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1. L̊at {φn}n∈N vara en ortonormal mängd i ett Hilbert-rum, H. Om
f ∈ H, bevisa att gäller:

||f −
∑
n∈N

〈f, φn〉φn|| ≤ ||f −
∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

och = gäller ⇐⇒ cn = 〈f, φn〉 gäller ∀n ∈ N. (10 p)

The solution is in the proofs of the theory items!

2. L̊at {φn}n∈N vara ortonormala i ett Hilbert-rum, H. Bevisa att följande
tre är ekvivalenta:

(1) f ∈ H och 〈f, φn〉 = 0∀n ∈ N =⇒ f = 0.

(2) f ∈ H =⇒ f =
∑
n∈N

〈f, φn〉φn.

(3) ||f ||2 =
∑
n∈N

|〈f, φn〉|2 .

(10 p)

The solution is in the proofs of the theory items!

3. Beräkna den komplexa Fourierserien till den 2π-periodiska funktion
f(x) som är lika med x3 i (−π, π). Vad är seriens summa i punkten
8π? (10 p)

This is a two-parter. First part (5 points) is to compute the Fourier
series. So, we need to compute the integrals:

1

2π

∫ π

−π
x3e−inxdx.

Perhaps beta can help with this calculation? Or we just fall in love
with integration by parts and keep on doing it... The idea is that each



time the e−inx part doesn’t get any worse, but the x3 loses a power by
taking the derivative. The function whose derivative is e−inx is

e−inx

−in
.

So one time IP gives:

1

2π

[(
x3
e−inx

−in

)π
x=−π

−
∫ π

−π
3x2

e−inx

−in
dx

]
.

Next we use the same idea to compute

−
∫ π

−π
3x2

e−inx

−in
dx =

∫ π

−π
3x2

e−inx

in
dx = 3x2

e−inx

in(−in)

∣∣∣∣π
x=−π
−
∫ π

−π
6x

e−inx

in(−in)
dx.

The first term vanishes. So, we just gotta deal with the second term
which is: ∫ π

−π
6x
e−inx

(in)2
dx.

One last integration by parts shows that∫ π

−π
6x
e−inx

(in)2
dx = 6x

e−inx

(in)2(−in)

∣∣∣∣π
−π
−
∫ π

−π
6

e−inx

(in)2(−in)
dx.

By periodicity, the last term vanishes. So in total, the Fourier coeffi-
cient shall be

1

2π

((
x3
e−inx

−in

)π
x=−π

+ 6x
e−inx

(in)2(−in)

∣∣∣∣π
−π

)

=
1

2π

(
π3(−1)n

−in
− −π

3(−1)n

−in
+

6π(−1)n

−(in)3
− 6(−π)(−1)n

−(in)3

)
.

=
1

2π

(
2π3(−1)n

−in
+

12π(−1)n

−(i3n3)

)
=
iπ2(−1)n

n
− i6(−1)n

n3
.

At the point 8π we use periodicity. Our function is 2π periodic, by its
very definition. Consequently, the value at 8π = 4(2π) + 0 is the same
as the value at 0 which is 0.



4. Hitta polynomet, p, av högst grad tv̊a som minimera∫ 2

−2
| sinh(2x)− p(x)|2dx.

(10 p)

You can either build up the orthogonal polynomials on the interval by
hand, or you can use the French polynomials. It’s up to you.

The Legendre polynomials are orthogonal on L2[−1, 1]. Let Pn denote
the nth Legendre polynomial. Then we compute∫ 2

−2
Pn(x/2)Pm(x/2)dx = 2

∫ 1

−1
Pn(t)Pm(t)dt =

{
0 n 6= m

4
2n+1

n = m

where we have used the change of variables t = x/2, so 2dt = dx. Thus
we see that the polynomials {Pn(x/2)}n≥1 are orthogonal on L2[−2, 2].
We use these to expand our function. The theory dictates that the
coefficients are

cn =

∫ 2

−2 Pn(x/2) sinh(2x)dx
4

2n+1

,

and the polynomial we seek is

2∑
n=0

cnPn(x/2).

5. Lös problemet:

ut − uxx = cosh(x), 0 < x < 4, t > 0

u(x, 0) = v(x),

u(0, t) = 0,

u(4, t) = 0.

