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1 Dynamical systems

1.1 What are dynamical systems?

Dynamical system = Set of quantities (system) + Rule how these
change with time (dynamical)
Linear dynamical systems
Most systems encountered in introductory courses.
Often exact solutions using methods based on linear superposition.
Two examples: Small-amplitude oscillations of simple pendulum (θ =
A cosωt) and double pendulum.
Non-linear dynamical systems
Most real-world systems are (at least to some degree) non-linear
Allows for new types of solutions (compared to linear systems).
Examples: Large-amplitude oscillations of simple pendulum and dou-
ble pendulum.
Angle of single pendulum no longer well approximated by A cos(ωt).
Motion of double pendulum becomes chaotic:

• Unpredictable (appears to be random although system is deter-
ministic).

• Sensitive dependence on initial conditions, Two arbitrarily closeby
initial conditions will show different trajectories after some time.

Non-linear systems often show chaotic behaviour.

Examples where dynamical systems are encountered -
Example Typical variables
Classical Mechanics Positions and momenta
Electrical circuits Currents
Population dynamics Number of individuals of different species
Chemical reactions Concentrations of chemicals

Plus everywhere else you encounter ODEs or recurrence equations
(such as processes in living organisms, control theory, economics, etc.)
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1.1.1 Mathematical description of dynamical system

Continuous dynamical systems can be written as systems of cou-
pled ordinary differential equations:

ẋ1 = f1(x1, . . . , xn)

ẋ2 = f2(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn)

Time-dependent variables x1, x2, . . .xn span the phase space of di-
mensionality n.
ẋ denotes total time derivative: ẋ ≡ d

dt
x.

Using vector notation x = (x1, . . . , xn) and f = (f1, . . . , fn) we write
more compactly

ẋ = f (x)

The vector field f is called flow and the solutionx(t) is called trajectory.

Discrete dynamical systems can be written as coupled recurrence
equations (on vector form):

xi+1 = F (xi)

xi ≡ x1,i, . . . , xn,i denotes n phase-space variables at discrete times
i = 0, 1, . . . .
The functions F = (F1, . . . , Fn) are called a map (from xi to xi+1)
and the solution xi is called orbit.

Discrete dynamical systems appear upon discretisation of continu-
ous dynamical systems, or by themselves, for example xi could denote
the population of some species a given year i.

In this course we focus on continuous dynamical systems. Discrete
dynamical systems are treated in Computational Biology A (FFR110).
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1.2 Example: overdamped pendulum

Consider a pendulum that is so heavily damped that oscillations are
suppressed. The angle θ of such pendulum satisfies:

θ̇ = − sin θ . (1)

This equation is non-linear but solvable by separation of variables:

1

sin θ
dθ = −dt

Integrate from t = 0 to T and from θ(0) ≡ θ0 to θ(T ) ≡ θT

I =

∫ θT

θ0

1

sin θ
dθ = · · · = [ln (tan(θ/2))]

θT
θ0

I = −
∫ T

0

dt = −T

In conclusion

ln

(
tan(θT/2)

tan(θ0/2)

)
= −T ⇒ θ(t) = 2atan(e−t tan(θ0/2))

Trajectories starting with −π < θ0 < π converge to θ = 0 as t→∞
and trajectories starting at θ0 = ±π remain at ±π:
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Solution using a dynamical systems approach It is easier to
solve the system geometrically. Plot θ̇ = f (θ) against θ:

Arrows denote the directions of trajectories along the line (c.f. exact
trajectories in previous figure).
Points with no flow (θ̇ = 0): fixed points (also called: equilibrium
points or steady states) correspond to constant solutions of the ODE.
 Stable fixed point (attractor/sink). Surrounding flow is directed
towards the fixed point ⇒ dynamics is stable to small perturbations.
# Unstable fixed point (repeller/source). Surrounding flow is directed
away from the fixed point ⇒ small deviations from the fixed point
grow with time, the fixed point is unstable to small perturbations.

The geometric solution gives the qualitative picture: all trajectories
end up at θ = 0 (or multiples of 2π), unless they start exactly at an
unstable fixed point. Some details are missing but often it is enough
to have qualitative information about the solution.

