
3.4 Lectures 4 - 5: Tensors and the e↵ects of gravity

3.4.1 Tensors: A brief introduction

In this section we will explain the concept and use of tensors in as simple terms as possi-

ble. The background assumed here is classical mechanics according to Newton, quantum

mechanics at the first year master level and special relativity. The application of tensors

in general relativity, or any other context, will then follow as another example of the cases

discussed below.

What is a tensor? Consider the following steps

1. Specify a set of symmetry transformations (i.e., a group G)

e.g. rotations in 3d (G = SO(3), or SU(2) in QM), or SO(1,3) for Lorentz rotations in

Minkowski space,

2. Select transformation prototypes: objects with one index (”vectors”)

e.g., 3d vectors rT = (x, y, z) = xi, complex 2-component spinors �a in QM, 4-vectors V ↵

in Mink space; we have then: r0 = Rr, �0 = g� and V 0 = ⇤V .

3. Generalise the prototypes to any tensor: objects with more than one index

e.g., the (symmetric) stress tensor T↵� , the (antisymmetric) EM field strength F↵� .

Definition: A tensor is a multi-indexed object like Tijk... or T↵....�
�...� which transforms

under its respective group of transformations G as follows: Each index rotates in the same

way as the corresponding prototype does.

Ex 1: Since x0i = Ri
jxj we have x0

i
= Ri

jxj and thus also Tijk ! T 0

ijk
= Ri

lRj
mRk

nTlmn.

Note that since these indices are raised and lowered by �ij and �ij their position, upper or

lower, does not matter.

Ex 2: Since V 0↵ = ⇤↵
�V � we have also V 0

↵ = ⇤↵
�V� where ⇤↵

� := ⌘↵�⇤�
�⌘��, and hence

T 0

↵�

� = ⇤↵
�⇤�

✏⇤�
⇣T�✏

⇣ . Note that since V ↵V↵ is invariant it follows that ⇤↵
�⇤↵

� =

��
�

or ⇤↵
�⌘↵�⇤�

✏⌘✏� = ��
�

which is the standard relation for a Lorentz transformation

⌘↵�⇤↵
�⇤�

✏ = ⌘�✏.

Note: There are special tensors which stay numerically the same under a transforma-

tion, called invariant tensors. Examples are �ij in 3d, ✏ab and Pauli matrices (�i)ab in

SU(2), ⌘↵� and ✏↵��� in Mink space. This can never happen for vectors. If it does then the

symmetry is broken down to the subset of symmetries that leave the vector intact (e.g.,

the vector (1,0,0) in 3d breaks SO(3) to SO(2), the rotations around the vector (1,0,0)).

Ex 3: We have been careful in the examples above to use di↵erent types of indices for

di↵erent symmetry transformations and for di↵erent kinds of representations. An exam-

ple of the latter from QM is the rotation properties possessed by a state of two electrons

|�a�b >. The rules we learn in undergraduate QM is that the answer is one spin 1 state

and one spin 0 state. Mathematically this is written as

1

2
⌦

1

2
= 0� 1, (3.135)
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where ⌦ denotes a tensor product and � a sum of tensors. This tensor product rule is

proven easily by noting that any 2 by 2 matrix, which |�a�b > is an example of, can be

expanded in terms of the two kinds of SU(2) invariant tensors, the antisymmetric ✏ab and

the three symmetric Pauli matrices defined by �i
ab

:= �ia
c✏cb. Thus

|�a�b >= �
1

2
✏ab(✏

cd
|�c�d >) +

1

2
�i
ab
(�cdi |�c�d >). (3.136)

Here ✏ab is the inverse of ✏ab, i.e., ✏ab✏bc = �ca and thus ✏ab✏ab = �2. All spinor indices

are raised and lowered by acting with ✏ from the left: �a := ✏ab�b and �a := ✏ab�b. The

expansion coe�cients given here in terms of the invariant matrices ✏ and �i are called

Clebsch-Gordan coe�cients: The first term is the spin 0 term (or scalar) and the second is

the spin 1 term (or vector) as seen by the index structure of the expressions in the brackets

containing |�c�d >. In general, for SU(2), which is the relevant transformation group here,

the whole representation theory can be expressed in terms of multi-indexed objects with

only symmetric indices |�(a1�a2 ...�an) > with spin s = n

2 .

Exercise: Verify that the number of degrees of freedom (=number of components) of

|�(a1�a2 ...�an) > is the same as for spin s = n

2 .

