2. Derive the metric on S? (the two-sphere) from its definition 22 + 3 + 22 = a%:
a) in (standard) polar coordinates (6, ¢),
b) and by eliminating z (set 22 + 32 = r2).

c¢) Compute the affine connection in both of these sets of coordinates from its definition.

3. Find the metric of a two-dimensional flat surface in polar coordinates and compute
the affine connection, Riemann tensor, Ricci tensor and curvature scalar.

4. Consider the two-sphere with unit radius. Embed it into R? and use a stereographic
projection from the south pole onto the plane through the equator to derive the metric.
a) Show that the answer is the Fubini-Study metric on the Riemann sphere:

dx? + dy?

ds? =4—— 7
T T 2

(4.5)
b) Compute the Ricci tensor and show that it is an Einstein metric i.e., that it satisfies the
equation I;; = ag;; for some parameter a.

c¢) Change the sign in the denominator and recalculate the Ricci tensor. What is o now?

5. Prove that the two metrics on the unit radius S?

dx? + dy?
ds®* =4—— 7 4.6
° (1+a22+y2)? (4.6)
and
ds* = df* + sin® 0 d¢p?, (4.7)

are the same by giving the transformation between the two coordinate systems.

6. Consider the variation of the path length between A and B, i.e., S[x| = ff dr.
a) Show that the terms with a derivative on the metric in §S[z] = 0 gives I'},,.

b) Show that the equations obtained from the variation of S’ where (here & = %)

B

S'x] = /dTL' = / dr(—gua"z"), (4.8)
A

(note that there is no square root) are the same as those coming from S[z| = ff dr.

¢) What is the basic property that is possessed by S but not by S’?

d) The geodesic equations obtained in a) and b) arise as the so called Euler-Lagrange

equations (EL eqs). The EL eqs are usually expressed in terms of a Lagrangian L as

d oL, 9L _

() = o = (49)

Construct a Lagrangian (like the one in b) above) by turning the metric ds?(z*, dz?) into a

Langrangian L(z¢, 2%) by replacing dz® by 4 and derive the affine connection for the metric
on the 2-sphere in both coordinate systems obtained in Problem 4.3.2. above.
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7. Derive the relation between the affine connections in two different coordinate systems.
Is the affine connection a tensor?

8. Use the covariant derivative D; in EM as a guide for constructing a covariant deriva-
tive V,, in GR as follows. Consider a vector V,, and design its derivative V,V,, so that it
transforms as a two-indexed tensor, i.e.,

-~ oxP 0x°
v — o 41
\YN% 95F Do V, Ve (4.10)

9. Write out explicitly the Laplacian acting on a scalar field, i.e.,
O¢ =V, Vo, (4.11)

on a flat two-dimensional space in polar coordinates. This operator can also be written
VH#V ¢ where you should note the change in the position of the upper and lower indices.
Why are these two expressions for the [ operator equivalent?

10. The metric outside a straight, infinitely long cosmic string along the z-axis is
dr? = dt* — dr* — (1 — 8mG)r?da® — dz?, (4.12)

in cylindrical coordinates (¢,7,a,2) (0 < a < 27). Here m is the mass per unit length
of the string. Show that the metric is flat and that a distant object, situated behind the
string, gives rise to two images. Draw a picture to illustrate the lensing effect. 11. Write
down the equations of motion for a free particle on a flat two-dimensional surface expressed
in polar coordinates.

12. Find all geodesics on a 2-sphere of radius a embedded in euclidean R3.

13. Find all time-like geodesics of the two-dimensional metric

1 1
dr? = ?d# - t—deQ. (4.13)

14. Find all time-like and light-like geodesics for the two-dimensional metric

dr? = t*dt? — t*da?, (4.14)

15. Use the usual coordinates (6, ¢) on the two-sphere and perform a parallel transport
of a contravariant vector A* around a latitude circle (§ = 6y, a constant). Start from
(A%, A%) = (1,0) at ¢ = 0 and give the result as a function of ¢. Is there any special values
of 67 What happens to the square A? := AFA,, when transported around the circle?
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4.4 Curvature and symmetries

1. Consider the two-dimensional sphere with radius a. Compute the affine connection,
Riemann tensor, Ricci tensor and curvature scalar for this two-sphere in polar coordinates

(0, 0).

2. Consider the metric for the unit two-sphere in polar coordinates (6, ¢).
a) Find all Killing vectors.
b) Show that the Killing vector fields generate the so(3) Lie algebra.

3. Consider the metrics
ds® =~ 1 2d¢?, k=1,0,-1. (4.15)
1-kTs
a) Compute the Riemann tensor, the Ricci tensor and the curvature scalar. b) Do the
curvature scalars, R, come out as expected (their dependence on L and their sign)? c)
What is the geometry of the manifold in each case? Note that » < L in the case k = +1.
Why is this condition necessary?

4. Consider the metrics for £k = 1,0,—1 in the previous problem again. Note that
0<¢<2m.

a) Compute the length of origin-centered circles as a function of r for the three cases in
the previous problem.

b) Then compute the path lengths s(r) for fixed ¢ between the origin and the point with
coordinates (r, ).

c¢) Find the circumferences O(s) of the circles, that is, as functions of the proper radius s.
d) Are the final results sensible?

5. Consider a space-time whose Riemann tensor is

Ruvps = f<$)(gupgua - guogup)- (4~16)

a) Show that this tensor has the correct symmetry properties to be a Riemann tensor.

b) Show that the function has to be constant in dimension D > 3.

c¢) Find the relation between the cosmological constant A and f by solving Einstein’s equa-
tions in an empty spacetime.

6. Consider the metric defined by
ds®> = —dt* + dz”® + dy® + dz* — 4 cosh(%)[cosh(Z)(dt + dz) — sinh(%)dy]dz. (4.17)

a) Write out the metric in matrix form.

b) Does this metric describe a maximally symmetric spacetime? Find the answer by com-
puting the Riemann tensor.

c¢) Find a coordinate transformation that makes the previous result obvious.
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