
3.10 Lectures 17 - 18: Cosmology

The cosmological principle: All positions in the universe are essentially equivalent.

1) Homogeneity: This means not in detail but at the scale of 108�109 light years (clusters

or super-clusters of galaxies), i.e., if matter in each cell of this size is smeared out then all

cells look identical (the Copernican Principle).

Q: How is the structure observed in the universe generated?

2) Isotropy: The universe looks the same in all directions as seen from Earth.

Q: How do we understand the fine details of the non-isotropy seen in the CMB23?

Q: How can we explain the causality, and other, problems due to the observed isotropy

over large distances?

1) and 2) together imply that the universe with its matter content is a maximally symmet-

ric space embedded in a non-maximally symmetric spacetime: the cosmological principle.

Current observations indicate that the universe is

i) isotropic with 10�5 deviations (in the CMB discovered by the COBE satellite in 1992),

ii) in a state of accelerated expansion.

iii) has de Sitter geometry with a very small cosmological constant ⇤. The de Sitter inter-

pretation is however still somewhat controversial, see Di Valentino et al, Nature Astronomy,

Vol. 4, February 2020, page 196-203.

One plausible solution to the questions above is inflation.

The universe is analysed in two steps

a) Cosmographically: The cosmological principle alone implies the Roberson-Walker (RW)

metric ansatz

d⌧2 = dt2 � a2(t)(
dr2

1� kr2
+ r2d⌦2), k = 1, 0,�1, (3.329)

where we will refer to k = 0 as flat, k = +1 as closed and k = �1 as open24.

b) Cosmologically: Solving Einstein’s equations with the RW metric, some non-zero stress

tensor and an equation of state for the matter/radiation/dark energy content of the uni-

verse.

Note that if the whole spacetime is maximally symmetric it is regarded as a vacuum solu-

tion, i.e., a solution to Einstein’s equations without a stress tensor but with a cosmological

constant: ⇤ = 0 is then Minkowski space (R4), ⇤ > 0 de Sitter (dS) space (R ⇥ S3) and

⇤ < 0 anti-de Sitter (AdS) space (R4 when considering the covering space).

23The Cosmic Microwave Background, black body radiation at 2.74 K.
24Note that maximally symmetric euclidean hyperbolic spaces can be made closed (and unbounded) by

dividing them by subgroups of the isometry group.
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3.10.1 Cosmography

In the RW metric t is the ”cosmic time” and the (r, ✓,�) are so called ”co-moving coor-

dinates” (see below). This means that galaxies etc are located at fixed (r, ✓,�) and the

fact that the proper distance between them is observed to increase with time is handled by

the ”cosmic scale factor” a(t). Thus the RW metric contains two unknowns k = 0,±1 and

a(t) which must be determined by observations and then explained in b) by the dynamical

equations together with the equation of state.

The stress tensor Tµ⌫ has a space-space part that is maximally symmetric, i.e., Tij / gij as

a result of the theorem about form invariant second rank (having two symmetric indices)

tensors. The rest of Tµ⌫ will be discussed later together with the implications of it being

conserved (divergence free).

We will need the a�ne connections below when discussing the geodesic motion of galaxies.

If we write the RW metric more generally as

d⌧2 = �gµ⌫dx
µdx⌫ = dt2 � a2(t)g̃ijdx

idxj , (3.330)

we can fairly easily obtain the a�ne connection and the Riemann tensor as follows. The

non-zero spacetime metric components are

gtt = �1, gij = a2(t)g̃ij(r, ✓,�), (3.331)

where the tilde metric g̃ij , as well as all other tilde quantities below, refer to the maximally

symmetric subspace (of spacetime) which is here the universe. This gives the non-zero

a�ne connections

�t

ij = aȧg̃ij , �i

tj = �ij
ȧ

a
, �i

jk
= �̃i

jk
. (3.332)

The Riemann tensor then reads

Rt
itj = aä g̃ij , Ri

jkl = R̃i
jkl + ȧ2 (�i

k
g̃lj � �i

l
g̃kj), (3.333)

giving the Ricci tensor

Rtt = �3
ä

a
, Rij = (aä+ 2ȧ2)g̃ij + R̃ij . (3.334)

Finally, the Ricci scalar is

R = 6(
ä

a
+

ȧ2

a2
) +

R̃

a2
. (3.335)

The 3-dimensional maximally symmetric space-space part of the metric given by g̃ij leads

to

R̃ij
kl = 2k�klij , R̃ij = 2kg̃ij , R̃ = 6k. (3.336)
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Note that the coordinates are all dimensionless since it is the scale factor a(t) that has

dimension length. These results will be used later in the cosmology part when we deal

with the Einstein equations.