1.3 Flows on the line

Dynamical systems of phase-space dimensionality n = 1

ẋ = f (x)

f is smooth and real-valued. x takes any real value. No explicit time
dependence in f . One example is given in Eq. (1).
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1.3.1 Types of fixed points

Assume x∗ is an isolated fixed point on the line, f (x∗) = 0. The
possible types are summarized as follows:

Type Unstable # Stable  Half stable/semi stable G#, H#
Slope f ′(x∗) > 0 f ′(x∗) < 0 f ′(x∗) = 0 f ′(x∗) = 0

Example f (x) = x f (x) = −x f (x) = x2 f (x) = −x2

Half-stable fixed points:
G# Dynamics attracted to the left of fixed point, repelled to the right.
H# Repelled to the left, attracted to the right.
The case f ′(x∗) = 0 is called marginal.
Note that f ′(x∗) = 0 is not a sufficient condition for a fixed point to
be half-stable, for example f (x) = x3 is unstable:

2 Bifurcations and catastrophes

A bifurcation is a qualitative change in the dynamics (for example
creation/annihilation or change in stability of fixed points) as a system
parameter is varied. A bifurcation point is the value of the parameter
where the bifurcation occurs.
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2.1 Saddle-node bifurcation

Consider the system

ẋ = r + x2

for negative, zero, and positive values of r:

r < 0 r = 0 r > 0
As the bifurcation parameter r passes the bifurcation point rc, two
fixed points (one unstable and one stable) merge and disappear:

This is a bifurcation diagram, i.e. a plot of fixed points against the
bifurcation parameter (often plotted without the blue flow). In bi-
furcation diagrams, solid lines denote stable fixed points and dashed
lines denote unstable ones. The bifurcation at r = 0 is a saddle-node
bifurcation. Saddle-node bifurcations is the typical mechanism for
creation|annihilation of fixed points.

2.2 Analytical analysis

The geometrical approach considered so far gives the qualitative be-
haviour of the dynamics. To get more quantitative predictions, we
consider analytical approaches.
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2.2.1 Linear stability analysis

Consider general flow, ẋ = f (x), with a fixed point x = x∗: f (x∗) = 0.
A small deviation η(t) = x(t) − x∗ from the fixed point x∗ evolves
according to

η̇ = ẋ− d

dt
x∗ = ẋ = f (x)

Series expand the flow around the fixed point:

η̇ = f (x) = f (x∗)︸ ︷︷ ︸
=0

+f ′(x∗) (x− x∗)︸ ︷︷ ︸
=η

+
1

2
f ′′(x∗) (x− x∗)2︸ ︷︷ ︸

=η2

+ . . .

≈ f ′(x∗)η

Solution:

η = η0e
f ′(x∗)t

This is the general form of the solution close to an isolated fixed point.
λ = f ′(x∗) is the stability exponent (a constant number);
1/|λ| is the characteristic time scale of the solution close to x∗ (stability
time). Note that when λ < 0 the deviation from the fixed point
decreases exponentially fast, but the fixed point is not reached (η = 0)
in a finite time.

For the saddle-node bifurcation above we have f (x) = r + x2 and
f ′(x) = 2x:
Parameter range Fixed points Stability exponents

r < 0
x∗1 = −

√
−r λ1 = −2

√
−r (stable)

x∗2 =
√
−r λ2 = 2

√
−r (unstable)

r = 0 x∗ = 0 λ = 0 (marginal)
r > 0 — —

Note: The direction of a flow on the line is uniquely determined every-
where by its fixed points. Bifurcations only occur when fixed points are
created, destroyed, or change stability. All these require f ′(x∗) = 0,
which is a necessary condition for bifurcations in flows on the line.
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2.3 Transcritical bifurcation

A transcritical bifurcation occurs when a fixed point exists for all val-
ues of a bifurcation parameter r surrounding rc, but changes stability
as r passes rc. As for the saddle-node bifurcation, it is possible to
derive a normal form valid close to any transcritical bifurcation:

ẋ = x(r − x) (2)

r < 0 r = 0 r > 0
The normal form has a fixed point at x∗ = 0 for all values of r, but
stability changes as r passes the bifurcation point rc = 0:

2.3.1 Example: Logistic growth

Let N(t) be the population size of a species at time t. Assume that
N changes due to births or deaths (no migration). Linear model
(Malthus 1798):

Ṅ = bN︸︷︷︸
b=per capita birth rate (b > 0)

− dN︸︷︷︸
d=per capita death rate (d > 0)
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Solution: N(t) = N(0)ert, with per capita growth rate r ≡ b − d.
If r > 0 the population grows without bound. This is unrealistic,
we expect population sizes to be limited due to a finite amount of
resources and space. One way to model this limitation is to modify
the per capita growth rate to decrease linearly with population size,

r → r(1−N/K) ,

with a positive carrying capacity K. This gives a non-linear growth
model

Ṅ = Nr(1−N/K) .

