
3.8 Lectures 13 - 15: Gravitational waves

There are three key aspects of gravitational waves that one needs to study in order to

understand how they can observed on Earth:

1. How are they generated?

2. How do they propagate?

3. How are they detected on Earth?

Before analysing these aspects in detail let us describe them schematically.

1) Here we must solve Einstein’s equation with a stress tensor that describes the source,

e.g., a pair of black holes or neutron stars spiralling closer and closer towards each other.

This is done using the linear approximation and retarded Green’s function.

2) Once the gravitational field is obtained from the source it will propagate in empty space.

We need to analyse the degrees of freedom of the wave and to compute the energy trans-

ported away by the wave. The latter requires the gravitational stress tensor restricted to

second order terms in the weak gravitational field of the wave.

3) When the wave arrives at Earth it can be picked up due to its e↵ect on physical distances

that start to oscillate according to the metric wave when it passes by the ”observatory”.

There exist two kinds of observations supporting the existence of gravitational waves:

1) Indirect ones due to the loss of energy in a gravitationally bound system, e.g., of binary

pulsars15 spiralling towards each other (Nobel prize 1993 to Hulse and Taylor).

2) Direct ones by LIGO and others; first observation in 2015 known as GW150914 (Nobel

prize 2017 to Thorne, Weiss and Barish)16.

An important property of the wave is that the gravitational field, the metric, is ex-

tremely weak which implies that the linear field approximation is very good. This will

help us solve the equations but also make their detection on Earth extremely challenging

as we will discuss later. Einstein himself was well aware of this kind of linear analysis but

failed to find an exact wave solution to his equations. Towards the end of his life he actu-

ally believed that there did not exist any wave solutions to the full non-linear equations.

However, as it turns out, he was wrong and wave solutions were found by other relativists

soon after he died in 195517. Strangely enough, the mathematician H.W. Brinkmann found

wave solutions, pp� waves, already in 1924 but this was not known to the physicists.

Having established the existence of gravitational waves one wonders if they should be

quantised much in the same way as done in electromagnetism where photons, the quantum

of the wave, can be observed experimentally. The analogue in gravity, the graviton, is an

entirely di↵erent question and may never be observed even if they in principle do exist.

Quantum gravity is one of the deep issues in physics since it is known that applying QFT to

Einstein’s theory of gravity does not work. Thus one of the two theories must be modified!

15Rapidly rotating neutron stars emitting pulses of light.
16See K. Riles ArXiv hep-ex/1209.0667.
17See sect. 3 of the nice review by Hill and Nurowski, ArXiv physics.hist-ph/1608.08673.
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3.8.1 The weak field approximation

Our first task is to expand Einstein’s equations

Rµ⌫ �
1

2
gµ⌫R = 8⇡GTµ⌫ , (3.222)

to first order in the weak field perturbation around Minkowski space, that is we write the

metric as

gµ⌫ = ⌘µ⌫ + hµ⌫ , (3.223)

where hµ⌫ is small (recall that the metric is dimensionless). Then using the following

Riemann tensor expression derived before

Rµ⌫⇢� =
1

2
(@�@µg⌫⇢ + @⌫@⇢gµ� � @⇢@µg⌫� � @�@⌫gµ⇢) + g⌧✏(�

⌧

µ��
✏

⌫⇢ � �⌧

⌫��
✏

µ⇢), (3.224)

where the �� terms start at second order in hµ⌫ , it is clear that to first order the Ricci is

R(1)
µ⇢ = ⌘⌫�R(1)

µ⌫⇢� = �
1

2
(⇤hµ⇢ � @µ@

�h�⇢ � @⇢@
�h�µ + @µ@⇢h), (3.225)

where one should note that from now on indices are raised and lowered with the Minkowski

metric ⌘µ⌫ (and its inverse) and the trace is h = ⌘µ⌫hµ⌫ . This result is very promising in

view of what was discussed in lecture 1 and the ⇤ equation for gravity we found there.

There is, however, a problem since the expression for R(1)
µ⇢ above contains additional

two-derivative terms. These terms imply that the Einstein equation cannot be solved since

the operator acting on hµ⌫ is not invertible, i.e., this operator has no Green’s function.

The way to see this is to show that the operator has an eigenvector with zero eigenvalue.

Its existence is a consequence of gauge invariance as we now show which, in fact, will also

complete the connection to the story developped in lecture 1.

To this end, let us consider the inverse metric and its transformation under general

coordinate transformations

g0µ⌫(x0) =
@x0µ

@x⇢
@x0⌫

@x�
g⇢�(x). (3.226)

Then if we consider only infinitesimal coordinate transformations we get, with gµ ⇡ ⌘µ⌫ �

hµ⌫ ,

xµ ! x0µ = fµ(x) ⇡ xµ + ✏µ(x) ) h0µ⌫(x0) ⇡ hµ⌫ � (@µ✏⌫ + @⌫✏µ), (3.227)

where we note the x0 as the argument on the LHS. To lowest order in both hµ⌫ and the

parameter ✏µ we can drop the prime on x0. Usually the result is rewritten by lowering the

indices with the Minkowski metric which gives the infinitesimal transformation rule18

�hµ⌫(x) ⇡ �(@µ✏⌫ + @⌫✏µ). (3.228)

18This looks like a gauge transformation if compared to EM but, as seen here, it is just a result of the

tensor property of the metric.

