
2. Derive the metric on S2 (the two-sphere) from its definition x2 + y2 + z2 = a2:

a) in (standard) polar coordinates (✓,�),

b) and by eliminating z (set x2 + y2 = r2).

c) Compute the a�ne connection in both of these sets of coordinates from its definition.

3. Find the metric of a two-dimensional flat surface in polar coordinates and compute

the a�ne connection, Riemann tensor, Ricci tensor and curvature scalar.

4. Consider the two-sphere with unit radius. Embed it into R3 and use a stereographic

projection from the south pole onto the plane through the equator to derive the metric.

a) Show that the answer is the Fubini-Study metric on the Riemann sphere:

ds2 = 4
dx2 + dy2

(1 + x2 + y2)2
, (4.5)

b) Compute the Ricci tensor and show that it is an Einstein metric i.e., that it satisfies the

equation Rij = ↵gij for some parameter ↵.

c) Change the sign in the denominator and recalculate the Ricci tensor. What is ↵ now?

5. Prove that the two metrics on the unit radius S2

ds2 = 4
dx2 + dy2

(1 + x2 + y2)2
, (4.6)

and

ds2 = d✓2 + sin2 ✓ d�2, (4.7)

are the same by giving the transformation between the two coordinate systems.

6. Consider the variation of the path length between A and B, i.e., S[x] =
R
B

A
d⌧ .

a) Show that the terms with a derivative on the metric in �S[x] = 0 gives �µ
⌫⇢.

b) Show that the equations obtained from the variation of S0 where (here ẋµ = dx
µ

d⌧
)

S0[x] =

Z
d⌧L0 =

Z
B

A

d⌧(�gµ⌫ ẋ
µẋ⌫), (4.8)

(note that there is no square root) are the same as those coming from S[x] =
R
B

A
d⌧ .

c) What is the basic property that is possessed by S but not by S0?

d) The geodesic equations obtained in a) and b) arise as the so called Euler-Lagrange

equations (EL eqs). The EL eqs are usually expressed in terms of a Lagrangian L as

d

d⌧
(
@L

@ẋµ
)�

@L

@xµ
= 0. (4.9)

Construct a Lagrangian (like the one in b) above) by turning the metric ds2(xi, dxi) into a

Langrangian L(xi, ẋi) by replacing dxi by ẋi and derive the a�ne connection for the metric

on the 2-sphere in both coordinate systems obtained in Problem 4.3.2. above.
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7. Derive the relation between the a�ne connections in two di↵erent coordinate systems.

Is the a�ne connection a tensor?

8. Use the covariant derivative Di in EM as a guide for constructing a covariant deriva-

tive rµ in GR as follows. Consider a vector V⌫ and design its derivative rµV⌫ so that it

transforms as a two-indexed tensor, i.e.,

r̃µṼ⌫ =
@x⇢

@x̃µ
@x�

@x̃⌫
r⇢V�. (4.10)

9. Write out explicitly the Laplacian acting on a scalar field, i.e.,

⇤� = rµr
µ�, (4.11)

on a flat two-dimensional space in polar coordinates. This operator can also be written

r
µ
rµ� where you should note the change in the position of the upper and lower indices.

Why are these two expressions for the ⇤ operator equivalent?

10. The metric outside a straight, infinitely long cosmic string along the z-axis is

d⌧2 = dt2 � dr2 � (1� 8mG)r2d↵2
� dz2, (4.12)

in cylindrical coordinates (t, r,↵, z) (0  ↵  2⇡). Here m is the mass per unit length

of the string. Show that the metric is flat and that a distant object, situated behind the

string, gives rise to two images. Draw a picture to illustrate the lensing e↵ect. 11. Write

down the equations of motion for a free particle on a flat two-dimensional surface expressed

in polar coordinates.

12. Find all geodesics on a 2-sphere of radius a embedded in euclidean R3.

13. Find all time-like geodesics of the two-dimensional metric

d⌧2 =
1

t2
dt2 �

1

t2
dx2. (4.13)

14. Find all time-like and light-like geodesics for the two-dimensional metric

d⌧2 = t4dt2 � t2dx2. (4.14)

15. Use the usual coordinates (✓,�) on the two-sphere and perform a parallel transport

of a contravariant vector Aµ around a latitude circle (✓ = ✓0, a constant). Start from

(A✓, A�) = (1, 0) at � = 0 and give the result as a function of �. Is there any special values

of ✓0? What happens to the square A2 := AµAµ when transported around the circle?
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4.4 Curvature and symmetries

1. Consider the two-dimensional sphere with radius a. Compute the a�ne connection,

Riemann tensor, Ricci tensor and curvature scalar for this two-sphere in polar coordinates

(✓,�).

2. Consider the metric for the unit two-sphere in polar coordinates (✓,�).

a) Find all Killing vectors.

b) Show that the Killing vector fields generate the so(3) Lie algebra.

3. Consider the metrics

ds2 = dr
2

1�k
r
2

L2

+ r2d�2, k = 1, 0,�1. (4.15)

a) Compute the Riemann tensor, the Ricci tensor and the curvature scalar. b) Do the

curvature scalars, R, come out as expected (their dependence on L and their sign)? c)

What is the geometry of the manifold in each case? Note that r  L in the case k = +1.

Why is this condition necessary?

4. Consider the metrics for k = 1, 0,�1 in the previous problem again. Note that

0  �  2⇡.

a) Compute the length of origin-centered circles as a function of r for the three cases in

the previous problem.

b) Then compute the path lengths s(r) for fixed � between the origin and the point with

coordinates (r,�).

c) Find the circumferences O(s) of the circles, that is, as functions of the proper radius s.

d) Are the final results sensible?

5. Consider a space-time whose Riemann tensor is

Rµ⌫⇢� = f(x)(gµ⇢g⌫� � gµ�g⌫⇢). (4.16)

a) Show that this tensor has the correct symmetry properties to be a Riemann tensor.

b) Show that the function has to be constant in dimension D � 3.

c) Find the relation between the cosmological constant ⇤ and f by solving Einstein’s equa-

tions in an empty spacetime.

6. Consider the metric defined by

ds2 = �dt2 + dx2 + dy2 + dz2 � 4 cosh(x2 )[cosh(
x

2 )(dt+ dx)� sinh(x2 )dy]dx. (4.17)

a) Write out the metric in matrix form.

b) Does this metric describe a maximally symmetric spacetime? Find the answer by com-

puting the Riemann tensor.

c) Find a coordinate transformation that makes the previous result obvious.
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