
3.3 Lecture 3: The equivalence principle (EP)

When Einstein developed his theory of gravity in the second decade of the 20th century

he could not have followed the logic applied in the first lecture of this course. Instead

his main goal was (most likely) to generalise special relativity away from inertial systems

to any kind of motion an observer may have. This meant to abandon the restriction to

Lorentz transformations and develop a theory where any kind of coordinate transformation

can occur and have a physical interpretation, or in other words, to implement the equiv-

alence principle (EP). After stating this principle in words we will try to find out how to

describe it mathematically. This will result in the principle of general coordinate invariance.

The equivalence principle:

In any physical situation with gravitational fields present one may choose a ”locally in-

ertial”, or ”freely falling”, frame (coordinate system) such that there are no gravitational

forces su�ciently close to a given point. In that ”local inertial” system the laws of physics

are those of special relativity.

Comment: There are at least three possible versions of the EP:

Weak EP (WEP): applies only to falling massive bodies.

Medium strong EP (or EEP4): applies to all of physics except gravitational phenomena.

Strong EP (SEP): applies to all of physics including gravity.

The version that is implemented in Einstein’s theory of gravity is the strong EP.

The observational status of the di↵erent EPs is very di↵erent. While the WEP is extremely

well established the other versions are much less so, in particular the SEP5.

Example 1: Light bending. Consider an elevator at rest in a gravitational field g

pointing downwards towards the earth. What happens if a light ray is emitted perpendic-

ularly from one wall of the elevator towards the other side? Does it hit that wall at the

same height over the floor or not?

To answer this question we use the equivalence principle (EP) to replace the gravitational

field of the earth by an acceleration upwards, i.e., by �g. There are now two di↵erent

systems that can be considered in which the answers must be the same! These are 1) the

external non-accelerated (inertial) system and 2) the system of the elevator.

From system 1) it is clear that since the elevator is moving a distance L = 1
2gT

2

upwards during the time T = Le
c

it takes the light to travel the distance Le across the

elevator it must hit the other wall a distance �h = L = 1
2

g

c2
(Le)2 lower than the point

from which it was emitted. From the point of view of system 2) where the person only

feels the gravitational field and does not know about any accelaration the conclusion must

be that the light ray has been bent by the gravity field an amount �h.

4
EEP stands for the Einstein EP.

5
See the Wikipedia overview ”Equivalence principle” (not included in the course).
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Exercise: If the elevator is instead falling freely in the field of the earth, how is the

above argument altered?

If a light ray is moving L=1.0 km horizontally across the surface of the earth how must

has it ”fallen”? The answer is

�h = 1
2

g

c2
(L)2 =

1

2
⇥ 9, 81⇥ (3.0⇥ 108)�2

⇥ (1.0⇥ 103)2m = 5⇥ 10�11m. (3.99)

The bending by a star or galaxy is much bigger but it is a bit more tricky to derive a

formula that can be checked against observations. We will do this later!

Example 2: Red/blue-shift. The equivalence principle also implies that if a light pulse

is sent upwards in the gravitational field of the Earth (or any other massive body) if will be

red-shifted, i.e., loose energy. This is similar to the loss of kinetic energy of a massive body

thrown upwards in the gravitational field. The way to argue here is to consider an elevator

in free fall. Then the inside observer concludes that there is no gravitational e↵ects at all

and the frequencies of the light emitted ⌫em (from the floor) and the light observed ⌫obs
(at the ceiling) are the same. However, an observer fixed in the outside system feeling the

gravitational force will instead say that there are two competing e↵ects which must cancel

out: the relativistic Doppler e↵ect and the gravitational e↵ect. The relativistic Doppler

e↵ect is here for emitter and receiver moving towards each other with relative velocity

vrel = �v where the velocity v = gT is the extra velocity the elevator has picked up during

the time T it took the light to travel from the floor to the ceiling. Thus

⌫obs
⌫em

=

q
1� v

2

c2

1 + vrel/c
=

q
1� v

2

c2

1� v/c
=

s
1 + v/c

1� v/c
⇡ 1 + v/c, (3.100)

that is, a blue-shift (the observed energy E = h⌫obs is more energetic than the emitted

light. From this one concludes that the gravitational e↵ect is the opposite, i.e., a red-shift

given by ⌫obs
⌫em

⇡ 1�v/c, i.e., light is loosing energy traveling upwards in a gravitational field!