– 53 –



With this transformation rule we see immediately that

�R(1)
µ⌫ = 0, (3.229)

and hence that �hµ⌫(x) ⇡ �(@µ✏⌫+@⌫✏µ) has zero eigenvalue. The solution to this problem

then suggests itself, namely we should try to find a gauge condition that eliminates the

extra terms and leaves only the ⇤ term in �R(1)
µ⌫ . The situation has then become identical

to the one in Maxwell theory where the Lorentz gauge condition solves the problem. In

GR the analogues gauge condition is called the harmonic gauge condition:

�µ := g⌫⇢�µ

⌫⇢ = 0. (3.230)

To first order in hµ⌫ is reads

�µ
⇡

1

2
(2@⌫h

µ⌫
� @µh⌫⌫) = 0, that is @⌫h

µ⌫ =
1

2
@µh⌫⌫ , at O(h). (3.231)

At this point it is convenient to rewrite Einstein’s equations so that the Ricci tensor

appears by itself on the LHS. To find an expression for the curvature scalar we simple trace

Einstein’s equation which gives R� 2R = 8⇡GT where T = Tµ
µ. Then the elimination of

the R term in Einstein’s equations gives

Rµ⌫ = 8⇡G(Tµ⌫ �
1

2
gµ⌫T ) := 8⇡GSµ⌫ , (3.232)

where we have also defined the ”trace reduced” stress tensor Sµ⌫ = Tµ⌫ �
1
2gµ⌫T .

Finally, if we insert the linearised harmonic gauge condition @⌫hµ⌫ = 1
2@

µh⌫⌫ into

the linearised trace reduced Einstein equation we find that it simplifies directly to the ⇤
equation (recall the first lecture)

⇤hµ⌫ = �16⇡GSµ⌫ . (3.233)

This equation can now be solved for the metric perturbation hµ⌫ by means of the retarded

Green’s function G(x;x0) satisfying (proof is provided below)

⇤xG(r, t; r0, t0) = �4⇡�3(r� r0)�(t� t0), (3.234)

as follows

hretµ⌫ (r, t) = 4G

Z

V

d3x0
Sµ⌫(r0, t� |r� r0|

|r� r0|
, (3.235)

where V is the space volume containing the source, i.e., where Sµ⌫ 6= 0.

Comment: The fact that the actual stress tensor Tµ⌫ is divergence free implies that

Sµ⌫ satisfies

@⌫S
µ⌫ =

1

2
@µS⌫

⌫ , (3.236)

which in fact it must since hµ⌫ also satisfies this (gauge) condition due to eq. (3.233).

– 54 –



3.8.2 The retarded Green’s function

When deriving the metric perturbation hµ⌫(x) from a source Tµ⌫(x), e.g., due to two black

holes or neutron stars orbiting each other, we need to start from the linearised Einstein

equations in the harmonic gauge

⇤hµ⌫(x) = �16⇡GSµ⌫(x), where Sµ⌫ = Tµ⌫ �
1

2
⌘µ⌫T⇢

⇢, (3.237)

and via the corresponding Green’s function find the retarded solution (i.e., the solution

that respects causality)

hretµ⌫ (t, r) = 4G

Z

V

d3r0
Sµ⌫(t� |r� r0|, r0)

|r� r0|
, (3.238)

where V is the spatial volume taken up by the source.

To show this we first derive the Green’s function which is defined through the equation

⇤xG(t, r; t0, r0) = �4⇡�3(r� r0)�(t� t0). (3.239)

Below we will prove that the retarded Green’s function is given by

Gret(t, r; t0, r0) =
�(t0 � (t� |r� r0|))

|r� r0|
, (3.240)

which when integrated over the source Sµ⌫(t0, r0) leads directly to the answer for hretµ⌫ (t, r)

given above after performing the time integral.

To derive the expression for the Green’s function given above we start by doing a

Fourier transformation of the equation for the Green’s function using the fact that

�3(r� r0)�(t� t0) =
1

(2⇡)4

Z
d3k

Z
d! eik·(r�r0)�i!(t�t

0), (3.241)

and the definition of the Fourier transform g(!,k)

G(t, r; t0, r0) =

Z
d3k

Z
d! g(!,k) eik·(r�r0)�i!(t�t

0). (3.242)

These definition leads directly to the solution

g(!,k) =
1

4⇡3

1

k2 � !2
, (3.243)

which, however, is ill-defined since when k2 = !2 this expression blows up.