At this point it is convenient to discuss the geodesic equation. Using the result above

it reads

d2xt

d⌧2
+ �t

ij

dxi

d⌧

dxj

d⌧
= 0,

d2xi

d⌧2
+ �i

jk

dxj

d⌧

dxk

d⌧
+ 2�i

jt

dxj

d⌧

dxt

d⌧
= 0. (3.337)

Thus due to the fact that the coordinates used here are co-moving, i.e., matter has dx
i

dt
= 0,

we have d⌧ = dt and
d2xµ

dt2
= 0, (3.338)

i.e., the galaxies feel no gravitational force and are thus in free fall in this coordinate system

(the crucial fact here is really that �µ

tt
= 0).

Turning to the stress tensor Tµ⌫ and the ”galaxy” number density current Jµ

G
, we get

from imposing the maximal symmetry of 3-space (spacetime submanifold at constant t)

that

T 00 is a 3-scalar,

T 0i = 0 since it is a 3-vector,

T ij
/ g̃ij ,

and similarly

J0
G
is a 3-scalar,

J i

G
= 0.

The perfect fluid assumption for the stress tensor (see SW sect. 2.10) means that the

non-zero components should be written

T 00 = ⇢(t), T 0i = 0, T ij = p(t)gij , J0
G = nG(t), J i

G = 0, (3.339)

where ⇢(t) is the energy density, p(t) the pressure and nG(t) the galaxy density. Note that

the metric in T ij is not the tilde metric but the space-space part of gµ⌫ . This just gives

the proper interpretation of the pressure, and a nice covariant expression for Tµ⌫ , as we

will see below.

In fact this stress tensor and current can be written in a covariant fashion using the co-

moving 4-velocity uµ = (1, 0, 0, 0) as follows:

Tµ⌫ = pgµ⌫ + (p+ ⇢)uµu⌫ , Jµ

G
= nGu

µ. (3.340)

This is called ”the perfect fluid form” of the stress tensor and is a direct consequence of

the cosmological principle. Still without imposing any dynamical equations (Einstein’s

equations) we can get some information from the conservation laws. This will also help us

to get the correct interpretation of e.g. the number density nG. Thus imposing

rµJ
µ

G
= 0 )

d

dt
(
p
gnG) = 0 ) nG(t)a

3(t) = const (3.341)
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where we have used g = �detgµ⌫ = a
6
r
4 sin2 ✓

1�kr2
. Thus nG is the number density per unit

proper volume and nGa3 per unit coordinate volume which is constant in the co-moving

coordinates.

For the stress tensor we have that only the ⌫ = 0 equation is non-trivial

rµT
µ⌫ = 0 ) a3ṗ =

d

dt
(a3(⇢+ p)), (3.342)

which can be rewritten as the so called fluid equation

⇢̇

⇢
+ 3

ȧ

a
(1 +

p

⇢
) = 0. (3.343)

We may also note that if we introduce an equation of state p = p(⇢), often in the form

p = !⇢ for some constant ! � �1, we can solve the previous equation as will be done later.

The components relevant for the universe are dust with ! = 0, radiation with ! = 1
3 and

a cosmological constant ⇤ corresponding to ! = �1. In fact, d⇢

da
= ⇢̇

ȧ
implies that

d

da
(⇢a3) = 3a2⇢+

d⇢

da
a3 = 3a2⇢+

⇢̇

ȧ
a3, (3.344)

which means that either of the two previous equations gives

rµT
µ⌫ = 0 )

d

da
(⇢a3) = �3pa2. (3.345)

We thus conclude that adding an equation of state p = p(⇢) makes it possible to solve for

⇢(a)!

