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1. L̊at f vara en 2π-periodisk funktion med f ∈ C1(R). Fourierkoefficien-
terna av f ,

cn =
1

2π

∫ π

−π
f(x)e−inxdx,

och Fourierkoefficienterna av f ′

c′n =
1

2π

∫ π

−π
f ′(x)e−inxdx.

Bevisa att Fourierkoefficienterna cn av f och Fourierkoefficienterna c′n
av f ′ uppfyller

c′n = incn.

It’s in the theory proof document already!

2. L̊at g ∈ L1(R) med ∫
R
g(x)dx = 1.

Antar att f är kontinuerlig och begränsad. L̊at

gε(x) =
g(x/ε)

ε
, ε > 0.

Bevisa:
lim
ε→0

f ∗ gε(x) = f(x) ∀x ∈ R.

It’s in the theory proof document already! Note that this is a slightly
more simple version because:

• We assume f is continuous so its left and right hand limits are
always the same.

• We assume f is bounded so there is one case rather than two
cases (the other case doesn’t assume f is bounded, but instead
assumes that g vanishes outside some bounded interval).



So if you can do the proof in the theory list, then you can do the proof
above, and it should actually be quicker and easier!!

3. Beräkna: ∑
n∈Z

(−1)n

1 + n2
.

Tips: Beräkna den komplexa Fourierserien till den 2π-periodiska funk-
tion f(x) som är lika med cosh(x) i (−π, π). Vad är seriens summa i
punkten 2π?

All right, Fourier series of cosh(x). I am lazy so going to recycle some
older solutions: Let us compute the Fourier coefficients of e−x:

1

2π

∫ π

−π
e−xe−inxdx =

1

−2π(1 + in)

(
e−x(1+in)

)π
x=−π

=
−1

2π(1 + in)

(
e−π(1+in) − eπ(1+in)

)
=

1

2π(1 + in)

(
eπeiπn − e−πe−iπn

)
=

1

π(1 + in)
(−1)n sinh(π).

Now we do the same for ex:∫ π

−π
exe−inxdx =

ex(1−in)

1− in

∣∣∣∣∣
x=π

x=−π

=
eπe−inπ

1− in
−e
−πeinπ

1− in
= (−1)n

2 sinh(π)

1− in
.

So dividing by 2π we have

1

π
(−1)n

sinh(π)

1− in
.

Since

cosh(x) =
ex + e−x

2
,

the Fourier coefficients of cosh(x) are

cn =
1

2

(
1

π
(−1)n

sinh(π)

1− in
+

1

π(1 + in)
(−1)n sinh(π)

)
.

We could simplify this up if we want to, but it’s not really necessary.
Just to make it pretty though,

cn =
1

2

(
(−1)n sinh(π)

π(1− in)
+

(−1)n sinh(π)

π(1 + in)

)
=

(−1)n sinh(π)

2π

(
1 + in+ 1− in
(1 + in)(1− in)

)



=
(−1)n sinh(π)

π(1 + n2)
.

The Fourier series is∑
n∈Z

cne
inx =

∑
n∈Z

(−1)n sinh(π)

π(1 + n2)
einx.

At the point 2π, we recall the fact that the function is 2π PERIODIC.
So, the value at 2π = 0 + 2π is the same at the value at 0, and
cosh(0) = 1. We thereby obtain the interesting identity:∑

n∈Z

(−1)n

1 + n2
=

π

sinh(π)
.

4. Hitta polynomet, p, av högst grad tv̊a som minimera∫ 2

−2
| sinh(x)− p(x)|2dx.

We seek the aid of the French polynomials, who are surely basking
in the sun someplace. Plenty of time for sunbathing later, come over
here and help us solve this problem, s’il vous plait! There is no weight
function, so we ought to use the Legendre polynomials. The Legendre
polynomials Pn(t) are pairwise orthogonal if t goes from −1 to 1. So,
if x is from −2 to 2, then we define

t := x/2.