The way out of this dilemma is to let ! be complex and introduce a small parameter

✏ to shift the poles in !, i.e., ! = ±k o↵ the real ! axis. The integral that needs to be

performed is then

Gret(t, r; t0, r0) =
1

4⇡3

Z
d3k

Z

C

d!
1

k2 � (! + i✏)2
eik·(r�r0)�i!(t�t

0). (3.244)

The crucial point here is that the two poles in the complex ! plane are now both under the

real ! axis: ! = k� i✏ and ! = �k� i✏. Thus by closing the contour C in the upper half-

plane we get zero for t < t0 (i.e., causality) since there are no poles and the half-circle part
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goes to zero when its radius goes to infinity (e�i!(t�t
0) = e�iRe(!)(t�t

0)�i
2
Im(!)(t�t

0)
! 0 as

Im(!) ! 1).

On the other hand, choosing to close the contour in the lower half-plane gives a zero

contribution form the half-circle for t > t0 (i.e., causality) so the residue theorem gives the

final result from the poles as follows. We first reverse the direction of the loop around the

poles which are defined by the factorisation k2 � (!+ i✏)2 = �(!� k+ i✏)(!+ k+ i✏) and

rewrite the integral as

Gret(t, r; t0, r0) =
(�1)2

4⇡3

Z
d3keik·(r�r0)

I

C

d!
e�i!(t�t

0)

(! � k + i✏)(! + k + i✏)
. (3.245)

The residue theorem then implies that the ! integral is, after taking the limit ✏ ! 0,
I

C

d!
e�i!(t�t

0)

(! � k + i✏)(! + k + i✏)
= 2⇡i(

e�ik(t�t
0)

2k
+

eik(t�t
0)

�2k
) = 2⇡

sin k(t� t0)

k
. (3.246)

The Green’s function then becomes

Gret(t, r; t0, r0) =
1

2⇡2

Z
d3k eik·(r�r0) sin k(t� t0)

k
, (3.247)

where the momentum integral is easily done using d3k = k2dk sin ✓d✓d� and orienting the

momentum axis so that k · (r� r0) = k(|r� r0|) cos ✓. The angular part of the integral is
Z

⇡

0
eik|r�r0| cos ✓ sin ✓d✓

Z 2⇡

0
d� = 2⇡

eik|r�r0|
� e�ik|r�r0|

ik|r� r0|
=

4⇡

k|r� r0|
sin(k|r� r0|), (3.248)

which leads to

Gret(t, r; t0, r0) =
2

⇡|r� r0|

Z
1

0
dk sin k(t� t0) sin k|r� r0|. (3.249)

The last integral is then done by rewriting the sin functions as sums of two exponentials,

using that the integral is symmetric under k ! �k to get
R
1

0 dk = 1
2

R
1

�1
dk, and flipping

k ! �k in two of the four terms to get
Z

1

0
dk sin k(t� t0) sin k|r� r0| =

1

2

Z
1

�1

dk sin k(t� t0) sin k|r� r0| =
⇡

2
�((t� t0)� |r� r0|),

(3.250)

where we have also used the fact that t > t0 (which means that �((t� t0) + |r� r0|) = 0).

So finally we find the Green’s function to be just

Gret(t, r; t0, r0) =
�((t� t0)� |r� r0|)

|r� r0|
=

�(t0 � (t� |r� r0|))

|r� r0|
, (3.251)

where we also give the result in the form (last expression) that will be used below. In

fact, integrating this Green’s function, which provides the response from a delta-function

source, over the whole spread-out source Sµ⌫(r0, t0) and doing the t0-integral, we get the

total response as given in the beginning, i.e.,

hret(r, t) = 4G

Z
dt0d3r0Gret(t, r; t0, r0)Sµ⌫(t

0, r0) = 4G

Z

V

d3r0
Sµ⌫(t� |r� r0|, r0)

|r� r0|
.

(3.252)

Note that the original equation ⇤hµ⌫(x) = �16⇡GSµ⌫(x) follows trivially from this expres-

sion for hret(r, t) and the definition of the Green’s function.
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3.8.3 Plane waves

When moving away from the source the wave looks more and more like a plane wave: thus

for a given momentum kµ the metric fluctuations are

h(k)µ⌫ (x) = e(k)µ⌫ e
ik�x

�
+ e?(k)µ⌫ e�ik�x

�
, (3.253)

where the x-independent e(k)µ⌫ is the metric polarisation tensor. This wave is traveling in

vacuum so the mode function must satisfy

⇤hµ⌫ = 0, @⌫h
µ⌫ =

1

2
@µh⌫⌫ , (3.254)

which after Fourier transformation to momentum space implies that

k2 = 0, kµeµ⌫ =
1

2
k⌫e

µ
µ. (3.255)

The task is now to understand what kind of information is stored in this wave, i.e.,

we should try to find the physical degrees of freedom (dof) and see what kind of physics

they are related to. The physical dof are given by the gauge independent components of

✏(k)µ⌫ which is a 4x4 symmetric tensor and thus has 10 matrix components. However, they

satisfy the four conditions kµeµ⌫ = 1
2k⌫e

µ
µ which leaves six independent components.