Finally, the proper distance to some other galaxy far away from us with coordinate rG
is

s(t) =

Z
rG

0

p
grr(r0)dr

0 = a(t)

Z
rG

0

dr0
p
1� kr2

, (3.346)

where the integral just gives a fixed constant number. Thus taking the time derivative

gives

ṡ = ȧ

Z
rG

0

dr0
p
1� kr2

=
ȧ

a
s(t), (3.347)

which is the Hubble law (1929) saying that, at any given (cosmic) time t, the velocity of

a galaxy far away from us is proportional to its distance. Of course, since the universe is

a maximally symmetric space this statement applies to any point in the universe not just

as seen from the Earth. The Hubble law is often written, at any time t, in terms of the

Hubble parameter as

v = Hs, where H :=
ȧ

a
. (3.348)

The present value H0 is called the Hubble constant and is sometimes written in terms the

dimensionless h whose value is around 1:

H0 = 100h kms�1Mpc�1 = 3.24⇥ 10�18 hs�1. (3.349)

– 71 –



The current value h ⇡ 0.72 given in the book by Guidry (2019) gives

H0 = 72 kms�1Mpc�1. (3.350)

There seems, however, to be an uncertainty about whether the values of H0 deduced from

information of the present universe and from older information like the CMB are the same

or not, see, e.g., Verde et al, ArXiv astro-ph/1907.10625. If correct it might imply that

something is missing in our current understanding of the standard model of cosmology

(⇤CDM).

Other related quantities that are used to describe the universe are the Hubble length and

the Hubble time:

dH = c

H0
, tH = 1

H0
, (3.351)

with values dH ⇡ h�13Gpc and tH ⇡ h�110Gyr. Another useful parameter is the deceler-

ation parameter q:

q := �
aä

ȧ2
. (3.352)

A final quantity that appears very often in various formulas is the critical density ⇢c. Its

meaning can be seen from a Newtonian derivation (the same result is obtained in GR) as

follows. Consider a (flat) universe with matter density ⇢ and the total mass M inside a

big sphere with radius d. The escape velocity at the surface of the big sphere is then, for

a test body with mass m given by

1

2
mv2 =

GMm

d
) ⇢c =

3H2
0

8⇡G
, (3.353)

where we have used M = 4⇡
3 ⇢cd3 and v = H0d. The current value of the critical density is

⇢c(t0) =
3H2

0

8⇡G
= 1.88⇥ 10�29 h2

g

cm3
= 1.88⇥ 10�32 h2

kg

m3
. (3.354)

From this simple interpretation of ⇢c we have three di↵erent scenarios for the universe:

⇢total > ⇢c: the expansion will stop in finite time,

⇢total = ⇢c: the universe will eventually stop expanding as t ! 1,

⇢total < ⇢c: the universe will never stop expanding.

The density parameter is usually expressed in terms of ⌦ = ⇢

⇢c
and then for each contribu-

tion to the energy density separately. As it turns out, observations tell us that with good

accuracy

⌦m + ⌦rad + ⌦⇤ = 1, (3.355)

where we have included the cosmological term in the perfect fluid stress tensor which means

that ⌦⇤ = ⇢⇤
⇢c

= ⇤
3H2

0
.

We will, however, in the next part on cosmology have reason to add also ⌦k := �
k

a2H2
0

which unlike the other ⌦s is not strictly positive (when ⇤ � 0). With all the ⌦ terms
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present in this equation the standard cosmology theory discussed below gives exactly 1

from which we can then deduce the value k = 1 provided the error bars are small enough

to conclude that it is non-zero (this issue is complicated but see e.g. Nature Astronomy, Vol

4, Februari 2020, page 196-203). The connection given above between the sign of ⇢�⇢c and

the question whether the expansion will stop or not is no longer valid with the cosmological

constant present as we will see below. Even if flat (k = 0) the universe can either expand

or contract, and be either open or closed. Note that in the simple Newtonian argument

above only matter and radiation is involved.