Then we compute∫ 2

−2
Pn(x/2)Pm(x/2)dx =

∫ 1

−1
Pn(t)Pm(t)(2dt) =

{
0 n 6= m
4

n+1 n = m

This calculation is also found in β-12.2. It shows us that the modified
Legendre polynomials, defined to be Pn(x/2) rather than Pn(x) are
orthogonal on [−2, 2]. Hence, we can expand our function sinh(x) in
terms of these polynomials, because they are an orthogonal basis for
the Hilbert space, L2([−2, 2]). The function sinh(x) is an element of
this Hilbert space. If we were to expand in a full series:∑

n≥0
anPn(x/2), an =

〈sinh(x), Pn(x/2)〉
||Pn(x/2)||2

.



Here is where it’s important to know your scalar product in the Hilbert
space:

〈sinh(x), Pn(x/2)〉 =

∫ 2

−2
sinh(x)Pn(x/2)dx.

Since Pn is real, the complex conjugation doesn’t do anything. It is
also important to know the norm squared,

||Pn(x/2)||2 =

∫ 2

−2
|Pn(x/2)|2dx =

4

2n+ 1
,

cause we computed this integral with the help of β above. Now, we are
not asked for the full series (phew!) just the first three terms, because
the best approximation theorem says that the best approximation with
just polynomial of up to degree 2 is the first three terms of this Fourier-
Legendre expansion. So, the coefficients we seek are:

an =

∫ 2
−2 sinh(x)Pn(x/2)dx

4
2n+1

, n = 0, 1, 2,

and the polynomial we seek is:

2∑
n=0

anPn(x/2).

5. Lös problemet:

ut − uxx = ex+t, 0 < x < 4, t > 0

u(x, 0) = v(x),

ux(0, t) = 0,

ux(4, t) = 0.

We shall seek a series solution as done in previous exams. First con-
sider the x part. In the homogeneous case, separating variables we
would solve for X to satisfy

X ′′ = λX, X ′(0) = X ′(4) = 0.

The general solutions are exponentials, but only the complex expo-
nentials (corresponding to trig functions, equivalently) yield non-zero
solutions. These non-zero solutions are multiples of

Xn(x) = cos(nπx/4), (1)



but we shall deal with the constant stuff later. So, we write a series∑
n≥0

cn(t)Xn(x),

and we plug the series into the PDE:∑
n≥0

c′n(t)Xn − an(t)X ′′n(x) = ex+t.

Next we use the fact that

X ′′n(x) = −n
2π2

16
Xn(x).

So, our series becomes∑
n≥0

c′n(t)Xn(x) + cn(t)
n2π2

16
Xn(x) = ex+t.

Consolidate in the sum:∑
n≥0

Xn(x)

(
c′n(t) + cn(t)

n2π2

16

)
= ex+t.

Now, let us look at the right side. ex+t = exet. We need to have the
right side as a series involving Xn as well. We can do this by expanding
ex in terms of the basis Xn, so we define

an =

∫ 4
0 e

xXn(x)dx∫ 4
0 X

2
n(x)dx

. (2)

This should look awfully familiar to the best approximation problem,
because it is the same concept. We therefore expand the function ex

as
ex =

∑
n≥0

anXn(x).

Now our equation becomes∑
n≥0

Xn(x)

(
c′n(t) + cn(t)

n2π2

16

)
= et

∑
n≥0

anXn(x) =
∑
n≥0

etanXn(x).



We can now equate coefficients of Xn on the left and the right:

c′n(t) +
n2π2

16
cn(t) = etan.

This is an ODE which can be found in β 9.1.3. For notational conve-
nience, let us write

λn =
n2π2

16
. (3)

Then our solution is

cn(t) =
ane

t + bne
−λnt

λn + 1
, bn will be determined below. (4)

Note that λn ≥ 0 for all n, so we are NOT dividing by zero. Phew!
We will need to determine the as of now unknown numbers bn using
the initial condition. Let us write our solution now as

u(x, t) =
∑
n≥0

cn(t)Xn(x). (5)

We need

u(x, 0) =
∑
n≥0

cn(0)Xn(x) =
∑
n≥0

an + bn
λn + 1

Xn(x) = v(x).

This shows that the numbers in front of the Xn(x) need to be the
Fourier coefficients of the function v(x) with respect to the basis {Xn}.
Thus we need

an + bn
λn + 1

=

∫ 4
0 v(x)Xn(x)dx∫ 4

0 X
2
n(x)dx

,

and hence the coefficients

bn = (λn + 1)

∫ 4
0 v(x)Xn(x)dx∫ 4

0 X
2
n(x)dx

− an.

