2. Derive the metric on S^{2} (the two-sphere) from its definition $x^{2}+y^{2}+z^{2}=a^{2}$:
a) in (standard) polar coordinates (θ, ϕ),
b) and by eliminating $z\left(\operatorname{set} x^{2}+y^{2}=r^{2}\right)$.
c) Compute the affine connection in both of these sets of coordinates from its definition.
3. Find the metric of a two-dimensional flat surface in polar coordinates and compute the affine connection, Riemann tensor, Ricci tensor and curvature scalar.
4. Consider the two-sphere with unit radius. Embed it into \mathbf{R}^{3} and use a stereographic projection from the south pole onto the plane through the equator to derive the metric.
a) Show that the answer is the Fubini-Study metric on the Riemann sphere:

$$
\begin{equation*}
d s^{2}=4 \frac{d x^{2}+d y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}}, \tag{4.5}
\end{equation*}
$$

b) Compute the Ricci tensor and show that it is an Einstein metric i.e., that it satisfies the equation $R_{i j}=\alpha g_{i j}$ for some parameter α.
c) Change the sign in the denominator and recalculate the Ricci tensor. What is α now?
5. Prove that the two metrics on the unit radius S^{2}

$$
\begin{equation*}
d s^{2}=4 \frac{d x^{2}+d y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}}, \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}, \tag{4.7}
\end{equation*}
$$

are the same by giving the transformation between the two coordinate systems.
6. Consider the variation of the path length between A and B, i.e., $S[x]=\int_{A}^{B} d \tau$.
a) Show that the terms with a derivative on the metric in $\delta S[x]=0$ gives $\Gamma_{\nu \rho}^{\mu}$.
b) Show that the equations obtained from the variation of S^{\prime} where (here $\dot{x}^{\mu}=\frac{d x^{\mu}}{d \tau}$)

$$
\begin{equation*}
S^{\prime}[x]=\int d \tau L^{\prime}=\int_{A}^{B} d \tau\left(-g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}\right) \tag{4.8}
\end{equation*}
$$

(note that there is no square root) are the same as those coming from $S[x]=\int_{A}^{B} d \tau$.
c) What is the basic property that is possessed by S but not by S^{\prime} ?
d) The geodesic equations obtained in a) and b) arise as the so called Euler-Lagrange equations (EL eqs). The EL eqs are usually expressed in terms of a Lagrangian L as

$$
\begin{equation*}
\frac{d}{d \tau}\left(\frac{\partial L}{\partial \dot{x}^{\mu}}\right)-\frac{\partial L}{\partial x^{\mu}}=0 . \tag{4.9}
\end{equation*}
$$

Construct a Lagrangian (like the one in b) above) by turning the metric $d s^{2}\left(x^{i}, d x^{i}\right)$ into a Langrangian $L\left(x^{i}, \dot{x}^{i}\right)$ by replacing $d x^{i}$ by \dot{x}^{i} and derive the affine connection for the metric on the 2 -sphere in both coordinate systems obtained in Problem 4.3.2. above.
7. Derive the relation between the affine connections in two different coordinate systems. Is the affine connection a tensor?
8. Use the covariant derivative D_{i} in EM as a guide for constructing a covariant derivative ∇_{μ} in GR as follows. Consider a vector V_{ν} and design its derivative $\nabla_{\mu} V_{\nu}$ so that it transforms as a two-indexed tensor, i.e.,

$$
\begin{equation*}
\tilde{\nabla}_{\mu} \tilde{V}_{\nu}=\frac{\partial x^{\rho}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\sigma}}{\partial \tilde{x}^{\nu}} \nabla_{\rho} V_{\sigma} . \tag{4.10}
\end{equation*}
$$