This is the Logistic equation (Verhulst 1836). The system has two
fixed points N ∗1 = 0 and N ∗2 = K.
Introducing the rescaled variable x = rN/K we obtain the normal
form for transcritical bifurcations (2):

ẋ =
dx

dN
Ṅ =

r

K
Nr(1−N/K) = x(r − x) .

Following the corresponding bifurcation diagram above, we have:

• For r < rc = 0 the birth rate is smaller than the death rate and
the population goes extinct for any initial population size (the
fixed point x∗1 = 0 is stable and x∗2 = r is negative (unphysical)).

• For r > rc = 0 the population approaches the maximal sustain-
able limit for any initial population size (the fixed point x∗1 = 0
is unstable and x∗2 = r is positive and stable).

2.4 Pitchfork bifurcation

In a pitchfork bifurcation one fixed point splits into three.
The pitchfork bifurcation can be either supercritical or subcritical.
At bifurcation point, we must have triple root: f (x∗) = f ′(x∗) =
f ′′(x∗) = 0.
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2.4.1 Supercritical pitchfork bifurcation

Normal form of supercritical pitchfork bifurcations:

ẋ = x(r − x2)

r < 0 r = 0 r > 0
Bifurcation diagram:

Example: Buckling of elastic ruler It may seem unlikely that
three fixed points join at one point, but this often happens in systems
with mirror symmetry (equations invariant under x→ −x).

As an example, consider an up-standing perfectly mirror symmetric
elastic ruler with a weight applied from above. Let r be the the mass
of the weight and let x be the ‘buckling angle’:
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The ruler can sustain a small weight r without deformation. If r is
increased above a threshold (the bifurcation point rc), the slightest
asymmetry in the applied mass causes the ruler to buckle in the direc-
tion determined by the asymmetry. When the mass is lightened, the
ruler moves back towards its original state (x∗ = 0).

2.4.2 Imperfect bifurcation and catastrophes

If the symmetry of the ruler in the example above is not perfect, we
may obtain an imperfect bifurcation.

Here small initial buckling angles in either direction makes the ruler
buckle towards positive x. However, a large enough negative initial
buckling angle makes the ruler buckle in the opposite direction (lower
branch on the saddle-node bifurcation). Note that if the mass is slowly
decreased from this state, the ruler makes a sudden switch to positive
x as r becomes smaller than the saddle-node bifurcation point. This
jump in the state of the system is a catastrophe (sudden change in
state). If r is once again increased, the ruler does not flip back to
negative x (hysteresis).
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Cusp catastrophe Imperfect bifurcations are often described by
addition of an imperfection parameter h to the normal form. For the
supercritical pitchfork bifurcation we obtain:

ẋ = x(r − x2) + h .

This is a two-parameter problem. When the perturbation h is zero, the
normal form is reobtained. As discussed earlier, a necessary condition
for bifurcations of fixed points is that both f (x∗) = 0 and f ′(x∗) = 0.
The condition f ′(x∗) = 0 gives

0 =
∂

∂x
[x(r − x2) + h]|x=x∗ = r − 3(x∗)2

Inserting the solution x∗ = ±
√
r/3 into the condition f (x∗) = 0 gives

0 = ±
√
r

3

(
r −

[
±
√
r

3

]2)
+ h ⇒ h = ∓2

3
r

√
r

3

Thus, bifurcations involving at least two fixed points occur at curves
h = ∓2

3
r
√

r
3
:

These curves separates regions with one fixed point from regions with
three fixed points. For the bifurcation to involve three fixed points
we must have a triple root, i.e. 0 = f ′′(x∗) = −6x∗. This condition
is only satisfied when r = h = 0. We can therefore conclude that
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the bifurcations occurring along h = ∓2
3
r
√

r
3

with h 6= 0 involves two
fixed points that are created out of the blue (saddle-node bifurcations),
just as in the figure illustrating an imperfect bifurcation in example
with the ruler above.