Our full solution is (5) with an defined in (2), bn defined above, λn
defined in (3), cn(t) defined in (4), and Xn(x) defined in (1).

6. Lös problemet:

ut − uxx = G(x, t), t > 0, x ∈ R,



u(x, 0) = v(x).

Okay, so this one is a bit of a Midsommarklapp. (Too early for a
Julklapp). It’s the same as the previous exam. Hope y’all studied that!
I copy the solution here: We have an inhomogeneous heat equation
which depends on both time and space. Not a problem. We hit the
PDE with the Fourier transform on x ∈ R variable:

ût(ξ, t)− ûxx(ξ, t) = Ĝ(ξ, t).

We use β 13.2.F10 with n = 2 there:

ûxx(ξ, t) = (iξ)2û(ξ, t).

So the equation is

ût(ξ, t) + ξ2û(ξ, t) = Ĝ(ξ, t).

Stay calm. This is just an ODE for u with respect to the variable t.
We look it up in β. We find the solution is given in β 9.1.3. First, we
compute

exp(−
∫
ξ2dt) = e−ξ

2t don’t need integration constant here according to β.

Next, we compute the solution is

û(ξ, t) = e−ξ
2t

(∫ t

0
eξ

2sĜ(ξ, s)ds+ C

)
.

We use the IC to determine C:

û(ξ, 0) = v̂(ξ) = C,

so

û(ξ, t) = e−ξ
2t

(∫ t

0
eξ

2sĜ(ξ, s)ds+ v̂(ξ)

)
=

∫ t

0
e−ξ

2(t−s)Ĝ(ξ, s)ds+e−ξ
2tv̂(ξ).

We know (or look it up in β) that to get a product from the Fourier
transformation, we start with a convolution. In the second term, we
can look up already that:

e−x
2/(4t)(4πt)−1/2 Fourier transforms to e−ξ

2t.



We get this from β 13.2 F37. Well, then similarly, the same formula
shows that

e−x
2/((4(t−s))(4π(t− s))−1/2 Fourier transforms to e−ξ

2(t−s).

So, our solution is given by the sum of the convolutions:

u(x, t) =

∫
R

∫ t

0
e−(x−y)

2/(4(t−s))(4π(t−s))−1/2G(y, s)dsdy+

∫
R
e−(x−y)

2/(4t)(4πt)−1/2v(y)dy.

7. Lös problemet i annulusen:
urr + r−1ur + r−2uθθ = 0 1 < r < 2, |θ| ≤ π
u(1, θ) = 0 |θ| ≤ π
u(2, θ) = 1− θ2

π2 |θ| ≤ π.

Stay calm and carry on. Did I fool you into thinking Bessel functions
would come out of this? Sorry, that was kind of my thinking... Need to
keep you on your toes after all! We take the PDE and do our favorite
thing: separate variables. Write

u = R(r)Θ(θ),

plug into the PDE (remember, u is not going to be like this in the end,
this is just a means to an end):

R′′Θ + r−1R′Θ + r−2RΘ′′ = 0.

Move r−2RΘ′′ to the right side, divide both sides by RΘ:

R′′

R
+
R′

rR
= −r−2Θ′′

Θ
.

Multiply both sides by r2:

r2
(
R′′

R
+
R′

rR

)
= −Θ′′

Θ
.

Each side depends on a different variable so both sides are constant.
Work with the simple side first,

−Θ′′

Θ
= λ =⇒ −Θ′′ = λΘ.



What do we know about Θ? What’s the geometry of the problem?
We are working in an annulus. This means that the function must be
periodic in the θ variable, because θ = π is the same point as θ = 3π
and θ = 5π, etc. The function Θ is 2π periodic. So, we want to solve:

−Θ′′ = λΘ, Θ(θ + 2π) = Θ(θ).

In general the solutions will be exponential functions, and with the
periodicity consideration, we compute that the solutions are

Θn = einθ, −Θ′′n = −(in)2Θn = n2Θn =⇒ λn = n2.

Now we use this information to solve for the partner function, Rn.
The equation for Rn is

r2
(
R′′

R
+
R′

rR

)
= −Θ′′

Θ
= λ = λn = n2.

