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1. Lös problemet:
u(0, t) = 0 t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = f(x) ∈ L2((0,∞)) ∩ C0((0,∞)) x > 0

(10 p)

Well, this is a PDE in a half space. To figure out what we should do,
let’s investigate the boundary condition. The boundary condition is
that

u(0, t) = 0.

This is rather nice. To achieve such a condition, as we have seen in ex-
amples and exercises, we should extend the initial data f oddly. More-
over, we also see that f ∈ L2, which indicates that Fourier transform
methods have good odds of working. We know that the Fourier trans-
form plays nicely with extending evenly and oddly, in the sense that
the Fourier transform preserves these properties: Fourier transform an
even function, the result is even; Fourier transform an odd function,
the result is odd. On the other hand, the Fourier transform does not
play nicely by say extending to be identically zero on the negative real
line. If you extend this way, then apply the Fourier transform, the
result will not necessarily be zero on the negative real line.

So, all these considerations tell us to extend f evenly or oddly, and due
to the condition u(0, t) = 0, we shall extend oddly. (Just think about
sine and cosine, the sine is the odd one, and it is the one who vanishes
at zero).

Let
fo(x) = f(x), x > 0, fo(x) = −f(−x), x < 0.



Then let’s apply the Fourier transform to the PDE in the x variable:

ût(ξ, t)− ûxx(ξ, t) = 0.

The properties of the Fourier transform (so generously given to us at
the end of this exam) say that

ûxx(ξ, t) = (−iξ)2û(ξ, t),

so our equation becomes

ût(ξ, t) + ξ2û(ξ, t) = 0 =⇒ û(ξ, t) = a(ξ)e−ξ
2t.

(Above we have solved the ODE for the Fourier transform where the
ODE variable is the variable t, and the variable ξ is an independent
variable). The initial condition is that

û(ξ, 0) = a(ξ) = f̂o(ξ).

So,
û(ξ, t) = f̂o(ξ)e

−ξ2t.

Well, the Fourier transform sends a convolution to a product. We look
at the table to find a function whose Fourier transform is e−ξ

2t. We
know a function whose Fourier transform is f̂o(ξ), simply fo. So,

u(x, t) =
1√
4πt

∫
R
fo(y)e−(x−y)

2/(4t)dy.

To put this in terms of the original function, and verify the boundary
condition, we recall the definition of fo as being an odd extension, so

u(x, t) =
1√
4πt

(∫ 0

−∞
fo(y)e−(x−y)

2/(4tdy +

∫ ∞
0

f(y)e−(x−y)
2/(4t)dy

)
.

We can turn the integral on the negative real axis into an integral on
the positive real axis. To do this, let z = −y, then∫ 0

−∞
fo(y)e−(x−y)

2/(4tdy =

∫ 0

∞
fo(−z)e−(x+z)

2/(4t)(−dz) =

∫ ∞
0

fo(−z)e−(x+z)
2/(4t)dz.

Since
fo(−z) = −fo(z) z > 0,



this is

−
∫ ∞
0

f(z)e−(x+z)
2/(4t)dz.

Now, the name of the variable of integration is irrelevant, so we may
as well re-name it back to y, and then we have

u(x, t) =
1√
4πt

∫ ∞
0

f(y)
(
e−(x−y)

2/(4t) − e−(x+y)2/(4t)
)
dy.

If x = 0 then the two terms in parentheses cancel. So we see that
the boundary condition is satisfied. Since we worked always with L2

functions, the convolution approximation theorem guarantees that the
initial condition is also satisfied.

Since it might be helpful, here is basically how partial credit will be
dished out. In case any of these items is somewhat messed up, but
half-right, you’d get 1p instead of 2p.

(a) (2p) Choosing to use Fourier transform methods.

(b) (2p) Choosing to extend the initial condition oddly.

(c) (2p) Correctly Fourier transforming the PDE.

(d) (2p) Solving the ODE for the Fourier transform of the solution
correctly.