(10 p)

Woop woop, the inhomogeneity in the PDE is time independent! This
means we can deal with it using a steady-state solution. So, we seek
f(x) to solve

−f ′′(x) = cosh(x).



It just so happens that the derivative of cosh is sinh, and the derivative
of sinh is cosh. No minus signs (a small advantage versus sines and
cosines). Thus a solution to our equation is given by:

f(x) = − cosh(x) + ax+ b.

The other stuff, the a and the b come from the solution to the ho-
mogeneous ODE, f ′′(x) = 0. We’d rather not mess up the boundary
condition, so let us figure out good values of a and b so that

f(0) = 0 = f(4).

For the first condition, we have

− cosh(0) + b = −1 + b = 0 =⇒ b = 1.

For the second condition we have

− cosh(4) + 4a+ 1 = 0 =⇒ a =
cosh(4)− 1

4
.

So,

f(x) = − cosh(x) +
cosh(4)− 1

4
x+ 1.

Next, we solve the homogeneous PDE. OBS! We gotta modify our
initial condition, cause when we add the steady state solution, if we
don’t modify the IC, then the steady state solution part will screw it
up. So, we solve the problem:

ut − uxx = 0, 0 < x < 4, t > 0

u(x, 0) = v(x)− f(x),

u(0, t) = 0,

u(4, t) = 0.

Our full solution will then be equal to

u(x, t) + f(x).



To solve the homogeneous ODE, we can use separation of variables!
Write (remember, means to an end) u = XT , and stick in the PDE:

T ′X −X ′′T = 0 =⇒ T ′

T
=
X ′′

X
= constant.

Since we got more information on the X variable, let us begin there.
We use the BCs:

X ′′ = constant ∗X, X(0) = X(4) = 0.

In general, solutions will be linear combinations of ex
√
constant. I leave

it to you to verify that if the constant is positive, the only solution is
X = 0. Not interesting nor useful. If the constant is negative, then it
is equivalent to use sine and cosine. The only non-zero solutions are
constant multiples of

sin(nπx/4), n ∈ N.

So, we have found

Xn(x) = sin(nπx/4), n ∈ N, with constant − n2π2

16
.

The equation for the partner function, Tn is then

T ′n
Tn

= −n
2π2

16
.

Up to constant multiples, the solution is

Tn(t) = e−t
n2π2

16 .

Now, since the PDE is homogeneous, we may use the principle of su-
perposition (i.e. smashing everything together in a series) to write

u(x, t) =
∑
n≥1

cnXn(x)Tn(t).

To get the constant factors, we use the IC which since Tn(0) = 0 for all
n says

u(x, 0) =
∑
n≥1

cnXn(x) = v(x)− f(x).



Hence, the coefficients are the Fourier coefficients with respect to the
functions Xn. (Sturm-Liouville theory magically gives us the fact that
these functions are an orthogonal basis for L2(0, 4), so we can expand
any function in terms of these Xn).

cn =

∫ 4

0
Xn(x)(v(x)− f(x))dx∫ 4

0
Xn(x)2dx

.

6. Lös problemet:

ut − uxx = G(x, t), t > 0, x ∈ R,

u(x, 0) = v(x).

(10 p)

You’re welcome. This is identical to a problem on THE LAST TWO
EXAMS! So, I REALLY hope y’all managed to get it right this time!!

7. Lös problemet:{
urr + r−1ur + r−2uθθ = 0 0 ≤ r ≤ 1, |θ| ≤ π

u(1, θ) = sin2 θ + cos θ

(10 p)

Stay calm and carry on. I know things look a little scary in polar
coordinates. At least, you can basically follow your nose here. Write
u = R(r)Θ(θ), and let’s see if we can solve this problem. We put this
into the PDE,

R′′Θ + r−1R′Θ + r−2RΘ′′ = 0.

Now let’s divide by RΘ,

R′′

R
+
R′

rR
+

Θ′′

r2Θ
= 0.

We move Θ stuff to the right side and multiply everything by r2:

r2
R′′

R
+ r

R′

R
= −Θ′′

Θ
.



Woop woop, both sides got to be constant! The Θ side looks WAY
easier, so let’s deal with it first. We need to find Θ so that

−Θ′′ = constant ∗Θ.