Re-arranging:

r2R′′ + rR′ = n2R =⇒ r2R′′ + rR′ − n2R = 0.

We ought to think about two cases: n = 0 and n 6= 0. In case n = 0
the equation is

r2R′′ + rR′ = 0.

This is a first order ODE in R′. We can divide through by r and obtain

r(R′)′ +R′ = 0 ⇐⇒ r(R′)′ = −R′ ⇐⇒ (R′)′

R′
= −1

r
.

The left side is the derivative of ln(R′), so we have

ln(R′)′ = −1

r
.

We can integrate both sides:

ln(R′) = − ln(r) + C.

Hence,

R′ = e− ln(r)+C =
eC

r
.

Again we integrate both sides:

R(r) = eC ln(r) +B.



We use the boundary condition at r = 1 to compute that B = 0. Let
us also re-name eC = a0. So, the solution for n = 0 is

R0(r) = a0 ln(r).

For n 6= 0 the equation for R is an Euler equation. The solution is a
function of the form R(r) = rx. Plug such a function into the equation:

r2(x)(x−1)rx−2+r(x)rx−1−n2rx = 0 ⇐⇒ x(x−1)+x−n2 = 0 ⇐⇒ x2 = n2.

So, we have two solutions, rn and r−n. The general solution looks like

anr
n + bnr

−n.

What should the coefficients be? We use the boundary conditions.
When r = 1 the solution is supposed to be zero. So, we want

an + bn = 0 =⇒ bn = −an.

Since the PDE is homogeneous, we can smash all our solutions together
into a series: ∑

n∈Z
einθan

(
rn − r−n

)
. (6)

When r = 2, we want this to be equal to 1− θ2

π2 , so we write

∑
n∈Z

einθan
(
2n − 2−n

)
= 1− θ2

π2
.

The left side looks awfully much like a Fourier series... Let us make it
the Fourier series of the right side. We would need

an
(
2n − 2−n

)
=

1

2π

∫ π

−π

(
1− θ2

π2

)
e−inθdθ.

Consequently,

an =
1

2π(2n − 2−n)

∫ π

−π

(
1− θ2

π2

)
e−inθdθ, n ∈ Z \ {0}. (7)

We next need to compute the coefficient a0. To do this, we need to
compute the 0th Fourier coefficient for the function 1− θ2

π2 :

1

2π

∫ π

−π
1− θ2

π2
dθ =

1

2π

(
2π − 2π3

3π2

)
= 1− 1

3
=

2

3
.



So, we need the coefficient

a0 ln(2) =
2

3
=⇒ a0 =

2

3 ln(2)
.

Hence our full solution is

u(r, θ) =
2

3 ln(2)
ln(r) +

∑
n∈Z\{0}

einθan
(
rn + r−n

)
,

with an given by equation (7) for n 6= 0.

8. Om f(x) har Fouriertransformen f̂(ξ) vad är Fouriertransformen av
cos(x)f(x/2)?

This problem is all about the properties of the Fourier transform, also
relatively straightforward, just keep calm and carry on. Let’s just
write out the definition:∫

R
e−ixξ cos(x)f(x/2)dx.

Use the complex representation of cosine:∫
R

1

2

(
eix + e−ix

)
e−ixξf(x/2)dx.

Deal with each term separately. First write

♣ =
1

2

∫
R
eixe−ixξf(x/2)dx =

1

2

∫
R
e−ix(ξ−1)f(x/2)dx.

This is looking pretty close to a Fourier transform. Just need to change
out variables. Let y = x/2. Then dy = dx/2 so 2dy = dx. Also,
x = 2y. So, our expression becomes

♣ =

∫
R
e−iy(2ξ−2)f(y)dy = f̂(2ξ − 2).

Next, we consider the second term, letting

♦ =
1

2

∫
R
e−ixe−ixξf(x/2)dx.

We will proceed similarly: combine the exponentials and change vari-
ables:

♦ =
1

2

∫
R
e−ix(ξ+1)f(x/2)dx =

∫
R
e−iy(2ξ+2)f(y)dy = f̂(2ξ + 2).



The total Fourier transform is thus

♣+♦ = f̂(2ξ − 2) + f̂(2ξ + 2).

Lycka till! May the force be with you! ♥ Julie Rowlett.