The values we observe today are roughly the following:

Hubble constant: H0 = 67.8± 0.9 kms�1Mpc�1

Age of the universe: t0 = 13.80± 0.04Gyr

Matter (⌦m): 30 percent divided into

–visible (baryonic) matter: 4 percent

–dark matter: 26 percent

Radiation (⌦rad): 0,01 percent

Curvature (⌦k): <1 percent (?)

Dark energy (⌦⇤): 70 percent.

Note that these di↵erent kinds of ”matter” depend very di↵erently on the scale factor

as will be shown below. This fact means that the above numbers must have been very

di↵erent in the far past and will become very di↵erent in the future. Why the numbers

are of the same order of magnitude today is in fact rather strange. This is called ”the

coincidence problem”.

The challenge for astronomers is to determine a(t), k and ⇤ from observations.

One quantity that is obtained from observations and can be use to determine a(t) is the

red shift �. See Weinberg p. 415!!

3.10.2 Cosmology

Einstein: ”What is so incomprehensible about the Universe is that it is comprehensible”.

We now add dynamics to the descriptive picture obtained above, that is Einstein’s equa-

tions, together with an equation of state for the ”matter content” (this can also be dark

energy) of the universe. We thus want to solve

Rµ⌫ = 8⇡GSµ⌫ , (3.356)

where

Sµ⌫ = Tµ⌫ �
1

2
gµ⌫T⇢

⇢ =
1

2
(⇢� p)gµ⌫ + (⇢+ p)uµu⌫ , (3.357)
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that is

Stt =
1

2
(⇢+ 3p), Sij =

1

2
(⇢� p)a2g̃ij . (3.358)

Einstein’s equations now read

tt : ä = �
4⇡

3
G(⇢+ 3p)a, (3.359)

ij : aä + 2ȧ2 + 2k = 4⇡G(⇢� p)a2. (3.360)

Note that the first equation indicate that an ordinary positive pressure p will decelerate

the universe, not accelerate it, and a negative p will actually accelerate it.

We will now do some massage on the second of these equations. By using the first of

the equations to eliminate ä from it we find that p cancels and we get

ȧ2 + k =
8⇡G

3
⇢a2. (3.361)

This equation together with the tt-equation above are the Friedmann equations and the

solution using the RW metric is the FRW universe.

A third important equation was obtained from the conservation of the stress tensor:

ṗ a3 =
d

dt
(a3(⇢+ p)). (3.362)

Evaluating the time derivative this equation becomes

a3⇢̇

ȧ
+ 3⇢a2 = �3pa2. (3.363)

Using then the fact that

d

da
(⇢a3) = 3a2⇢+

d⇢

da
a3 = 3a2⇢+

⇢̇

ȧ
a3, (3.364)

which is just the left hand side of the previous equation, we finally find that

rµT
µ⌫ = 0 )

d

da
(⇢a3) = �3pa2. (3.365)

We thus conclude that adding to these equation an equation of state

p = p(⇢), (3.366)

often in the form p = !⇢, makes it possible to solve for ⇢(a)!

The task is now to apply these basic equations to the evolution of the expanding uni-

verse. The universe can be assumed to have gone through three major, and very di↵erent,

stages, namely the current matter dominated, the one preceeding it, the radiation domi-

nated, and an early inflation phase dominated by dark energy.
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Matter dominated era (from about 400.000 years after the Big Bang until today):

Here it is a good approximation to set

p(t) = 0. (3.367)

Neglecting the pressure in the last basic equation above gives

d

da
(⇢a3) = 0 ) ⇢ / a�3, (3.368)

which is the correct behaviour of the matter density when the universe is expanding.

Radiation dominated era (from the end of inflation at 10�32 sec to about 400.000

years after the Big Bang):

In this case we use the radiation equation of state

p =
1

3
⇢. (3.369)

This has the following nice implication

d

da
(⇢a3) = �3pa2 )

d

da
(⇢a4) = 0 ) ⇢ / a�4. (3.370)

The extra factor of a�1 comes from the stretching of the wavelength as the universe expands.

Dark energy dominated era ( Inflation era, 10�35
� 10�32 sec after the Big Bang.)