(e) (2p) Correctly inverting the Fourier transform to obtain the solu-
tion (going backwards correctly).

2. Lös problemet: 
u(0, t) = et t > 0

ut(x, t)− uxx(x, t) = 0 t, x > 0

u(x, 0) = 0 x > 0

(10 p)

This problem has different features. Specifically the boundary condi-
tion:

u(0, t) = et.

Moreover, the initial condition is zero. With the Fourier transform
method, we are usually getting some convolution type stuff involving



the initial data. If we were to obtain something like that here, it would
just vanish since the initial data is zero. If we were to try Fourier
transform methods in the t variable, it would fail miserably because et

is very much not Fourier transformable.

So, this indicates that a different approach is required. In particular,
all of these considerations suggest using the Laplace transform in the t
variable. We Laplace transform the PDE in the t variable:

ũt(x, z)− ũxx(x, z) = 0.

We use the properties of the Laplace transform and the nice homoge-
neous initial condition to obtain:

zũ(x, z)− ũxx(x, z) = 0.

We solve this ODE to obtain:

ũ(x, z) = a(z)e−x
√
z + b(z)ex

√
z.

The properties of the Laplace transform imply (indeed it was a Theo-
rem) that anything which is Laplace-transformable will→ 0 as the real
part of z tends to infinity. For x > 0 (which it is since we work in the
positive real line on this problem) the second term will not satisfy that
unless b has some really great decay properties. However b doesn’t de-
pend on x so if x→∞ also, then b cannot save this term from growing
exponentially. Thus, we try to solve the problem using only the other
term. The boundary condition says:

ũ(0, z) = ẽt(z) = a(z) =⇒ ũ(x, z) = ẽt(z)e−x
√
z.

Now, we could compute the Laplace transform of et, it is∫ ∞
0

ete−tzdt =
et(1−z)

1− z

∣∣∣∣∞
0

=
1

z − 1
.

So, this is fine for real part of z greater than one. That is the usual
property of the Laplace transform.

We know that the Laplace transform takes a convolution to a product.
We know where the first term came from, so we look for a function



whose Laplace transform is e−x
√
z. We look at the lovely table. We

see that to get 2a−1
√
πe−a

√
z as the Laplace transform we should start

with H(t)t−3/2e−a
2/(4t). So with our problem, we would want a = x,

and to obtain e−x
√
z as the Laplace transform we should start with

x

2
√
πt3/2

H(t)e−x
2/(4t).

Hence

u(x, t) =

∫
R
H(s)esH(t− s) x

2
√
π(t− s)3/2

e−x
2/(4(t−s))ds.

This is because the Laplace transform is in the t variable, so that’s the
variable for the convolution, and also because the Laplace transform
needs the functions inside to be zero for negative values (hence the
Heavyside factors). With these Heavyside factors in mind, we obtain

u(x, t) =

∫ t

0

es
x

2
√
π(t− s)3/2

e−x
2/(4(t−s))ds.

Since it might be helpful, here is basically how partial credit will be
dished out. In case any of these items is somewhat messed up, but
half-right, you’d get 1p instead of 2p.

(a) (2p) Choosing to use Laplace transform methods.

(b) (2p) Correctly Laplace transforming the PDE.

(c) (2p) Solving the ODE for the Laplace transform of the solution
correctly to get the general solution.

(d) (2p) Discarding the non-Laplace-transformable part of the solu-
tion and using the BC to determine the Laplace transform of the
solution to the PDE. (Basically going from the general solution of
the ODE to the particular solution correctly here).

(e) (2p) Correctly inverting the Laplace transform to obtain the so-
lution (going backwards correctly).

3. Lös ekvationen:

u(t) +

∫ ∞
−∞

e−|t−τ |u(τ)dτ = e−|t|.



(10p)

We have seen such equations in the exercises. The second term is a
convolution, and the term on the right is one of the items on our list
of Fourier transforms. So let us transform this entire equation:

û(ξ) + û(ξ)
2

ξ2 + 1
=

2

ξ2 + 1
.