To see in detail how the gravitational field can be eliminated by a change of frame we

perform a coordinate transformation from the system of observer O, i.e., from coordinates

xµ to a system O
0, with coordinates x0µ which is in an accelerated motion relative O with

a constant and homogeneous a.

x0µ = (t0, r0) : t0 = t, r0 = r�
1

2
at2 ) r̈ = r̈0 + a. (3.101)

This result means that one can eliminate any constant and homogeneous gravitational field

completely from all dynamical equations. An example is the equation of motion for particle

n in a system with N particles experiencing an external gravitational field g: setting a = g

gives

mnr̈ = mng + ⌃i 6=nF(rn � ri) ) mnr̈
0

n = ⌃i 6=nF(r
0

n � r0i) (3.102)
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where the force F(rn � ri) from the other particles can be gravitational or of any other

kind. Clearly in the primed system observer O
0 will experience no external gravitational

force at all. If g is not homogeneous, like the field from the earth, the primed system is

still given in terms of a homogeneous acceleration a (e.g., of a freely falling elevator) and

thus the cancelation is only perfect at one single point, the center of mass of the elevator.

At any other point close to it there are still small external gravitational forces present in

the system called tidal forces.

From EP to General Covariance. The idea here is to use the equivalence principle

to derive the e↵ects of gravity by transforming various equations invariant under Lorentz

transformations and expressed in terms of coordinates ⇠↵ valid in a freely falling frame to

an arbitrary frame associated to some new coordinates xµ. Here we consider three Lorentz

covariant/invariant equations:

Proper time : d⌧2 = �⌘↵�d⇠
↵d⇠� , (3.103)

Motion of a free particle :
d2⇠↵

d⌧2
= 0, (3.104)

Maxwell’s equations : @↵F
↵� = �j� , @[↵F��] = 0. (3.105)

In transforming these equations to a general frame related to xµ we use µ, ⌫, ⇢, ... to indicate

objects transforming under general coordinate transformations (di↵s6) as the pro-

totypes dxµ and @µ. Thus we may define a tensor under di↵s as an object whose upper

and lower indices behave under general coordinate transformations as the prototypes:

xµ ! x̃µ = x̃µ(x) ) dx̃µ =
@x̃µ

@x⌫
dx⌫ , @̃µ =

@x⌫

@x̃µ
@⌫ , (3.106)

where we assume that the matrices formed from all partial derivatives @⇠
↵

@xµ (or @x̃
µ

@x⌫ ) and

its matrix inverse are well-behaved, in particular that their determinants are non-zero.

An important consequence of the above is that the ”exterior derivative” d := dx̃µ@̃µ =

dxµ@µ, i.e., it is invariant under general coordinate transformations. This is reflected in

the following formulae, which will be used frequently,

@⇠↵

@xµ
@x⌫

@⇠↵
= �⌫µ,

@⇠↵

@xµ
@xµ

@⇠�
= �↵

�
. (3.107)

First we basically just repeat what was done in lecture 2 namely change coordinates

in the proper time:

d⌧2 = �⌘↵�d⇠
↵d⇠� = �

✓
⌘↵�

@⇠↵

@xµ
@⇠�

@x⌫

◆
dxµdx⌫ := �gµ⌫dx

µdx⌫ , (3.108)

which identifies the metric gµ⌫ as the expression in the bracket.

Comment: When Dirac fields (spinors) are used to describe how, e.g., electrons behave

in a gravitational field one must define a so called vierbein eµ↵(x) and write gµ⌫ :=

6
”Di↵s” is here short for ”di↵eomorphisms”.
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eµ↵(x)e⌫�(x)⌘↵� . (See Cartan’s formulation.) This basically identifies eµ↵(x) with
@⇠

↵

@xµ (x).