Now we must also consider the gauge transformations remaining (if any) after imposing

the harmonic gauge condition. Recall that �µ = 0 implied ⇤x0µ(x) = 0 which at the linear

level reads ⇤✏µ(x) = 0. Thus both the metric hµ⌫(x) and the parameters ✏µ(x) satisfy the

⇤ = 0 equation and therefore it is still possible to consider gauge transformations of the

plane wave type (the i is just for convenience)

✏µ(x) = i✏(k)µ eik·x � i✏?(k)µ e�ik·x. (3.256)

These remaining gauge transformations read in momentum space

e0µ⌫ = eµ⌫ + kµ✏⌫ + k⌫✏µ, (3.257)

which means that we can eliminate (gauge fix) another four of the six independent dof

leaving two physical dof in the gravitational wave.

The final conclusion is, as for the photon in EM, that the graviton (assuming that the

field can be quantised as in QFT) is a massless particle with two degrees of freedom, or

polarisation states, moving with the speed of light (c).

To make this discussion completely explicit let us consider a plane wave moving in the

z-direction, i.e., k = (0, 0, k) with k > 0. Then k2 = 0 implies kµ = (k, 0, 0, k) that is

k1 = k2 = 0 and k0 = k3 = k. As the second step we must solve kµeµ⌫ = 1
2k⌫e

µ
µ. Inserting

kµ = (k, 0, 0, k) gives

k(e3⌫ + e0⌫) =
1

2
k⌫(e11 + e22 + e33 � e00). (3.258)
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Writing out these four equation for ⌫ = 0, 1, 2, 3 gives four equations that are solved by

e01 = �e31, e02 = �e32, e03 = �
1

2
(e00 + e33), e22 = �e11. (3.259)

Finally, we can use the gauge transformations of the six so far independent eµ⌫ components,

chosen to be e00, e11, e33, e12, e23, e31. These transformations read, with kµ = (�k, 0, 0, k),

e000 = e00 � 2k✏0, e011 = e11, (3.260)

e033 = e33 + 2k✏3, e012 = e12, (3.261)

e023 = e23 + k✏2, e031 = e31 + k✏1. (3.262)

So we now see explicitly that the four parameters ✏µ can be used to set all the remaining

components of eµ⌫ to zero except e11 and e12 which then are the independent physical

degrees of freedom in this wave. Recall however, that we still have the relation e22 = �e11.

The result above is nicely summarised by giving the polarisation tensor in matrix form

(with ordering µ = (0123))

eµ⌫ =

0

BBB@

0 0 0 0

0 e11 e12 0

0 e12 �e11 0

0 0 0 0

1

CCCA
. (3.263)

One can now read o↵ the spin by applying a rotation in the xy-plane, with xi = (x, y),

Ri
j =

 
cos ✓ sin ✓

� sin ✓ cos ✓

!
, (3.264)

to the matrix

eij =

 
e11 e12
e12 �e11

!
. (3.265)

This computation is in matrix form e0 = ReRT which is easily computed: e011 = cos2 ✓e11+

2 cos ✓ sin ✓ � sin2 ✓ etc. The spin, or rather helicity since the speed of the wave is c, is

identified by forming complex combinations of the two non-zero components of eµ⌫ , i.e.,

e± = e11⌥ie12. Then the rotations become

e0± = e±2i✓e±, ) helicity h = ±2. (3.266)

In a similar way the four dof that were gauged away have helicity 1 and 0:

h± 1 : f± = e13 ⌥ e23, (3.267)

h = 0 : e33 and e00. (3.268)

In the notation that is most common in the literature one renames e11, e12 as h+, h⇥
and the plane wave is thus written

hµ⌫ =

0

BBB@

0 0 0 0

0 h+ h⇥ 0

0 h⇥ �h+ 0

0 0 0 0

1

CCCA
ei(kz�!t). (3.269)
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The new notation tells you that h+ gives oscillations in the x and y directions while h⇥ is

related to oscillations in the x± y directions. The metric is

d⌧2 = dt2�(1+h+e
i(kz�!t))dx2�(1�h+e

i(kz�!t))dy2�2(h⇥e
i(kz�!t))dxdy�dz2. (3.270)

This result means that the physical distance between two particles located at fixed coordi-

nate values will oscillate when the wave is passing them. We will compute the size of this

e↵ect later when we discuss the observations of gravitational waves made by LIGO.

3.8.4 Energy transported by a gravitational wave

In order to compute how fast the distance between two black holes or neutron stars in orbit

around each other shrink we must find out how much energy is transported away by the

gravitational waves generated by this system.

The transport of gravitational energy is given by the space components of the energy-

momentum 4-vector pµ which in turn is the zero component of the gravitational stress-

tensor tµ⌫ (which is the corresponding current) integrated over space: recall the definition

tµ⌫ = (Rµ⌫ �
1

2
gµ⌫R)� (R(1)

µ⌫ �
1

2
⌘µ⌫R

(1)), (3.271)

whose lowest order terms in hµ⌫ are quadratic. These quadratic terms will be su�cient for

our purposes here:

t(2)µ⌫ = �
1

8⇡G
(�

1

2
hµ⌫R

(1) +
1

2
⌘µ⌫h

⇢�R(1)
⇢� +R(2)

µ⌫ �
1

2
⌘µ⌫R

(2)), (3.272)

where (derived in SW eq. 7.6.2)