This is because the Fourier transform of a convolution is the product
of the Fourier transforms, and the Fourier transform of e−a|x| is given
in the table. In our cases on both the left and right sides a = 1. So we
solve this equation for û(ξ):

û(ξ)

(
1 +

2

ξ2 + 1

)
=

2

ξ2 + 1
=⇒ û(ξ)

(
ξ2 + 3

)
= 2 =⇒ û(ξ) =

2

ξ2 + 3
.

Now, we see that to obtain such a Fourier transform, writing it like

1√
3

2(
√

3)

ξ2 + (
√

3)2
,

the function we ought to start with is

1√
3
e−
√
3|x|.

Points:

(a) (2p) Choosing to use Fourier transform methods.

(b) (2p) Correctly Fourier transforming the equation.

(c) (3p) Correctly solving for the Fourier transform of u.

(d) (3p) Inverting the Fourier transform to obtain u.

4. Lös problemet:
utt(x, t)− uxx(x, t) = ex 0 < t, 0 < x < 1

u(x, 0) = g(x) ∈ C0[0, 1] x ∈ [0, 1]

ut(x, 0) = h(x) ∈ C0[0, 1] x ∈ [0, 1]

u(0, t) = 0 = u(1, t) t > 0



(Antag att g(0) = g(1) = 0.)

(10p)

Now we have entered the geometric realm of bounded intervals. Indeed
0 < x < 1. The boundary conditions are fantastic. The initial con-
ditions are fine. The only issue is that the PDE is not homogeneous.
However, it is time independent. So we can attempt to deal with this
by finding a steady state (that means time independent) solution. So
we first seek a function φ which satisfies

−φ′′(x) = ex.

We would also like to preserve the beautiful boundary conditions, so
we politely request that

φ(0) = φ(1) = 0.

Now the function −ex will certainly satisfy this ODE. Solutions to the
homogeneous version of this ODE are linear functions. So a general
solution is

φ(x) = −ex + ax+ b,

for some constants a and b. To achieve the boundary condition at zero,
we need b = 1. To achieve the boundary condition at 1 we need

0 = −e+ a+ 1 =⇒ a = e− 1.

So we define
φ(x) = −ex + (e− 1)x+ 1.

Now, we just need to solve a nicer problem:
vtt(x, t)− vxx(x, t) = 0 0 < t, 0 < x < 1

v(x, 0) = g(x)− φ(x) x ∈ [0, 1]

vt(x, 0) = h(x) ∈ C0[0, 1] x ∈ [0, 1]

v0, t) = 0 = v(1, t) t > 0

.

Then, the full solution will be

u(x, t) = φ(x) + v(x, t).



Note that our initial data is still beautiful, continuous, and certainly
therefore in L2(0, 1). Moreover, the boundary conditions are fantastic
(self adjoint in particular). So Fourier series methods ought to work
here.

We approach the problem at hand now by separating variables writing

v = X(x)T (t).

We put this into the PDE:

T ′′(t)X(x)−X ′′(x)T (t) = 0.

We tidy it up so that all time dependent terms are on one side, and
all space dependent terms are on the other side. So, to achieve this we
first divide by XT and then re-arrange:

T ′′

T
=
X ′′

X
.

Since the two sides depend on different variables, they must both be
constant. So, we look for solutions to

T ′′

T
= constant =

X ′′

X
.

We start with the X side because its conditions are homogeneous and
simple. In particular, we seek to solve

X ′′ = λX, X(0) = X(1) = 0.

If you recognize the solutions will be sines, you can “skip to the good
bit.” Otherwise one needs to check all cases. First case, λ = 0. Then
X would be a linear function. Linear functions cannot go up and then
down. They either go up, down, or lie flat. In this case, to have
X(0) = X(1) = 0, we need the flatline zero linear function. That will
not contribute anything non-zero to our solution.