A much more interesting computation is to perform this transformation on the equation

of motion for a free particle moving on a trajectory given by xµ(⌧). For this we need the

following result, which is a direct consequence of the chain rule applied to ⇠↵(xµ(⌧)),

d⇠↵

d⌧
=

dxµ

d⌧

@⇠↵

@xµ
. (3.109)

Then acting on this equation with a second ⌧ -derivative we find that the free particle

equation becomes

d2⇠↵

d⌧2
=

d2xµ

d⌧2
@⇠↵

@xµ
+

dxµ

d⌧

d

d⌧

@⇠↵

@xµ
=

d2xµ

d⌧2
@⇠↵

@xµ
+

dxµ

d⌧

dx⌫

d⌧

@2⇠↵

@x⌫@xµ
= 0. (3.110)

Thus if we can get rid of the factor multiplying d
2
x
µ

d⌧2
we get an equation for this object

which is just the acceleration in terms of the path parameter ⌧ . This is easy to do by

multiplying the above equation by @x
⇢

@⇠↵
which, using the first eq. in (3.107), gives �⇢µ. Then

the equation for a particle in a general gravitational field reads

d2x⇢

d⌧2
+ (

@x⇢

@⇠↵
@2⇠↵

@xµ@x⌫
)
dxµ

d⌧

dx⌫

d⌧
= 0, (3.111)

where the gravitational field is represented by the expression in the bracket of the second

term and hence we find that it multiplies two velocity factors. Recall (see SW sections 2.4

and 2.7) the analogous force equation in EM f↵ = md
2
x
↵

d⌧2
= eF↵

�
dx

�

d⌧
in Minkowski space

which only contains one velocity factor. It is standard at this point to define the object in

the bracket as the a�ne connection �µ
⌫⇢, that is

�µ

⌫⇢ :=
@xµ

@⇠↵
@2⇠↵

@x⌫@x⇢
, (3.112)

and thus the standard form of the geodesic equation reads

d2xµ

d⌧2
+ �µ

⌫⇢

dx⌫

d⌧

dx⇢

d⌧
= 0. (3.113)

Note that the a�ne connection is symmetric in the two lower indices. The name ”geodesic

equation” comes from the fact that this equation can be obtained from a variational prin-

ciple extremising the length of a path of a particle. This fact will be demonstrated below.

The comparison with EM is extremely interesting and provides a lot of information about

the mathematics as well as the physics of the geodesic equation. While also the force

equation in EM can be written in a general frame (as we will do later) it will keep its

structure whatever coordinates we use. This is due to the fact that F↵� becomes Fµ⌫ in a

general coordinate system and is thus a tensor under general coordinate transformations.

The a�ne connection on the other hand is NOT a tensor as we will show shortly. This

is why it is called ”connection”. In fact, the a�ne connection is in many ways an object
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similar to the four-vector potential in EM which is also often called ”connection” (standard

in mathematics) but in this case under U(1) gauge transformations.

Exercise: The EM vector potential Aµ is both a connection and a tensor. Explain this

fact! Is the same true for the a�ne connection?

To understand how the a�ne connection, which represents the presence of a gravitational

force in the geodesic equation, and this entire theory of gravity is related to Newton’s

theory of gravity we must first express �µ
⌫⇢ in terms of the metric without having to involve

any free falling coordinates like ⇠↵. This is done in two steps as follows.

For the first step we recall the definition of the metric

gµ⌫ =
@⇠↵

@xµ
@⇠�

@x⌫
⌘↵� . (3.114)

Hitting this equation with a derivative @⇢ gives

@⇢gµ⌫ =
@2⇠↵

@x⇢@xµ
@⇠�

@x⌫
⌘↵� +

@⇠↵

@xµ
@2⇠�

@x⇢@x⌫
⌘↵� . (3.115)

Using the fact that eq. (3.112) can be rewritten as @⇠
↵

@x���
⌫⇢ = @

2
⇠
↵

@x⌫@x⇢ the second derivatives

in the previous equation can be replaced by a�ne connections and the equation becomes

@⇢gµ⌫ = ��

⇢µg�⌫ + ��

⇢⌫g�µ. (3.116)

Note that this equation does not involve ⇠↵ and that �µ
⌫⇢ = 0 implies @⇢gµ⌫ = 0.