What other information do we have to go with? Well, remember, this
problem is in a disk! So, the function Θ sure as heck better be 2π
periodic! As in the previous problem we had, the only way to satisfy
both the equation AND be 2π periodic is for (up to constant multiples)

Θ = Θm = eimθ, m ∈ Z, constant = m2.

(Equivalently, we could write Θ as a linear combination of sin(mθ) and
cos(mθ), but I find the above way more simple).

Now, we use the value of the constant to find the partner function,
Rm(r). The equation for this guy is:

r2
R′′m
Rm

+ r
R′m
Rm

= m2.

Let us multiply everything by Rm to get rid of those pesky fractions:

r2R′′m + rR′m = m2Rm.

Now we can subtract the right side to get a nice homogeneous ODE:

r2R′′m + rR′m −m2Rm = 0.

This ODE even has a name! It’s an Euler equation. Solutions will be
of the form Rm(x) = xa for some a. Plugging into the equation:

r2a(a− 1)ra−2 + rara−1 −m2ra = 0,

in other words

a(a− 1)ra + ara−m2ra = 0 =⇒ (a2− a+ a−m2) = 0 =⇒ a = ±m.

So, our solution will look like a linear combination of

rm and r−m.



OBS! If m = 0 then these two are the same. They no longer form a
basis. So let us investigate that case in further detail. When m = 0
the equation is

r2R′′0 + rR′0 = 0 =⇒ R′′0
R′0

= (log(R′0))
′
= − r

r2
= −1

r
.

Hence in this case

log(R′0) = − log(r) + constant .

So,

R′0 =
1

r
∗ constant .

We therefore obtain

R0 = A log(r) +B, for some constants A and B.

Now, the function log(r) is not very well behaved at r = 0. So we do
not use this part. Note that for m = 0 our function Θm = 1. So, the
m = 0 case just yields a constant term. Now let’s continue with the
non-zero m. Note that for ±m, (±m)2 is the same. So we can just
consider m > 0.

Then, if m > 0, the term r−m is not very nicely behaved at r = 0
which lies smack in the middle of where we’re solving our problem.
So we shall also cast away those ill-behaved solutions. Thus, up to
constant multiples, our solutions look like

Rm(r) = r|m|, Θm(θ) = eimθ.

Now, let us use the homogeneity of the PDE to smash them all together,
writing

u(r, θ) =
∑
m∈Z

cmr
|m|eimθ.

When r = 1, we have boundary condition

u(1, θ) =
∑
m∈Z

cme
imθ = sin2 θ + cos θ.



So, we recognize the left side as a Fourier series, and the right side as
a 2π periodic function, hence

cm =
1

2π

∫ π

−π
(sin2 θ + cos θ)e−imθdθ.

You don’t actually have to compute these integrals.

8. Beräkna för x ∈ R
∞∑

n=−∞

|Jn(x)|2.

Tips: funktionen eix sin(t) är 2π periodisk in t-variabeln och

eix sin(t) =
∞∑

n=−∞

Jn(x)eint.

There’s always got to be a wild-card problem. Something for those who
bore easily. At the same time, hopefully the hint was helpful... I also
intentionally paired this problem with the first two theory problems...
You see, using the expansion of the function in the hint,∫ π

−π
|eix sin(t)|2dt =

∫ π

−π
(
∑
n∈Z

Jn(x)eint)
∑
m∈Z

Jm(x)eimtdt

=
∑
m,n∈Z

∫ π

−π
Jn(x)Jm(x)einteimtdt = 2π

∑
n∈Z

|Jn(x)|2.

Here we have used the fact that the stuff with Jn(x) and Jm(x) is
independent of t, so we only need to think about the integrals:∫ π

−π
einteimtdt =

{
2π m = n

0 m 6= n.

So, only the terms with m = n survive! These also pick up a factor of
2π. On the other hand, for all real x and t,

|eix sin(t)| = 1.

Thus ∫ π

−π
|eix sin(t)|2dt =

∫ π

−π
1dt = 2π = 2π

∑
n∈Z

|Jn(x)|2.

So, the sum is simply one. UNO!

Lycka till! May the force be with you! ♥ Julie Rowlett.