Also in this case the above equations can be used provided we treat the cosmological term

as part of the stress tensor. This means that we must set, neglecting all other types of

matter,

⇢⇤ =
⇤

8⇡G
= �p⇤. (3.371)

Note that in this case the universe is actually maximally symmetric also as a spacetime.

Assuming that the energy density is positive, i.e., that ⇤ > 0, the pressure is negative and

it therefore wants to increase the velocity of the expansion of the universe. We can now

use directly one of Einstein’s equations to get the time evolution

ȧ2 + k =
8⇡G

3
⇢⇤a

2
) ȧ2 = H2a2 ) a(t) / eHt, (3.372)

where we have neglected the a independent k term since we are here considering a very

small universe (a very small) but a very large (and positive) Hubble constant H given by

H2 := ⇤
3 .

Returning to the matter and radiation dominated eras, we can also there obtain the time

evolution by solving ȧ2 + k = 8⇡G
3 ⇢a2 once we know ⇢(a). This defines the so called Fried-

mann model defined by the three equations to be solved:

ȧ2 + k =
8⇡G

3
⇢a2, (3.373)

d

da
(⇢a3) = �3pa2, (3.374)

p = p(⇢) = !⇢. (3.375)
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Note that the remaining Einstein’s equation involving ä is contained in the first two equa-

tions above. We have also introduced the constant ! since that provides a form that often

occurs. In all these equations we should use the total energy density ⇢ = ⇢m + ⇢rad + ⇢⇤.

Also the k term can be included in ⇢ as is often done when expressing ⇢ relative the critical

density ⇢c :=
3H2

0
8⇡G as ⌦i =

⇢i
⇢c
. Observations, as mentioned previously, tell us that to within

1 percent

⌦m + ⌦⇤ + ⌦rad = 1. (3.376)

However, recalling that today H0 = ȧ

a
the equation ȧ2 + k = 8⇡G

3 ⇢a2 can be rewritten as

the statement that the current value of the sum of all contributions to ⌦, i.e., including

⌦k = �
k

a2H2
0
, is exactly equal to one:

ȧ2 + k =
8⇡G

3
⇢a2 , ⌃i⌦i = 1 where i = m,⇤, rad, k. (3.377)

From these facts we find that with quite good accuracy that the universe is flat, i.e., that

k = 0 which, however, is now being questioned by some groups, see Valentino et al, Nature

Astronomy, Vol 4, Febr 2020, pages 196-203.

We can draw some basic conclusions about the history of the universe from these equations.

Let us consider first the current or past situation (t  t0) and then the future evolution.

For t  t0 the equation

ä = �
4⇡

3
G(⇢+ 3p)a (3.378)

gives acceleration or deceleration depending on the sign of ⇢+3p: Matter has ⇢+3p = ⇢ > 0

and radiation ⇢ + 3p = 2⇢ > 0 which means decelerated expansion while for dark energy

⇢+3p = �2 ⇤
8⇡G < 0 (⇤ > 0 means accelerated expansion (like today and during inflation).

Thus we see directly that the whether the expansion of the universe is accelerating or not is

dictated by a delicate balance between the matter and dark energy content of the universe.

This is independent of the value of k.

To get a feeling for how fast the universe will expand in the future we also need to discuss

ȧ. Thus consider again ȧ2 + k = 8⇡G
3 ⇢a2 in the current and future matter dominated era

with ⇢ / a�3, i.e., neglecting the dark energy. This gives a right hand side that behaves

as ⇢a2 / a�1 which goes to zero in the far future. In the very far future the cosmological

constant will start ot dominate again if it is non-zero. But for now we assume it can be

neglected which leads to three future scenarios depending on the value of k:

1) k = �1 : a(t) / t as soon as the ⇢ term is much smaller than 1,

2) k = 0 : ȧ2 > 0 but small since determined by 8⇡G
3 ⇢a2 / a�1,

3) k = +1 : ȧ2 = �1+ 8⇡G
3 ⇢a2 which means that at some time in the future the right hand

side will vanish. To these three cases, all corresponding to vanishing dark energy (⇤ = 0),

we can add the case that is the most likely interpretation of present observations namely

k = 0 (now questioned) and ⇤ > 0 but very small. These four cases can be drawn in a

diagram:
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