In the next case λ > 0. So, the solution to the equation could be written
as either a linear combination of e±

√
λx or as a linear combination of

hyperbolic sine and cosine. Let us use the latter, because 0 is in our
interval. Writing

a cosh(
√
λx) + b sinh(

√
λx)



the condition to vanish at x = 0 requires that a = 0. The condition to
vanish at x = 1 would require (if we want b 6= 0) that sinh(

√
λ) = 0.

The only real number at which the sinh vanishes is at zero. So we would
need λ = 0. However that contradicts the case we are in. Therefore
the case λ > 0 yields no non-zero solutions.

Finally, we have the case λ < 0. In this case the solutions are linear
combinations of sin(

√
|λ|x) and cos(

√
|λ|x). The condition to vanish at

zero means that there cannot be a cosine term. Moreover, the condition
to vanish at x = 1 means that we need

√
|λ| to be an integer multiple

of π. Consequently, all solutions we find in this way are, up to constant
factors,

Xn(x) = sin(nπx), λn = −n2π2.

This informs us what the T function must be since

T ′′n
Tn

= λn = −n2π2 =⇒ Tn(t) = a linear combination of sin(nπt) and cos(nπt).

In the last step, we put together all theXnTn pairs, by the superposition
principle, because the PDE is homogeneous, thereby creating our super
solution:

v(x, t) =
∑
n≥1

Xn(x) (an cos(nπt) + bn sin(nπt)) .

We shall need the constant factors now to guarantee that the initial
conditions are satisfied. First we have the condition at t = 0 for the
function,

v(x, 0) =
∑
n≥1

anXn(x) = g(x)− φ(x) =⇒ an =

∫ 1

0
(g − φ)Xn∫ 1

0
|Xn|2

.

The reason we can expand the function g(x) − φ(x) in a Fourier Xn

series is that the SLP theory guarantees that the functions Xn form an
orthogonal basis for L2 on the interval [0, 1]. Moreover, the functions
g and φ are continuous on the closed interval, hence bounded on that
interval, hence certainly elements of the Hilbert space L2([0, 1]). So
they can indeed be expanded in terms of the functions Xn.



Next we have the condition for the derivative at zero, so

vt(x, 0) =
∑
n≥1

bn(nπ)Xn(x) = h(x) =⇒ bn =

∫ 1

0
hXn

nπ
∫ 1

0
|Xn|2

.

Similar considerations justify the expansion of h in a Fourier Xn series.
We have therefore specified all quantities in our solution.

Points:

(a) (1p) Choosing to find a steady state solution to deal with the
inhomogeneity in the PDE.

(b) (2p) Correctly solving for the steady state solution to solve the
inhomogeneous PDE and not screw up the nice BC.

(c) (1p) Setting up the next problem to solve correctly. (homog. PDE,
modified IC, same BC, then observe full solution will be sum of
these two).

(d) (2p) Choosing to use separation of variables.

(e) (2p) Obtaining the Xn part of the solution correctly.

(f) (2p) Obtaining the Tn part of the solution, in particular getting
the an and the bn coefficients correctly.

5. Beräkna: ∑
n≥1

1

π2 + n2
.

(Tips: beräkna Fourier-serien av eπx.)

(10p)

Okay, let’s follow the hint and compute the Fourier series. We compute
the coefficients

cn =
1

2π

∫ π

−π
eπxe−inxdx =

1

2π

ex(π−in)

π − in

∣∣∣∣π
−π

=
1

2π

eπ
2
e−iπn − e−π2

eiπn

π − in
=

(−1)n sinh(π2)

π(π − in)
.



So, the Fourier series is∑
n∈Z

(−1)n sinh(π2)

π(π − in)
einx.

Let us consider the Parseval equation which says∑
n∈Z

|cn|2||einx||2 =

∫ π

−π
|eπx|2dx.

On the left side when we compute

|cn|2 =
(sinh(π2))2

π2(π2 + n2)
, ||einx||2 = 2π.