The bifurcation curve above is an example of a cusp catastrophe
(named so because the two branches of saddle-node bifurcations meet
tangentially in a cusp (peak) at the origin). The bifurcation diagram
along constant r > 0 in the figure above is:

Assume that the system starts at the top fixed point with a large
value of h. When h is decreased, the system eventually moves over
the left saddle-node bifurcation point, hs, and makes a big jump to a
fixed point far away (a catastrophe). After the jump the system does
not revert back to the original fixed point by a small increase in h
(hysteresis). To move back to the original fixed point (remaining at
constant r) we must increase h beyond the right saddle point, where
a new jump (catastrophe) occurs (forming a hysteresis loop).

Some examples on catastrophes:

• A sudden change in equilibrium could be catastrophic for build-
ings and other constructions.

• The problem of hysteresis could be catastrophic for ecological
systems: if the system makes a big jump to a new equilibrium
(for example due to human influence), it may be very hard to
restore the system to its original state due to hysteresis.

• Models in behavioural sciences [Scientific American article by
Zeeman (1976)]
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2.4.3 Subcritical pitchfork bifurcation

Normal form of subcritical pitchfork bifurcations:

ẋ = x(r + x2)

r < 0 r = 0 r > 0
Bifurcation diagram:

As for the supercritical case, we have a stable fixed point at x∗ = 0
for r < rc. When r passes rc there are no stable fixed points and a
small deviation from x = 0 grows to infinity in a finite time (blow-up
due to the cubic dynamics). Most physical systems have higher-order
non-linear corrections that counteract the blow-up (the pitchfork bi-
furcation happens locally at small x and the system may have other
fixed points at larger values of |x|). However, the system must make
a jump to the new fixed points making subcritical pitchfork bifurca-
tions potentially dangerous, similar to the catastrophes discussed in
Section 2.4.2.
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3 Linear 2D flows

3.1 Example: Rigid pendulum

Angular dynamics of a damped pendulum of length l and mass m:

θ̈ = −g
l

sin θ − γ

m
θ̇ . (3)

Here g is gravitation acceleration and γ is a damping rate. Consider
small oscillations, sin θ ≈ θ and write as a dynamical system with
x = θ, y = θ̇

ẋ = y

ẏ = −g
l
x− γ

m
y

This is an example of a linear flow. It has a fixed point at x∗ = y∗ = 0.
As for the one-dimensional systems we do a geometrical visualisation
of a few representative trajectories (phase portrait) to understand the
dynamics close to the fixed point. The trajectories are obtained by
integration of the dynamical system starting from a suitable set of
initial positions (x0, y0) (or by using StreamPlot[] in Mathematica):
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γ = 0 γ > 0
Case γ = 0: the fixed point is surrounded by closed orbits in the
form of ellipses of infinite density (which orbit is chosen depends on
the initial condition). The fixed point is a center: nearby trajectories
neither approach nor depart from it.
Physical interpretation: The fixed point x∗ = y∗ = 0 corresponds to
the pendulum at rest, θ = θ̇ = 0. Non-zero initial conditions give
closed orbits, corresponding to oscillations in the underlying dynam-
ics [c.f. the ellipses formed by the explicit solution (x, y) = (θ, θ̇) =
A0(cos(ω0t + φ0),−ω0 sin(ω0t + φ0)) with ω0 =

√
g/l].

Case γ > 0: the fixed point is a stable spiral: trajectories spiral
inward towards the fixed point.
Physical interpretation: Due to the viscous damping (γ > 0) the
magnitude of oscillations decreases with time.

3.2 Classification of linear flows

Two-dimensional flows have several additional types of fixed points
compared to one-dimensional flows.
To find all possible types, consider a general linear flow (neglect con-
stant terms, since they correspond to constant shifts in x and y):

ẋ = ax + by

ẏ = cx + dy
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On matrix form:

ẋ = Ax , A =

(
a b
c d

)
. (4)

Assume A is diagonalizable, A = PDP−1 with eigenvalue matrix

D =

(
λ1 0
0 λ2

)
and P is a matrix spanned by the eigenvectors of A. Then Eq. (4) can
be written as

ẋ = PDP−1x

⇒ d

dt
[P−1x] = DP−1x︸ ︷︷ ︸

ξ

⇒ξ̇ = Dξ
⇒ξ(t) = (eλ1tξ1(0), eλ2tξ2(0))