R(1)
µ⌫ = �

1

2
(⇤hµ⌫ � @µ@

⇢h⌫⇢ � @⌫@
⇢hµ⇢ + @µ@⌫h), (3.273)

and (the messy derivation is not given by SW but the result is quoted in eq. 7.6.15)

R(2)
µ⌫ =

1

2
h⇢�(@µ@⌫h⇢� � @µ@⇢h⌫� � @⌫@⇢hµ� + @⇢@�hµ⌫)

+
1

4
(2@⇢h⇢� � @�h)(@µh⌫

� + @⌫hµ
�
� @�hµ⌫)

�
1

4
(@⇢hµ� + @µh⇢� � @�hµ⇢)(@

⇢h⌫
� + @⌫h

⇢�
� @�h⌫

⇢). (3.274)

The expression for the gravitational stress tensor tµ⌫ is thus rather complicated even

when restricted to the second order hµ⌫ terms. However, we are here only interested in t(2)µ⌫

for plane waves which means that hµ⌫ satisfies ⇤hµ⌫ = 0, @�h�µ = 1
2@µh. If inserted into

the first order Ricci tensor we see directly that

R(1)
µ⌫ (plane wave) = 0. (3.275)

Thus we have

t(2)µ⌫ (plane wave) = �
1

8⇡G
(R(2)

µ⌫ �
1

2
⌘µ⌫R

(2))(plane wave), (3.276)
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where the conditions on hµ⌫ implies that the second line in R(2)
µ⌫ (plane wave) vanishes.

After the Fourier transformation to momentum space we can use kµhµ⌫ = 1
2@

⌫hµµ and

R(2)
µ⌫ (plane wave) will simplify further (see below).

The final step is to insert into t(2)µ⌫ a mode from the plane wave Fourier expansion

hµ⌫ = eµ⌫e
ik·x + e⇤µ⌫e

�ik·x, satisfying k2 = 0, k�e
�
µ =

1

2
kµe

�
�. (3.277)

Since the t(2)µ⌫ is bilinear in hµ⌫ we get terms proportional to

e2ik·x, e�2ik·x, eik·xe�ik·x = 1. (3.278)

In applications where we only observe how the binary systems of black holes or neutron

stars loose energy by gravitational radiation, as done in 1974 by Hulse and Taylor (Nobel

prize 1993), the wave itself is not investigated so we need only the wave averaged over

many wave lengths. This means that of the three kinds of terms mentioned above only the

constant one survives. Thus (Re refers to the real part)

hR(2)
µ⌫ i = �Re (e⇤⇢�(kµk⌫e⇢� � kµk⇢e⌫� � k⌫k�eµ⇢ + k⇢k�eµ⌫) (3.279)

� Re (...) . (3.280)

Here we note that the momenta are no longer associated with other polarisation tensors

the derivatives were acting on and the condition k�e�µ = 1
2kµe

�
� can be applied again.

hR(2)
µ⌫ i then becomes a lot simpler and reads

hR(2)
µ⌫ i = �

1

2
kµk⌫(e

⇤⇢�e⇢� �
1

2
|e⇢⇢|

2). (3.281)

Thus hR(2)
µ

µ
i = 0, since k2 = 0, and we get

ht(2)µ⌫ i =
kµk⌫
16⇡G

(e⇤⇢�e⇢� �
1

2
|e⇢⇢|

2) =
kµk⌫
8⇡G

(|e11|
2 + |e12|

2) =
kµk⌫
16⇡G

(|e+|
2 + |e�|

2), (3.282)

where we have used the result in eq. (3.263) and that e± = e11 ⌥ ie12.

Finally, we can now obtain the power P emitted by the gravitational wave in the solid

angle d⌦. The energy transport is given by the energy current density, i.e., the space

components of the 4-momentum hpµgravi = ht(2)0µi multiplied by the area of the solid angle

at radius r:

dP = hpigravix̂
ir2d⌦ )

dP

d⌦
= ht(2)0iix̂ir2. (3.283)

Thus to compute dP

d⌦ we need to find the relation between ht(2)µ⌫ i and the source gener-

ating the wave in the first place, i.e., from Tµ⌫ for the source. This is rather easily done

starting from eq. (3.282) above and using the retarded solution to ⇤hµ⌫ = �16⇡GSµ⌫ in

harmonic coordinates:

hretµ⌫ (t, r) = 4G

Z

V

d3r0
Sµ⌫(t� |r� r0|, r0)

|r� r0|
, where Sµ⌫ = Tµ⌫ �

1

2
⌘µ⌫T

⇢
⇢, (3.284)
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together with

hµ⌫ = eµ⌫e
ik·x + e⇤µ⌫e

�ik·x, satisfying k2 = 0, k�e
�
µ =

1

2
kµe

�
�. (3.285)

To facilitate the steps discussed in the previous paragraph one needs an approximation

known as quadrupole radiation. To this end we consider a Fourier transformation in the

time coordinate, either continuous or discrete,

Tµ⌫(t, r) =

Z
1

0
Tµ⌫(!, r)e

�i!t + c.c. (3.286)

= ⌃!Tµ⌫(!, r)e
�i!t + c.c. (3.287)