The second step is to solve the last equation and express the a�ne connection directly

in terms of the metric and a derivative of it. To do this one needs a trick. Compute the

following (funny) combination of terms (note the position of the indices)

@⇢gµ⌫ + @µg⇢⌫ � @⌫gµ⇢ = 2��

⇢µg�⌫ , (3.117)

where the RHS follows directly by inserting the final result of the first step above. The

last equation is better written in the standard form

�µ

⌫⇢ =
1

2
gµ�(@⌫g⇢� + @⇢g⌫� � @�g⌫⇢). (3.118)

Thus @⇢gµ⌫ = 0 implies �µ
⌫⇢ = 0 which means that these two statements are actually equiv-

alent. One therefore should ask if any similar statements can be made about the second

derivatives of the metric in a freely falling frame. This question, which is of fundamental

importance for the geometric interpretation of GR, will be discussed and answered shortly.

Exercise: Perform the last step above leading to eq. (3.118).
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Comment: The concept of manifold, used here rather carelessly to represent curved

(or flat) surfaces, has, however, the for us very useful property that very close to any point

it looks flat. This is quite similar to how we think of the EP when applied to the spacetime

manifold. This similarity is perhaps the first argument in our development of GR that

really suggests that gravity is related to curvature.

Question: One may still wonder: Is such an interpretation in terms geometry necessary

or only one of convenience? After all we could, although extremely inconvenient, expand

the metric as we did before, i.e., as gµ⌫ = ⌘µ⌫ + hµ⌫ , and express all equations involving

gravity in terms of hµ⌫ . This would give a theory entirely living in Minkowski space.
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3.3.1 The geodesic equation

Geodesics are defined via a variational principle as the extremal of the proper time (or

length of the world line) here viewed as an action functional

S[x] =

Z
B

A

d⌧ =

Z
B

A

p
�gµ⌫dxµdx⌫ =

Z
B

A

d�

r
�gµ⌫(x)

dxµ

d�

dx⌫

d�
:=

Z
B

A

d�L(x(�)),

(3.119)

where we used dxµ = dx
µ

d�
d� in the third equality. The variation of the action is defined by

�S[x] = (S[x+ �x]� S[x])|(linear in �x) = 0, (3.120)

under variations �xµ which are arbitrary except that they vanish at the end-points. The

integral is between two spacetime points A and B with the path parametrised either by ⌧

or � (where ⌧ = ⌧(�) is a monotonic function, i.e., @⌧

@�
> 0). Setting the variation equal to

zero will imply the geodesic equation as we now show.

The variation, in terms of the Lagrangian L (using �L = @L

@xµ �xµ), is then

�L = �
1

2

1q
�g⇢�(x)

dx⇢

d�

dx�

d�

�(gµ⌫(x)
dxµ

d�

dx⌫

d�
). (3.121)

At this point we have to take some care since the variation �xµ appears under a derivative

in � and such an expression must be integrated by parts so that the variation can be pulled

out of the whole expression for �L. In doing this we will find that the inverse square root

is useful since

d�
1q

�gµ⌫(x)
dxµ

d�

dx⌫

d�

= d�
1
d⌧

d�

= d⌧(
d�

d⌧
)2, (3.122)

and can thus be used to convert the two � derivatives to ⌧ derivatives: d

d⌧
= (d�

d⌧
) d

d�
. Thus

�L = �
1

2
�(gµ⌫(x)

dxµ

d⌧

dx⌫

d⌧
) = �

1

2
(�gµ⌫(x)

dxµ

d⌧

dx⌫

d⌧
+ 2gµ⌫(x)

dxµ

d⌧

d�x⌫

d⌧
), (3.123)

which is now easy to integrate by parts7 since the square root factor has disappeared. Thus

�L = �
1

2
(�x⇢

@gµ⌫(x)

@x⇢
dxµ

d⌧

dx⌫

d⌧
� 2

dgµ⌫(x)

d⌧

dxµ

d⌧
�x⌫ � 2gµ⌫(x)

d2xµ

d⌧2
�x⌫), (3.124)

Rewriting the second term using dgµ⌫

d⌧
= @gµ⌫

@x⇢
dx

⇢

d⌧
we get exactly

�L = (
d2xµ

d⌧2
+ �µ

⌫⇢

dx⌫

d⌧

dx⇢

d⌧
)gµ��x

�. (3.125)

Thus the variational principle �S[x] = 0 implies, since �x� is an arbitrary variation, that

the expression in the bracket vanishes, i.e., the geodesic equation.