For the case of complex eigenvalues λ = µ∓ iω with corresponding
eigenvectors v and v, this solution becomes complex. Then choose

D =

(
µ −ω
ω µ

)
, P =

(
Re[v1] Im[v1]
Re[v2] Im[v2]

)
such that ξ is real and ξ̇ = Dξ, with solution (let ξ2(0) = 0)

ξ(t) = ξ1(0)eµt(cos(ωt), sin(ωt))

The solutions ξ(t) show the prototypic behaviour of trajectories in
linear systems and is quantified by λ1 and λ2.
In the solution of the original problem, x(t) = Pξ(t), directions are
rotated and rescaled compared to ξ, but the topological properties
of the system are the same (structure of trajectories is rotated and
stretched but the relative order between trajectories remain intact).
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The eigenvalues are determined by the characteristic equation:

0 = det(A− λI) = λ2 − τλ + ∆

with

τ = TrA
∆ = detA .

The solutions of the characteristic equation are:

λ1 =
τ +
√
τ 2 − 4∆

2
, λ2 =

τ −
√
τ 2 − 4∆

2
(5)

Example: Rigid pendulum in a viscous medium

A =

(
0 1
−g

l
− γ

m

)
We have τ = − γ

m
, ∆ = g

l
. Case γ = 0:

λ1 = i

√
g

l

λ2 = −i

√
g

l

As we saw in Section 3.1 this fixed point is a center. The eigenvalues
are imaginary and the values correspond to the angular frequency
ω0 =

√
g/l.

Case γ > 0 but small:

λ1 =
−γ/m + i

√
4g/l− (γ/m)2

2
= − γ

2m
+ i

√
g

l
− γ2

2m2

λ2 =
−γ/m− i

√
4g/l− (γ/m)2

2
= − γ

2m
− i

√
g

l
− γ2

2m2

As we saw in Section 3.1 this fixed point is a stable spiral. It shows
oscillating behaviour with angular frequency

√
g/l − γ2/(2m2). The

negative real part of the eigenvalues decreases the magnitude of the
oscillations exponentially with time.
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3.2.1 Different possibilities (the ’Zoo’ of fixed points)

The type of fixed point depends on the relative sign of Re[λ1] and
Re[λ2] and on whether Im[λ1,2] vanishes or not. All fixed points can
be classified in five major types plus a number of boundary cases.
Parameterizing the eigenvalues by ∆ and τ as in Eq. (5) we have:

3.2.2 Major types

Stable fixed points If Re[λ1] < 0 and Re[λ2] < 0 the fixed point is
stable: trajectories from all initial conditions move towards it. More-
over, if Im[λ] = 0 we have a stable node, otherwise a stable spiral.

Stable node Stable spiral
τ < 0 , 0 < ∆ < τ 2/4 τ < 0 , τ 2/4 < ∆

Unstable fixed points If Re[λ1] > 0 and Re[λ2] > 0 the fixed point
is unstable: trajectories from all initial conditions move away from it.
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Unstable node Unstable spiral
τ > 0 , 0 < ∆ < τ 2/4 τ > 0 , τ 2/4 < ∆

Saddle points (unstable) If Re[λ1] > 0 and Re[λ2] < 0 the fixed
point is a saddle point: it attracts in one direction and repels in an-
other.

Saddle point
∆ < 0

3.2.3 Boundary types

The boundaries between the different regions give rise to additional
kinds of fixed points. We will not put focus on them in this course. One
example is the centers we encountered for the undamped pendulum.
These have Re[λ1] = Re[λ2] = 0 and Im[λ 6= 0] and lie on the green
line line ∆ > 0 and τ = 0 in the diagram above.
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4 Phase plane

The previous section dealt with linear two-dimensional flows. This
section considers non-linear two-dimensional flows living in a phase
space of dimensionality two: the phase plane.

4.1 Geometrical approach: Phase portraits

Consider a general dynamical systems of dimensionality two:

ẋ = f

with x = (x1, x2) and f (x) = (f1(x), f2(x)). To have a cleaner
notation without indices, we often use

x = x1 , y = x2 , f = f1 , g = g2 , ⇒
{
ẋ = f (x, y)
ẏ = g(x, y)

The trajectory x(t) depends on the initial condition x(0):

In non-linear systems it is usually not possible to find x(t) analytically.
Phase portraits are typically much more complicated compared to the
linear flows considered so far. One example:
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• Fixed points (A,B,C)

f (x∗) = 0

• Closed orbits (D) [periodic solution x(t) = x(t + T )].