Then restricting ourselves to one single ! component we get

hretµ⌫ (t, r) = 4G

Z

r0<R

d3r0

|r� r0|
Sµ⌫(!, r

0)e�i!(t�|r�r0|) + c.c.. (3.288)

The integral is of course only over the volume of space where the source is non-zero, i.e.,

for r0 < R where R is the maximal extension of the source. The idea is now to evaluate

the integral in the region far away from the source, i.e., for r >> R. Then

|r� r0| ⇡ r � r0 · r̂ )
1

|r� r0|
⇡

1

r
(1 +O( r

0

r
)), (3.289)

which make it possible to write hretµ⌫ (t, r) as follows

hretµ⌫ (t, r) ⇡
4G

r
ei(�!t+!r)

Z
d3r0 Sµ⌫(!, r

0)e�i!r0·r̂ + c.c.. (3.290)

The exponential factor in front of the integral is a plane wave factor eik·x with wave

vector kµ = (k0,k) = (!,!r̂). Note that r! / r/� >> 1 since the size of � is related

to the size of the source. Comparing this result for hretµ⌫ (t, r) to the expansion above

hretµ⌫ (t, r) = eµ⌫(!,k)eik·x + c.c. gives

eµ⌫(!,k) =
4G

r

Z
d3r0 Sµ⌫(!, r

0)e�i!r0·r̂ =
4G

r
Sµ⌫(!,k). (3.291)

Inserting this result for eµ⌫(!,k) into the expression for ht(2)µ⌫ i above and then use this

in the expression for dP

d⌦ gives (recall that kµ = (k0,k) = (!,!r̂))

dP

d⌦
=

k0k · r̂r2

16⇡G
· (
4G

r
)2(S⇤⇢�(!,k)S⇢�(!,k)�

1

2
|S⇢

⇢(!,k)|
2) (3.292)

=
G!2

⇡
(T ⇤⇢�(!,k)T⇢�(!,k)�

1

2
|T ⇢

⇢(!,k)|
2), (3.293)

where in the last step we have just inserted the definition Sµ⌫ = Tµ⌫ �
1
2⌘µ⌫T

⇢
⇢ which

happens to give the same result in terms of Tµ⌫ .

As a last simplification one can use the fact that Tµ⌫ is divergence free kµTµ⌫(!,k) = 0

which implies, using k0 = !,

T0i = �
kj

!
Tij , T00 =

kikj

!2
Tij , (3.294)

– 61 –



which gives the result

dP

d⌦
=

G!2

⇡
⇤ij,kl(k̂)T

⇤

ij(!,k)Tkl(!,k), (3.295)

where

⇤ij,kl(k̂) = �i(k�l)j � 2�(i(kk̂l)k̂j) +
1

2
k̂ik̂j k̂kk̂l �

1

2
�ij�kl +

1

2
�ij k̂kk̂l +

1

2
�klk̂ik̂j . (3.296)

At this point it is useful to introduce the quadrupole approximation. Consider

again the space Fourier transform

Tij(!,k) =

Z
d3r0 Tij(!, r

0)e�ik·r0 . (3.297)

Assume now that the source consists of massive bodies moving with typical velocities

v << 1. Then the radiation produced by the system will have typical frequency ! = v/R

so that a natural approximation is provided by !R = kR << 1 which means that to lowest

order in kr0 we have

Tij(!,k) =

Z
d3r0 Tij(!, r

0). (3.298)

From the above discussion of the divergence free condition on the stress tensor we found

@i@jT ij(!, r0) = �!2T 00(!, r0) which we can integrate against x0kx0l so that

Z
d3r0 x0kx0l@0

i@
0

jT
ij(!, r0) = �!2

Z
d3r0 x0kx0lT 00(!, r0). (3.299)

Integrating the LHS by parts gives 2
R
d3r0 T kl(!, r0) = 2T kl(!,k) where in the last equality

we used the result in eq. (3.298). Thus we get the quadrupole approximation result

T ij(!,k) ⇡ �
!2

2
Dij(!), where Dij(!) :=

Z
d3r0 x0ix0jT 00(!, r0). (3.300)

One should note here that in this approximation T ij is momentum independent. With

these results at hand the (di↵erential) emitted power is finally given by

dP

d⌦
=

G!6

4⇡
⇤ij,kl(k̂)D

⇤

ij(!)Dkl(!). (3.301)

If we are interested only in the total power emitted P =
R

dP

d⌦ d⌦, as in the Hulse-Taylor

case, the required integrals of ⇤ij,kl(k̂) are

Z
d⌦ = 4⇡,

Z
d⌦ k̂ik̂j =

4⇡

3
�ij ,

Z
d⌦ k̂ik̂j k̂kk̂l =

4⇡

15
(�ij�kl + �ik�jl + �il�jk), (3.302)

giving the total power emitted at frequency ! as

P =
2G!6

5
(D⇤ij(!)Dij(!)�

1

3
|Di

i|
2(!)). (3.303)

Note the very strong dependence on !.
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We end this discussion by deriving two results that are relevant for the observations

made by LIGO19 starting with the first ever detection of gravitational waves from a binary

system of two black holes in 2015 (called ”GW150914”). The first result is the power

emitted at the merger of the black holes and the second is the ”strain” in the wave detected

at LIGO.