The three points listed above defines what a tensor is in general. The necessity to intro-

duce tensors in physics stems from the fact that the physical outcome of any experiment

cannot depend on the orientation in space or spacetime, neither on the location in space

or spacetime as defined in any given coordinate system. Furthermore, di↵erent experi-

mentalists must be able to compare their results for identical experiments just di↵ering by

which coordinate system they have chosen to describe the results in. Thus the equations

used, like e.g. Newton’s equations, must have the same form in all coordinate systems and

have well-defined transformation properties when comparing them in di↵erent coordinate

systems.

Consider Newton’s 2nd law: F = ma or F i = mai. As written, it does not refer to

any particular coordinate system. In fact, it has this form in any Galilean inertial frame

(all frames related by space rotations and translations in space and time). However, if com-

paring the application of this equation in two di↵erent inertial frames related by a space

rotation, defined by x0i = Ri
jxj for some 3 by 3 rotation matrix R, relative each other

we must have that in the primed system F 0i = ma0i where F 0i = Ri
jF j and a0i = Ri

jaj

so that the rotation matrix can be dropped on both sides and we thus find the unprimed

equation F i = mai. We then say that Newton’s equation transforms as a tensor equation,

the tensors here being just vectors which are defined to behave under rotations in exactly

the same way as the prototype vector xi.

The next insight comes from scalar products which are scalars (e.g., objects invariant

under the transformations in question) constructed by taking (scalar) products of vectors.

Examples are r2 = xixi = xixj�ij = xixi, VW = V ↵W �⌘↵� = V ↵W↵ or for spinors in
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QM < �0
|� >:= �̄0a�a := ✏ab�̄0

b
�a. These scalars are invariant under, respectively, SO(3),

SO(1,3) and SU(2). This invariance can be shown as follows.

Consider first r2 = xixi = xixj�ij = xixi. Rotating xi by x0i = Ri
jxj we get that

xixj�ij becomes x0ix0j�ij = Ri
kxkRj

lxl�ij = rTRT1Rr which must equal rT r which means

that

RTR = 1, or �ijR
i
kR

j
l = �kl. (3.137)

This result says that rotation matrices are orthogonal (first version of the condition) or

equivalently that rotations leave the tensor �ij numerically invariant. Note that a general

non-invariant two-index tensor transforms under rotations as

Tij ! T 0

ij = TklR
k
iR

l
j or T 0 = RTTR. (3.138)

Note that for tensors with more than two indices the second way of writing it does not

exist. This is why in physics we tend to always use index notation for tensors.

In the SU(2) case it is a bit more intricate. The scalar product is defined by means of

the ✏ tensor. It is invariant under SU(2) by noting its connection to the determinant which

is equal to 1 for all g 2 SU(2):

✏0
ab

:= ga
cgb

d✏cd = (detg)✏ab = ✏ab. (3.139)

Then the invariance of the SU(2) scalar product works very similar to how it works in

special relativity for SO(1,3) with a scalar product defined in terms of ⌘↵� .

In physics all equations are tensor equations written in terms of indices which can

appear in only two ways: either

1) contracted pairwise as for �� in U↵
��V�� = W↵, or

2) uncontracted (appears once in each term) as for ↵ in U↵
��V�� = W↵.

Each contracted index pair behaves as a scalar product and is thus invariant. The equation

as a whole is either invariant (has no uncontracted indices) or covariant (has uncontracted

indices like in the example used here). A tensor equation cannot have terms with di↵erent

sets of uncontracted indices!

Finally: The symmetry transformations we discuss here are all implemented by some

kind of ”rotation” matrices (for SO(3), SU(2), or SO(1,3)) and hence are supposed to be-

long to well-defined sets, denoted G in general, of matrices. In each case these matrices

g 2 G have the properties

1. If g1 and g2 belong to the set so does g3 = g2g1. This is natural since two rotations per-

formed after each other must equal a single rotation. This is called closure, the set is closed

under matrix multiplication if all possible rotation matrices is included in the set. Note

that in SO(3) we have RTR = 1 which implies RT

3 R3 = (R2R1)TR2R1 = RT

1 R
T

2 R2R1 = 1

as claimed. The ”S” in SO(3) means that detR = 1 which is also preserved under matrix

multiplication.

2. The set of matrices G obviously contains the unit matrix.

3. There is a unique inverse to each matrix in the set. This is also quite obvious here.

4. The multiplication is associative. This is again clear since associativity is satisfied by

all matrices.
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The axioms listed in 1) to 4) defines a ”group” and as we have seen they are trivially

satisfied for matrix groups.