• Arrangement of trajectories near different fixed points and dif-
ferent closed orbits may differ:

– A, C saddle

– B spiral

• Stability

– A, B, C unstable

– D stable

As for the one-dimensional case: if the flow is smooth, the initial-value
problem has a unique solution. As a consequence different trajectories
cannot intersect. If they did, there would be two solutions starting
from the point of intersection, i.e. breaks the uniqueness condition.

4.1.1 Numerical computation of phase portraits

Using for example Matlab or Mathematica, one can use the built-
in functions, e.g. StreamPlot[] in Mathematica to plot the flow, or
NDSolve[] to find the trajectories.

4.1.2 Sketching the phase portrait by hand

To draw a phase portrait by pen and paper, it is often instructive to
first determine the nullclines. These are the curves defined by

ẋ = 0 or ẏ = 0 .

Along the nullclines the flow is either vertical (ẋ = 0) or horizontal
(ẏ = 0). They divide the phase plane into regions where direction of
flow is known or approximately known:
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ẋ < 0 ẋ = 0 ẋ > 0
ẏ < 0 ↙ ↓ ↘
ẏ = 0 ← · →
ẏ > 0 ↖ ↑ ↗

Intersection points between a nullcline with ẋ = 0 and one with ẏ = 0
give the fixed points of the flow. Since trajectories are not allowed to
cross, the information given by the nullclines often allows to make a
qualitative plot of the dynamics.

Linear example

ẋ = 5x + y

ẏ = −x− y

Nullclines:

ẋ = 0 : y = −5x

ẏ = 0 : y = −x

From the plotted trajectories we see that the fixed point at the
intersection of the nullclines is a saddle point.

Consistency check:

A =

(
5 1
−1 −1

)
⇒ ∆ = detA = −4 ⇒ Saddle point
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4.2 Analytical approach: Linear stability analysis

A dynamical system of dimensionality two

ẋ = f (x, y)

ẏ = g(x, y)

has fixed points (x∗, y∗) where f (x∗, y∗) = g(x∗, y∗) = 0. Linearize
around the fixed point (c.f. Section 2):

η = x− x∗ , µ = y − y∗

d

dt

(
η
µ

)
= J(x∗, y∗)

(
η
µ

)
+ . . . , with J(x∗, y∗) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(6)

where J is called stability matrix, Jacobian matrix, or community
matrix, and the derivatives are evaluated at the fixed point (x∗, y∗).

In linear stability analysis, we neglect the higher-order terms and
the deviation (η, µ) satisfies a linear system that can be analyzed and
classified as in Section 3.

4.2.1 Example on phase-plane analysis

Analyze the dynamical system:

ẋ = x(3− 2x− y)

ẏ = y(2− x− y) .

The nullclines are

ẋ = 0 : x = 0 or x = (3− y)/2

ẏ = 0 : y = 0 or y = 2− x .

On the nullclines the flow is one-dimensional and therefore straight-
forward to analyze:

Nullcline x = 0 x = (3− y)/2 y = 0 y = 2− x
Flow ẏ = y(2− y) ẏ = y(1− y)/2 ẋ = x(3− 2x) ẋ = x(1− x)
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The system has 4 fixed points at the intersections of the two types of
nullclines:

(x∗1, y
∗
1) = (0, 0) , (x∗2, y

∗
2) = (0, 2) , (x∗3, y

∗
3) = (3/2, 0) , (x∗4, y

∗
4) = (1, 1) .

The nullclines give a rough picture of the flow, but it is complicated
to figure out what happens close to the fixed points using nullclines
only. Therefore, use linear stability analysis for the fixed points:

J =

(
(3− 2x− y) + x(−2) x(−1)

y(−1) (2− x− y) + y(−1)

)
=

(
3− 4x− y −x
−y 2− x− 2y

)

Fixed point (x∗, y∗) (0, 0) (0, 2) (3/2, 0) (1, 1)
τ ≡ TrJ(x∗, y∗) 5 -1 -5/2 -3

∆ ≡ det J(x∗, y∗) 6 -2 -3/2 1
λ1,2 = (τ ±

√
τ 2 − 4∆)/2 (2, 3) (−2, 1) (−3, 1/2) (−3±

√
5)/2

Type Unstable node Saddle Saddle Stable node
v1 (0, 1) (0, 1) (1, 0) (1−

√
5, 2)

v2 (1, 0) (−3, 2) (−3/7, 1) (1 +
√

5, 2)