A system of two equally massive bodies (M) in orbit around each other, and a distance

d apart, is described by (dropping primes on source coordinates here)

Body 1 : r1(t) =
d

2
(cos(⌦t) x̂+ sin(⌦t) ŷ), (3.304)

Body 2 : r2(t) = �r1(t). (3.305)

Thus

T 00(t, r) = M�3(r� r1(t)) +M�3(r� r2(t)). (3.306)

The components of Dij =
R
d3r xixjT 00 are then easily calculated:

Dxx = 2M
d2

4
cos2(⌦t) =

1

4
Md2(1 + cos(2⌦t)), (3.307)

Dxy =
1

4
Md2 sin(2⌦t), (3.308)

Dyy =
1

4
Md2(1� cos(2⌦t)). (3.309)

Then comparing this to Dij(t) = ⌃!(e�i!tDij(!) + ei!tD⇤

ij
(!)) gives

Dxx(! = 0) =
1

8
Md2, Dxx(! = 2⌦) =

1

8
Md2, (3.310)

Dxy(! = 0) = 0, Dxy(! = 2⌦) =
i

8
Md2, (3.311)

Dyy(! = 0) =
1

8
Md2, Dyy(! = 2⌦) = �

1

8
Md2. (3.312)

Summing the total power from the two modes with ! = 0 and ! = 2⌦ gives (Dii = 0)

P = ⌃!

2G!6

5
(D⇤

ijDij �
1

3
|Dii|

2) =
8

5
GM2d4⌦6 (3.313)

which must be complemented by some powers of c to have the correct dimension:

P =
8

5

GM2d4⌦6

c5
. (3.314)

This formula can be taken one step further by finding the frequency ⌦ in terms of the other

quantities. Assuming we can use classical equations, the motion of body 1 is governed by

M r̈1 = �
MMG

d3
(r1 � r2) that is M

d

2⌦
2 = M

2
G

d3
d giving ⌦2 = 2MG

d3
. Thus

P =
64

5

G4M5

d5c5
. (3.315)

19Laser Interferometer Gravitational wave Observatory.
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This formula for the total emitted power is really remarkable as is seen by assuming that

just before merger d = 2rs, where rs is the Schwarzschild radius rs =
2MG

c2
which gives20

At merger : P =
c5

80G
. (3.316)

This rather strange result (independence of the mass of the black holes) implies that the

energy emitted per second is P ⇡ 5 ·1050W which will be checked against real observations

below (see Abbott et al, PRL, on Canvas). Note that the energy of the sun corresponding

to its mass M = 2 · 1030 kg is E = Mc2 = 2 · 1047Nm.

The energy radiated away calculated above corresponds to the energy loss of the binary

system: P = �
dE

dt
. Here E is the total energy possessed by the two bodies of equal mass

M and velocity v = d

2⌦:

E(t) = Ek + Ep = 2 · 1
2M(d2⌦)

2
�

M
2
G

d
= �

1
2

✓
M5G2⌦2(t)

2

◆1
3
, (3.317)

where to get the last expression we have used d3 = 2MG

⌦2 obtained above. This relation tells

us immediately that if E decreases then ⌦ has to increase and hence d decreases leading

to a spiral-motion inwards. Since the only t dependence is in ⌦, taking the t derivative of

E we see immediately that

P = �
dE

dt
= 1

2

✓
M5G2

2

◆1
3 2

3
⌦�

1
3 (t)

d⌦(t)

dt
, (3.318)

from which we deduce the result

d⌦

dt
=

192
p
2

5
(GM)

7
2 (d(t))�

11
2 c�5. (3.319)

Turning this into an equation for the change of the period T instead, using T = 2⇡
⌦ , we get

dT

dt
= �

2⇡

⌦2

d⌦

dt
= �

192
p
2⇡

5

✓
MG

d(t)c2

◆5
2
. (3.320)

To get a feeling for the size of the di↵erent quantities discussed above, let us insert

numbers for two di↵erent physical situations.

1) A binary system of two neutron stars in circular orbits around each other. Suppose the

masses are equal and 1.4 solar masses, and that the distance between them is the diameter

of our sun. Thus M = 2.8 · 1030 kg, d = 7.0 · 108m. Then

P = 3.4 · 1024W, T = 6 · 103 s, dT = �5 · 10�13 dt. (3.321)

The velocity of the neutron stars is about v = d⌦
2 = 5 · 104m/s.

2) If we instead consider two black holes with masses around 30 solar masses (as for

20G = 6.7 · 10�11 m3

kg·s2 and c = 3.0 · 108m.
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GW150914) at the point of merger, i.e., then the distance between them is about two

Schwarzschild radii d = 2rs ⇡ 180 km21. This gives

P = 5 · 1050W, ⌦ =
c

2
p
2 rs

= 103 s�1, T = 6 · 10�3 s, dT = �O(1) dt. (3.322)

The velocity of the two black holes is about the same as in the previous example v = d⌦
2 =

5 · 104m/s. From these results we see that the whole period of revolution is gone in one

period so the final stage before merger is perhaps 10�3 s long in which time the energy loss

is about PT = 5 · 1047Nm corresponding to 2 to 3 solar masses. This is very close to the

observations made for GW150914 at LIGO (see Abbott et al in PRL).