7
Note that the integration by parts should be done in the integral. However, this is understood here

although we express it in terms of the Lagrangian. This is very often done in the literature.
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3.3.2 Newtonian limit

To make contact with Newtonian gravity one may consider the following limits of the

geodesic equation:

1. Slowly moving particles, i.e., with v ⌧ c. Since we are here only interested in the

acceleration we can set v = 0.

2. Stationary gravitational fields, i.e., gµ⌫ is time independent.

3. Weak field limit, i.e., we set gµ = ⌘µ⌫ + hµ⌫ where hµ⌫ is a small perturbation of the

Minkowski space metric, and we then expand the equations to first order in hµ⌫ . Note that

hµ⌫ is now a field in Minkowski space so its indices are raised and lowered by ⌘µ⌫ .

Implementing these limits the geodesic equation

d2xµ

d⌧2
+ �µ

⌫⇢

dx⌫

d⌧

dx⇢

d⌧
= 0 (3.126)

simplifies as follows

1. )
d2xµ

d⌧2
+ �µ

00
dx0

d⌧

dx0

d⌧
= 0, (3.127)

2. ) �µ

00 =
1

2
gµ�(2@0g0� � @�g00) = �

1

2
gµi@ig00, (3.128)

where the index i is the space part of �. To first order in hµ⌫ this becomes

3. ) �µ

00 = �
1

2
⌘µi@ih00 )

d2xµ

d⌧2
=

1

2
⌘µi@ih00. (3.129)

Thus splitting the µ index of the geodesic equation into time and space we get (with x0 := t)

d2t

d⌧2
= 0,

d2xi

d⌧2
=

1

2
⌘ij@jh00(

dt

d⌧
)2, or,

d2r

d⌧2
=

1

2
rh00(

dt

d⌧
)2. (3.130)

The first of these equations implies that dt

d⌧
=constant so we use ( dt

d⌧
)2 to convert the deriva-

tives in the second equation to t-derivatives. It thus reads

r̈ =
1

2
rh00. (3.131)

This is just Newton’s second law r̈ = �r�(r) in terms of the gravitational potential which

implies the identification

h00 = �2� ) g00 = �(1 + 2�). (3.132)

This fact will be used below for the potential from the earth, i.e., �(r) = �
GM

r
. Note

that g00 = 0 for r0 = 2GM which may appear very strange at this point but will be fully

analysed in the context of black holes later in the course.
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3.3.3 Time dilatations

The key point in this section is the utilisation of a single coordinate system to argue that

the proper time, or proper length, is di↵erent at di↵erent spacetime points due to the xµ

dependence of the metric gµ⌫(x) and the state of motion at each point, i.e., the path xµ(⌧)

through8 vµ = dx
µ

dt
. The final formula, when comparing d⌧ at two points A and B and

eliminating dt, reads

d⌧A
d⌧B

=

q
�gµ⌫(xA)v

µ

A
v⌫
Aq

�gµ⌫(xB)v
µ

B
v⌫
B

=
⌫B
⌫A

, (3.133)

where the last equality gives the relation between the frequencies observed or emitted at

the two points for a light signal sent between them.

A good example illustrating the use of this formula is to compare two observers at rest

in a fixed gravitational field from a point source. Then
p

�gµ⌫(x)vµv⌫ =
p

�g00(r) where

g00 = �(1 + 2�(r)) = �(1� 2GM

r
) and the formula above becomes

d⌧A
d⌧B

=

q
1� 2GM

rAq
1� 2GM

rB

=
⌫B
⌫A

. (3.134)

If rA > rB then 1� 2GM

rA
> 1� 2GM

rB
which implies d⌧A > d⌧B and ⌫A < ⌫B. The physical

interpretation of these two inequalities is that time flows slower and the energy, E = h⌫, is

larger for the point closest to the source. E.g., for a light signal sent upwards in a gravita-

tional field this means that it looses energy, i.e., is red-shifted. An extreme situation seems

to arise at the radius r0 = 2GM where time stops. For the earth the value of this radius is

a about two centimeters and thus far inside the earth. This particular implication for how

time is a↵ected therefore becomes irrelevant. Objects having the radius r0 = 2GM outside

its ”surface” are called black holes which will be discussed later in the course.

Comment: Note the change in attitude when going from special to general relativity

towards the role played by dt and d⌧ .

8
Compare to uµ

=
dxµ

d⌧ .
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