Stable|unstable directions The real part of the eigenvalues de-
termine the stability of a fixed point. Small deviations from a fixed
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point along an eigenvector vu corresponding to an eigenvalue λu with
Reλu > 0 remain in the direction of vu and grow exponentially fast.
This follows from Eq. (6) using (η, µ) = ε(t)vu with ε� 1:

dε

dt
vu = J(x∗, y∗)εvu = λuεvu ⇒ ε(t) = ε(0)eλut .

The (normed) eigenvector vu an unstable direction of the fixed point.
Similarly, a normed eigenvector vs corresponding to λs with Reλs < 0
is a stable direction of the fixed point: small deviations in this direction
shrink exponentially fast.

Stable|unstable manifolds The stable manifoldMs of a fixed point
is either a point, curve, or surface in the phase-plane. It is defined as
the set of points (including the fixed point) that approach the fixed
point in the limit t→∞. Similarly, the unstable manifoldMu consists
of the set of points that approach the fixed point in the limit t→ −∞,
i.e. if the flow is reversed, then Ms and Mu switch stability.

• In a linear system the stable|unstable manifold is given by
the subspace spanned by the set of stable|unstable directions.
For example, a saddle point has one negative and one positive
eigenvalue, it attracts along the stable direction, but repels along
the unstable direction. Its stable and unstable manifolds are
lines in these directions. Attractors|repellers are stable|unstable
in all directions and the stable|unstable manifold is a surface
(the entire phase plane).

• For a non-linear system, Ms and Mu approach the manifolds
of the linearized fixed point close to it, but may deviate further
away due to non-linear effects. Example for a saddle point:
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The stable|unstable manifold approaches the stable|unstable di-
rection vs|vu of the fixed point close to the fixed point.
The two-dimensional stable|unstable manifold of an attractor|repeller
may become bounded.

To numerically evaluate the stable|unstable manifold: start close to
the fixed point in the stable|unstable direction and integrate the sys-
tem backwards|forward in time.

Coming back to our example, from the table, the stable|unstable
directions close to the fixed points are:

As shown by the nullclines, the flow aligns with the coordinate axes.
Therefore, since trajectories cannot cross, the four quadrants are iso-
lated from each other.

Consider first the upper-right quadrant. Since the flow is negative
for large values of x or y, trajectories do not escape to infinity, and
must therefore be attracted by the stable node at (1, 1) (its stable
manifold or basin of attraction is the upper right quadrant). In par-
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ticular, the unstable manifolds of the saddle points must connect with
the stable node. As a consequence, trajectories become trapped on
either side of these manifolds:

This is a generic behaviour, the manifolds of saddle points often di-
vide the phase space into regions of qualitatively different long-term
dynamics.

One example is the stable manifolds of the saddle points along the
coordinate axes: these separate dynamics that are attracted to the
stable node, from the rest of the phase plane where trajectories run
off to infinity. The stable manifolds of the saddle points are examples
of separatrices (singular: separatrix): they divide the phase space into
regions of different long-term behaviour.

Outside the upper-right quadrant, the unstable manifolds of the sad-
dle points must run away to infinity (no attractor can attract them).

Note: The stable|unstable manifolds and the nullclines can some-
times coincide (the coordinate axes in the example above), but in
general they are different curves, also close to the fixed point.

4.2.2 Effect of small non-linear terms

When is it safe to neglect quadratic terms in the stability analysis?
Linear stability analysis gives a qualitatively correct picture if the

fixed point is a node, spiral, or saddle (as in the Example in Sec-
tion 4.2.1). For the border-line cases, non-linear terms may (or may
not) change the dynamics qualitatively from the border-line case.
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5 Local two-dimensional bifurcations

As in one-dimensional systems: fixed points may be created, de-
stroyed, or change stability as parameters are varied (change of ’topo-
logical equivalence’).