Note that close to the point of merger the usual weak field approximation of the

gravitational field is no longer valid (e.g., h00 =
2GM

rs
= 1) and the full non-linear Einstein

equations must in principle be used. To get accurate answers in this situation one therefore

has to resort to advanced numerical methods. On top of this technical issue it should be

noted that the physics at merger, that is, of the actual transition from two black holes to

a single one is not understood.

3.8.5 The ”strain” observed at LIGO

The observations of gravitational waves at LIGO and other similar ”observatories” (Virgo,

and in the future LISA) are done by actually measuring the change in distance between two

points 4 km apart using interferometry. The setup is similar to the one in the Michelson-

Morley experiment which in 1887 checked the speed of light in di↵erent directions relative

the motion of the Earth. For LIGO, however, the problem is that the expected signal is

so extremely small (see below) that the possibilities of ever being able to detect any waves

was minute.

The strain is defined as

strain := h =
�L

L
, (3.323)

where h is h+ or h⇥ from the wave hretµ⌫ discussed in detail above, and L is the size of

the observatory (for LIGO L = 4 km) while �L is the change in size, i.e., the e↵ect to

be measured. Thus we must obtain the value of h from the information about the binary

system.

The starting point to get a value for h is the formula

hretij =
4G

r
Sij(!,k) =

4G

r
Tij(!,k) =

4G

r

!2

2
Dij(!) =

4G

r

!2

2

Z
d3r0x0ix0jT 00(!, r0).

(3.324)

An estimate of the last expression above can be obtained if we note that its largest value is

attained at merger. Then x0ix0j is roughly (2rs)2 and taking this value outside the integral

the rest of it corresponds to the total energy of the two black holes which is 2M . Thus this

approximation gives

h = 16
GM!2r2s

rc4
. (3.325)

21For the sun rs = 3 km.
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Using rs =
2GM

c2
this becomes

h ⇡ 8
!2r3s
c2r

=
rs
r
, (3.326)

where we in the last step used !2 = 2GM

(2rs)3
= c

2

8r2s
from Newton’s equation of motion.

This is a most remarkable formula. Making a rough guess about likely distances r to

some merger events and an estimate about their likely masses h was believed to end up

10�20 or smaller. The event observed GW150914 comes from a binary black hole system

with each black hole mass about 30 solar masses giving rs ⇡ 105m and a distance from us

of about22 440Mpc = 1.4G ly ⇡ 1025m. Thus its strain is

GW150914 : h ⇡ 10�20. (3.327)

At LIGO, having L = 4 km, the strain formula above then gives the change in the distance

�L between the mirrors at the ends of the vacuum tubes of the interferometer:

LIGO for GW150914 : �L ⇡ 10�18m, (3.328)

corresponding to 1/1000 of the size of a proton.

3.8.6 Quantum gravity

If one tries to apply the rules of QFT to Einstein’s theory of gravity one runs into serious

problems. As we have discussed several times in this course already one can expand Ein-

stein’s equations in small fluctuations around Minkowski space using gµ⌫ = ⌘µ⌫+hµ⌫ . Since

the Ricci tensor contains two derivatives and an expansion will give rise to terms with hµ⌫
to any power (since the inverse metric appears in the Ricci tensor) the theory will consist

a kinetic term linear in hµ⌫ , i.e., ⇤hµ⌫ , plus an infinite set of interaction terms all with

two derivatives. In QFT the kinetic term gives the propagator (=Green’s function) as 1/k2

while the interaction terms give rise to n-point vertices k2 (hµ⌫)n. Schematically one can

then check if e.g. the one loop 4-point amplitude diverges or not: this Feynman diagram

has four 3-point vertices and four propagators giving the k-dependence (k2)4/(k2)4 which

when integrated over all momenta up to the cut-o↵ ⇤ behaves as ⇤4 when ⇤4
! 1. In

other words, it is highly divergent.

Adding more internal propagators improves the behaviour and eventually makes it

convergent. However, adding more external propagators does not change the divergent

property and one ends up with an infinite number of divergent n-point amplitudes. This

makes the theory non-renormalisable and it looses all predictive power at a fundamental

level. The remedy may be string theory where all these infinities are eliminated and the

corrections to Einstein’s theory are well-defined and computable (but only in principle since

the mathematics is not yet under control).

The reason Einstein’s theory without these quantum corrections (higher powers of

Riemann, Ricci and curvature scalar to arbitrary order) can make such remarkably accurate

predictions (e.g., at LIGO) is that all these corrections are extremely small at ordinary

energy scales E: they behave as E

EPlanck
to some positive power. Recall that EP lanck =

1.2⇥ 1019GeV and CERN runs at 104GeV . The mass of the proton is about 1GeV .

221 parsec (pc) = 3.26 lightyears (ly). A year is about 107 seconds.
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