On the right side we compute∫ π

−π
e2πxdx =

e2π
2 − e2π2

2π
=

sinh(2π2)

π
.

So, we have the equality∑
n∈Z

(sinh(π2))2

π2(π2 + n2)
2π =

sinh(2π2)

π
.

For each n = ±k where k ≥ 1 there are two terms in the sum on the
left whose value are the same. The only loner is the term with n = 0.
So we write out the sum on the left:

(sinh(π2))2

π2(π2 + 0)
2π + 2

∑
n≥1

(sinh(π2))2

π2(π2 + n2)
2π

=
2 sinh(π2)2

π3
+

4 sinh(π2)2

π

∑
n≥1

1

π2 + n2
.

Recalling the other side, we have the equality:

2 sinh(π2)2

π3
+

4 sinh(π2)2

π

∑
n≥1

1

π2 + n2
=

sinh(2π2)

π
.



Solving for the sum we want to compute, first we can eliminate the π
from downstairs, and also use the double angle formula for the hyper-
bolic sine to have the equation

2 sinh(π2)2

π2
+ 4 sinh(π2)2

∑
n≥1

1

π2 + n2
= 2 sinh(π2) cosh(π2).

We can divide everywhere by 2 sinh(π2) which is certainly not zero
obtaining

sinh(π2)

π2
+ 2 sinh(π2)

∑
n≥1

1

π2 + n2
= cosh(π2).

Now we solve for the sum:

1

2 sinh(π2)

(
cosh(π2)− sinh(π2)

π2

)
=
∑
n≥1

1

π2 + n2
.

If we are so inclined, we can tidy up the left side, to obtain

coth(π2)

2
− 1

2π2
=
∑
n≥1

1

π2 + n2
.

A small reality check, observing that coth(π2) > 1, which guarantees
that the expression on the left is positive, is reassuring.

Points:

(a) (2p) Correct definition of Fourier coefficient cn for the function
eπx.

(b) (2p) Correctly computing these coefficients.

(c) (4p) Choosing *either* to use Parseval and getting that freaking
right, what the theorem says, *or* choosing to use the theorem on
pointwise convergence of Fourier series and getting that freaking
right, what the theorem says. (This is basically all or nothing,
either you know what these theorems say or you don’t. No partial
credit here, cause a wrongly remembered theorem is worthless).

(d) (2p) Solving for the sum and getting it right.



6. (a) Bestäm om gränsvärdet finns eller inte och förklära varför (deter-
mine whether or not the following limit exists and give a reason
for your answer):

lim
n→∞

An, An :=

∫ π

−π
inx2e−inxdx.

(5p)

Well, did you notice the choice of theory items. I hope that was not
too great of a hint... You see, what we have above is 2π times the
Fourier coefficient of the derivative of (x2). The derivative of x2 is
2x. This is a perfectly integrable function on the interval [−π, π].
So, Bessel’s inequality (and also remember the previous problem,
where we used Parseval’s equality... that was also intended as a
hint)... These two facts both imply that the Fourier coefficients
of 2x tend to zero. So, if we multiply them by 2π then they also
tend to zero. Hence the limit above is zero.

Points: this is basically all or nothing. You either know that the
limit exists and give a correct reason, or you don’t. So 5p or 0p
for this part.

(b) Beräkna: ∑
n∈Z

Ane
42iπn/4.

(5p)

For this problem we need to know to what does the Fourier series
of the function 2x converge. When we create a Fourier series, we
create a 2π periodic function. The Fourier series for 2x is∑

n∈Z

An
2π
einx.

At a point like x = 42π/4 we compute

42π

4
=

21π

2
= 10π +

π

2
= 2(5π) +

π

2
.

Using the 2π periodicity, the Fourier series will converge to the
value of 2x at the point x = π

2
. So,∑

n∈Z

An
2π
ein42π/4 = π =⇒

∑
n∈Z

Ane
42iπn/4 = 2π2.