5.1 Saddle-node, transcritical, and pitchfork
bifurcations

Assume that a saddle point and an attracting node collide as a pa-
rameter µ is varied. The mechanism of why the collision occurs at
all (instead of the fixed points moving past each other): Fixed points
are formed at intersections of nullclines. As µ is varied, the nullclines
deform continuously. If they slip through each other the fixed points
collide:

Change coordinates to the local eigenframe of the saddle point. Let
the unstable direction of the saddle be v̂u = (1, 0) and the stable
direction v̂s = (0, 1). When the node comes closeby, it must merge
along the unstable manifold of the saddle [otherwise trajectories could
not remain continuous and linear as the fixed points merge].
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• The bifurcation is essentially one-dimensional (in any dimen-
sion). Normal form (in unstable|stable directions of saddle):

ẋ = −µ− x2 (same as 1D)

ẏ = −y

• Along the interconnecting manifold, the eigenvalues have oppo-
site signs⇒ at bifurcation (at least) one eigenvalue must vanish.

• Repelling node? ⇒ reverse the arrows!

Similarly, the other bifurcations discussed in Section 2 (transcritical,
subcritical pitchfork, supercritical pitchfork), occur in one-dimensional
subspaces in higher-dimensional systems. Transversal directions are
simply attracting or repelling. The bifurcations are summarized in
the Table at the end of this section. The dynamics along the x-axis
is that of 1D flows (x-component of flow plotted as black) and blue
shows flow in 2D.

5.2 Hopf bifurcation

A stable fixed point has Re[λ1,2] < 0. A bifurcation to an unstable
fixed point occurs if the maximal eigenvalue crosses zero. Consider the
three possible bifurcations from stable to unstable in a linear system:
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a b c

a

b c

Cases a and b have Im[λ1,2] = 0, while case c has Im[λ1,2] 6= 0. Case
a corresponds to saddle-node, transcritical, and pitchfork bifurcations
above. Case b is marginal and therefore not so interesting. Case c
is a Hopf bifurcation: a new type of bifurcation that does not exist in
1D systems. Consider the transition with Im[λ1,2] 6= 0:

Hopf bifurcations often lead to the formation of attracting closed or-
bits, limit cycles, discussed in Section 6.
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6 Closed orbits, limit cycles, and chaos

In Section 4 we connected the local dynamics close to fixed points
in non-linear flows to the dynamics observed in linear flows. In this
section we consider non-local dynamics due to non-lineaity.

6.1 Poincaré-Bendixson theorem

Assume a smooth flow in a bounded domain D of the plane. Assume
further that D does not contain any fixed point and that there exists a
trajectory that is confined in D for all times. Then at least one closed
orbit exists in D. This is a consequence of the fact that trajectories
for smooth flows cannot intersect in two dimensions.

To satisfy the condition that a confined trajectory exists, one can
construct a trapping region, i.e. choose D such that the flow points
inward everywhere. If it is possible to construct a trapping region,
then the Poincaré-Bendixon theorem ensures that at least one closed
orbit exists in D.

Trapping region D
Closed orbit

As a consequence, in two dimensions trajectories either end up close to
fixed points or to closed orbits (or running away to infinity). In higher
dimensions: infinite non-repeating trajectories (chaos) is possible.

6.2 Closed orbits

Closed orbits either occur as bands of periodic solutions (as around
the center in Section 3.1) or as isolated attracting periodic solutions:
limit cycles. Systems with limit cycles are useful in order to model
self-sustained oscillations (oscillations without external periodic forc-
ing), such as the firing of a pacemaker, cycles in the body , oscillating
chemical reactions, unwanted or dangerous self-excitations in mechan-
ical systems.
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6.3 Chaotic systems

Chaotic dynamics exhibit the following properties

• Most trajectories show aperiodic long-term behaviour.

• System is deterministic, the irregular behavior is due to non-
linearity of system and not due to stochastic forcing.

• Trajectories show sensitive dependence on initial condition (the
‘butterfly effect’).

• Must have dimensionality larger than two in continuous systems
(otherwise chaos is ruled out by the Poincaré-Bendixon theorem)

6.3.1 Illustrative example: Convex billiards

6.3.2 More examples of chaotic systems

It is more a rule than an exception that systems exhibit chaos (often in
the form of a mixture between chaotic and regular motion). Examples:

• Biology Population dynamics, arrythmia, epilepsy.

• Physics Double pendulum, helium atom, celestial mechanics,
mixing of fluids, meteorological systems.

• Computer science Pseudo-random number generators.
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