Note: It is often very convenient to define a matrix group by which tensors it leaves

invariant. This is of course equivalent to specifying the scalar product under considera-

tion. There is therefore a natural hierarchy of groups. Consider all matrices g that can act

on an N-dimensional real vector space. The only requirement for these coming from the

four axioms is that detg 6= 0 so that its inverse can be defined. This group is called the

general linear group denoted GL(N). If it leaves invariant the ✏ tensor it must have unit

determinant and then it is called special linear group denoted SL(N). In these cases, if a

vector vi transforms as v0i = gijvj then in order to define a scalar (which is not a scalar

product since it requires a metric) one must introduce also a covector vi transforming as

v0
i
= vj(g�1)j i. The scalar product vivi is then trivially invariant. This is exactly what

happens in general relativity in the context of general coordinate transformations.

General coordinate transformations (or di↵eomorphisms)

The transformations and prototypes dxµ and @µ are given by the chain rule

xµ ! x0µ = x0µ(x) ) dx0µ =
@x0µ

@x⌫
dx⌫ , @0µ =

@xµ

@x0⌫
@x⌫ ) d0 := dx0µ@0µ = dxµ@µ :d, (3.140)

i.e., the exterior derivative d = dxµ@µ is the basic invariant quantity in this case. This

object is of central importance in ”di↵erential geometry”, a subject we will not discuss

further in this course.

There are only two invariant objects in GR, i.e., under general coordinate transfor-

mations. Note that the metric itself, contrary to in special relativity, is not an invariant.

However, if we consider integrals we know

d4x0 = |
@x0µ

@x⌫
|d4x, (3.141)

where |@x
0µ

@x⌫ | is the determinant of @x
0µ

@x⌫ called the Jacobian J , i.e., J = det(@x
0µ

@x⌫ ). Although

d4x has no uncontracted indices it does not behave entirely as a scalar due to the Jacobian.

To keep track of such extra factors of the Jacobian we use the name tensor density of

weight w 2 Z for any tensor that transforms according to its indices but with additional

w Jacobian factors. Another example is the determinant of the metric:

g0µ⌫ =
@xµ

@x0⌫
@xµ

@x0⌫
g⇢� ) det g0 = (det(

@xµ

@x0⌫
))2 det g, (3.142)

which means that det g has weight w = �2 since det( @x
µ

@x0⌫ ) = (det(@x
0µ

@x⌫ ))�1. The impor-

tance of these facts are clear when considering integrations since we see that d4x
p
�g is

an invariant integration measure or volume element dV , i.e., it is a scalar with weight zero.

Here g = det gµ⌫ . Note that Weinberg defines g = � det gµ⌫ which is not so common in the

literature! Also quite common is to use an absolute value sign
p

|g|.
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Another important object is the totally antisymmetric Levi-Civita symbol "µ⌫⇢� which

is a tensor with non-zero weight, that is, a tensor density. It is numerically invariant under

coordinate transformations and take the following values in all coordinates:

"µ⌫⇢� : "0123 = +1. (3.143)

To define this object we first consider the related w = 0 tensor ✏µ⌫⇢� (note the change in

notation from " to ✏). It can be obtained from the Minkowski equivalent ✏↵��� as follows:

✏µ⌫⇢� :=
@xµ

@⇠↵
@x⌫

@⇠�
@x⇢

@⇠�
@x�

@⇠�
✏↵���, (3.144)

and it clearly transforms as (where we distinguish indices by the bar notation)

✏0µ⌫⇢� :=
@x0µ

@xµ̄
@x0⌫

@x⌫̄
@x0⇢

@x⇢̄
@x0�

@x�̄
✏µ̄⌫̄⇢̄�̄ = det(

@x0µ

@xµ̄
)✏µ⌫⇢�, (3.145)

where we have used the definition of a determinant in the last step. Although there is a

factor of the Jacobian J = det(@x
0µ

@xµ̄ ) in this formula it is tied to the index structure so is

not mean that this object is a density.

However, what the presence of the Jacobian above does mean is that by multiplying the

tensor ✏↵��� by
p
�g we have obtained a di↵erent object, a weight w = �1 tensor density

denoted "µ⌫⇢� and called the Levi-Civita symbol, which is a numerical invariant! That

is9

"µ⌫⇢� =
p
�g✏µ⌫⇢�. (3.146)

Exercise: Is the "µ⌫⇢� also an invariant tensor density? What is its weight?