Points:

i. (2p) Recognizing that this is evaluating the Fourier series,
and correctly identifying the function whose Fourier series it
is (basically 2π(2x)).

ii. (2p) Correctly using the 2π periodicity to figure out where to
evaluate the function.

iii. (1p) Doing the algebra correctly to get the right answer in the
end.

7. L̊at f vara en 2π-periodisk funktion med f ∈ C1(R). Bevisa att Fouri-
erkoefficienterna cn av f och Fourierkoefficienterna c′n av f ′ uppfyller

c′n = incn.

(Assume that f is a 2π periodic smoothly differentiable function on
R. Prove that the Fourier coefficients, cn of f and c′n of f ′ satisfy
c′n = incn).

(10p)

Please see the theory proofs document!

Points:

(a) (6p) The idea to use integration by parts. Trying to differentiate
the series termwise will give a big fat 0 on this problem because
that argument is circular. This part is basically all or nothing (6p
or 0p).

(b) (4p) Actually doing the integration by parts correctly. Each silly
mistake or completely unjustified step will lose one point (until a
max of 4 points can be lost from this part).

8. L̊at {φn}n∈N vara ortonormala i ett Hilbert-rum, H. Bevisa att följande
tre är ekvivalenta: (Prove that the three conditions below are equivalent
statements in a Hilbert space H.)

(1) f ∈ H och 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N

〈f, φn〉φn.



(3) ||f ||2 =
∑
n∈N

|〈f, φn〉|2 .

(10 p)

Please see the theory proofs document!
Points:

1. (2p) The idea to prove 1 =⇒ 2 =⇒ 3 =⇒ 1.

2. (3p) Proving 1 implies 2.

3. (3p) Proving 2 implies 3.

4. (2p) Proving 3 implies 1.

So now you can check for yourself to verify that these rules of grading were
precisely followed on each exercise. It is rare, but possible, that a mistake
could occur, so if you find anything which is inconsistent with this point
scheme, please let us know and we shall correct it! ♥

Fourier transforms
In these formulas below a > 0 and c ∈ R.

f(x) f̂(ξ)

f(x− c) e−icξf̂(ξ)

eixcf(x) f̂(ξ − c)
f(ax) a−1f̂(a−1ξ)

f ′(x) iξf̂(ξ)

xf(x) i(f̂)′(ξ)

(f ∗ g)(x) f̂(ξ)ĝ(ξ)

f(x)g(x) (2π)−1(f̂ ∗ ĝ)(ξ)

e−ax
2/2

√
2π/ae−ξ

2/(2a)

(x2 + a2)−1 (π/a)e−a|ξ|

e−a|x| 2a(ξ2 + a2)−1

χa(x) =

{
1 |x| < a

0 |x| > a
2ξ−1 sin(aξ)

x−1 sin(ax) πχa(ξ) =

{
π |ξ| < a

0 |ξ| > a



H(t) :=

{
0 t < 0

1 t > 0

Laplace transforms
In these formulas below, a > 0 and c ∈ C.

H(t)f(t) f̃(z)

H(t− a)f(t− a) e−azf̃(z)

H(t)ectf(t) f̃(z − c)
H(t)f(at) a−1f̃(a−1z)

H(t)f ′(t) zf̃(z)− f(0)

H(t)
∫ t
0
f(s)ds z−1f̃(z)

H(t)(f ∗ g)(t) f̃(z)g̃(z)

H(t)t−1/2e−a
2/(4t)

√
π/ze−a

√
z

H(t)t−3/2e−a
2/(4t) 2a−1

√
πe−a

√
z

H(t)J0(
√
t) z−1e−1/(4z)

H(t) sin(ct) c/(z2 + c2)
H(t) cos(ct) z/(z2 + c2)

H(t)e−a
2t2 (

√
π/(2a))ez

2/(4a2) erfc(z/(2a))

H(t) sin(
√
at)

√
πa/(4z3)e−a/(4z)

Lycka till! May the force be with you! ♥ Julie Rowlett.


