
$$\Gamma^{\lambda}_{\mu\nu} = \frac{\partial x^{\lambda}}{\partial \xi^{\alpha}} \frac{\partial^{2} \xi^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}$$

^{1&}quot;generic" implies that the equations should be sensible for an arbitrary coordinate frame of the type indicated by the index structure. For instance, the components of a 4-vector are generically non-vanishing.

where x^{μ} is an arbitrary coordinate frame and ξ^{α} is an inertial frame (flat). Derive the transformation of the affine connection under general coordinate transformations $x^{\mu} \to x'^{\mu}$.

Problem 4.

- (a) Define a Lorentz tensor.
- (b) Define an arbitrary tensor. (under general coord. transformation)
- (c) Define a tensor density.

Problem 5. Let $T^{\alpha\beta}{}_{\gamma\delta}$ be a tensor, and define the combination $\tilde{T}^{\alpha\beta}{}_{\gamma\delta} \equiv \frac{1}{2} (T^{\alpha\beta}{}_{\gamma\delta} + T^{\alpha\beta}{}_{\delta\gamma})$. Evaluate the expression:

(12)
$$\widetilde{T}^{\alpha\beta}_{\gamma\delta}\epsilon^{\gamma\delta\mathcal{E}}\mathcal{U}$$

and identify the resulting object. Is it a tensor?

Problem 6. Let $T^{\mu\nu}$ be a tensor and define

(13)
$$S^{\mu\nu} \equiv \frac{1}{2} (T^{\mu\nu} + T^{\nu\mu}), \qquad A^{\mu\nu} \equiv \frac{1}{2} (T^{\mu\nu} - T^{\nu\mu}).$$

Let furthermore $g_{\mu\nu}$ be the metric tensor and $\epsilon_{\mu\nu\rho\sigma}$ the Levi-Civita symbol in 4d. Show that:

$$g_{\mu\nu}T^{\mu\nu} = S^{\mu\nu} \mathcal{J}_{\rho\nu}$$

$$\epsilon_{\mu\nu\rho\sigma}T^{\rho\sigma} = \epsilon_{\mu\nu\rho\sigma}A^{\rho\sigma}$$

$$S_{\mu\nu}A^{\mu\nu} = 0.$$
(14)