The a�ne connection having defined tensors and tensor densities above we will now

investigate the a�ne connection to see how it transforms under general coordinate trans-

formations. Recall the definition obtained from the equation of free particle motion, namely

d2xµ

d⌧2
+ �µ

⌫⇢

dx⌫

d⌧

dx⇢

d⌧
= 0, where �µ

⌫⇢ =
@xµ

@⇠↵
@2⇠↵

@x⌫@x⇢
. (3.147)

Is �µ
⌫⇢ a tensor?

To answer this question we perform a di↵eo (=general coordinate transformation) x !

x0 = x0(x):

�µ

⌫⇢ ! �0µ

⌫⇢ =
@x0µ

@⇠↵
@2⇠↵

@x0⌫@x0⇢
= (

@x0µ

@⇠↵
)
@

@x0⌫
(
@⇠↵

@x0⇢
) = (

@x0µ

@⇠↵
)
@

@x0⌫
(
@x�

@x0⇢
@⇠↵

@x�
). (3.148)

9
Some authors define the invariant object with all indices down instead of up as here. The virtue of our

definition is that in di↵erential geometry the integration measure is dxµ ^ dx⌫ ^ dx⇢ ^ dx�
= d4x"µ⌫⇢� =

d4x
p
�g✏µ⌫⇢�.
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Here we do the following: when the derivative hits the second factor in the last bracket we

rewrite it as @

@x0⌫ = @x
⌘

@x0⌫
@

@x⌘ and the first bracket we write as @x
0µ

@⇠↵
= @x

0µ

@x⌧
@x

⌧

@⇠↵
. When the

derivative hits the first factor in the last bracket we keep everything as it is. This gives

�0µ

⌫⇢ =
@x0µ

@x⌧
@x⌘

@x0⌫
@x�

@x0⇢
�⌧

⌘� +
@x0µ

@x�
@2x�

@x0⌫@x0⇢
. (3.149)

This is a fundamental result: the RHS has two terms of which the first one is ”good”

(homogeneous) showing tensor behaviour while the second one is ”bad” (inhomogeneous)

destroying the tensor property of �µ
⌫⇢ which is reflected in the name ”connection”.

The comparison to EM is clear: also the vector potential is a connection (under gauge

transformations) since A0
↵ = A↵ + @↵⇤. In EM we know how to take the next step that is

how to turn partial derivatives into U(1) covariant ones using the vector potential:

D↵ := (@↵ � ieA↵) ) if  0(x) = eie⇤(x) (x) then also (D↵ (x))
0 = eie⇤(x)D↵ (x).

(3.150)

That this covariance condition is satisfied is easily checked

LHS : (D↵ (x))
0 := (@↵�ieA0

↵) 
0 = eie⇤(x)@↵ (x)+ie(@↵⇤)e

ie⇤(x) (x)�ieA0

↵e
ie⇤(x) (x),

(3.151)

while the RHS is

RHS : eie⇤(x)D↵ (x) = eie⇤(x)@↵ (x)� ieA↵e
ie⇤(x) (x). (3.152)

Hence we see that the first terms on both sides cancel and the remaining terms just says

that A0
↵ = A↵ + @↵⇤.

In a similar way to EM above we now define a covariant derivative rµ in GR. Acting

on a contravariant vector V µ it is defined by

rµV
⌫ := @µV

⌫ + �⌫

µ⇢V
⇢. (3.153)

The covariance requirement in this case is that rµV ⌫ should transform as the index struc-

ture suggests, i.e., as

(rµV
⌫)0 =

@x⇢

@x0µ
@x0⌫

@x�
(r⇢V

�), (3.154)

which can verified explicitly once the non-tensor behaviour of the a�ne connection has

been written down.

Note that the geodesic equation is really just a covariant derivative acting on the

tangent vector of the particle path. If we set uµ = dx
µ

d⌧
it reads

D⌧u
µ := @⌧u

µ + u⌫�⌫

µ⇢u
⇢ = 0. (3.155)

If we replace the tangent vector D⌧ is acting on by a vector field V µ defined in all of

spacetime then the LHS of the above equation can be rewritten as follows

D⌧V
µ = @⌧V

µ + u⌫�µ

⌫⇢V
⇢ = u⌫(@⌫V

µ + �µ

⌫⇢V
⇢) = u⌫r⌫V

µ, (3.156)

where we have used @⌧ = u⌫@⌫ .
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