9. Write out explicitly the Laplacian acting on a scalar field, i.e.,

$$
\begin{equation*}
\square \phi=\nabla_{\mu} \nabla^{\mu} \phi, \tag{4.11}
\end{equation*}
$$

on a flat two-dimensional space in polar coordinates. This operator can also be written $\nabla^{\mu} \nabla_{\mu} \phi$ where you should note the change in the position of the upper and lower indices. Why are these two expressions for theoperator equivalent?
10. The metric outside a straight, infinitely long cosmic string along the z-axis is

$$
\begin{equation*}
d \tau^{2}=d t^{2}-d r^{2}-(1-8 m G) r^{2} d \alpha^{2}-d z^{2} \tag{4.12}
\end{equation*}
$$

in cylindrical coordinates $(t, r, \alpha, z)(0 \leq \alpha \leq 2 \pi)$. Here m is the mass per unit length of the string. Show that the metric is flat and that a distant object, situated behind the string, gives rise to two images. Draw a picture to illustrate the lensing effect. 11. Write down the equations of motion for a free particle on a flat two-dimensional surface expressed in polar coordinates.
12. Find all geodesics on a 2 -sphere of radius a embedded in euclidean \mathbf{R}^{3}.
13. Find all time-like geodesics of the two-dimensional metric

$$
\begin{equation*}
d \tau^{2}=\frac{1}{t^{2}} d t^{2}-\frac{1}{t^{2}} d x^{2} \tag{4.13}
\end{equation*}
$$

14. Find all time-like and light-like geodesics for the two-dimensional metric

$$
\begin{equation*}
d \tau^{2}=t^{4} d t^{2}-t^{2} d x^{2} \tag{4.14}
\end{equation*}
$$

15. Use the usual coordinates (θ, ϕ) on the two-sphere and perform a parallel transport of a contravariant vector A^{μ} around a latitude circle $\left(\theta=\theta_{0}\right.$, a constant). Start from $\left(A^{\theta}, A^{\phi}\right)=(1,0)$ at $\phi=0$ and give the result as a function of ϕ. Is there any special values of θ_{0} ? What happens to the square $A^{2}:=A^{\mu} A_{\mu}$ when transported around the circle?

4.4 Curvature and symmetries

1. Consider the two-dimensional sphere with radius a. Compute the affine connection, Riemann tensor, Ricci tensor and curvature scalar for this two-sphere in polar coordinates (θ, ϕ).
2. Consider the metric for the unit two-sphere in polar coordinates (θ, ϕ).
a) Find all Killing vectors.
b) Show that the Killing vector fields generate the so(3) Lie algebra.
3. Consider the metrics

$$
\begin{equation*}
d s^{2}=\frac{d r^{2}}{1-k \frac{r^{2}}{L^{2}}}+r^{2} d \phi^{2}, \quad k=1,0,-1 . \tag{4.15}
\end{equation*}
$$

a) Compute the Riemann tensor, the Ricci tensor and the curvature scalar. b) Do the curvature scalars, R, come out as expected (their dependence on L and their sign)? c) What is the geometry of the manifold in each case? Note that $r \leq L$ in the case $k=+1$. Why is this condition necessary?
4. Consider the metrics for $k=1,0,-1$ in the previous problem again. Note that $0 \leq \phi \leq 2 \pi$.
a) Compute the length of origin-centered circles as a function of r for the three cases in the previous problem.
b) Then compute the path lengths $s(r)$ for fixed ϕ between the origin and the point with coordinates (r, ϕ).
c) Find the circumferences $\mathcal{O}(s)$ of the circles, that is, as functions of the proper radius s.
d) Are the final results sensible?
5. Consider a space-time whose Riemann tensor is

$$
\begin{equation*}
R_{\mu \nu \rho \sigma}=f(x)\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) \tag{4.16}
\end{equation*}
$$

a) Show that this tensor has the correct symmetry properties to be a Riemann tensor.
b) Show that the function has to be constant in dimension $D \geq 3$.
c) Find the relation between the cosmological constant Λ and f by solving Einstein's equations in an empty spacetime.
6. Consider the metric defined by

$$
\begin{equation*}
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}-4 \cosh \left(\frac{x}{2}\right)\left[\cosh \left(\frac{x}{2}\right)(d t+d x)-\sinh \left(\frac{x}{2}\right) d y\right] d x . \tag{4.17}
\end{equation*}
$$

a) Write out the metric in matrix form.
b) Does this metric describe a maximally symmetric spacetime? Find the answer by computing the Riemann tensor.
c) Find a coordinate transformation that makes the previous result obvious.

