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1. Bevisa att Besselfunktionerna, Jn, uppfyller:∑
n∈Z

Jn(x)zn = e
x
2
(z−1/z).

(10 p)

See the proofs of the theory items!

2. Bevisa att de Hermitska polynomen,

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
,

uppfyller:
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2
.

(10 p)

See the proofs of the theory items!

3. Beräkna den komplexa Fourierserien till den 2π-periodiska funktion f(x) som är lika
med e−x i (−π, π). Vad är seriens summa i punkten 3π? (10 p)

Let us compute the Fourier coefficients:

cn =
1

2π

∫ π

−π
e−xe−inxdx =

1

−2π(1 + in)

(
e−x(1+in)

)π
x=−π

=
−1

2π(1 + in)

(
e−π(1+in) − eπ(1+in)

)
=

1

2π(1 + in)

(
eπeiπn − e−πe−iπn

)
=

1

π(1 + in)
(−1)n sinh(π).

So, the Fourier series is ∑
n∈Z

1

π(1 + in)
(−1)n sinh(π)einx.



At the point 3π = π + 2π, since the function is 2π periodic, the series converges
to whatever it converges to at the point π. Since we extend e−x to be 2π periodic,
denoting this function by f(x),

lim
x→π−

f(x) = lim
x→π−

e−x = eπ,

and
lim
x→π+

f(x) = lim
x→−π+

f(x) = lim
x→−π+

e−x = eπ.

Above, we are using the fact that we extend to x outside of the interval (−π, π) to
make the function 2π periodic (we use this to go from the first limit to the second
one). So, we see that the left and right limits of f(x) as x → π are different. The
theorem on the pointwise convergence of Fourier series says that the Fourier series of
f converges to the average of the left and right sided limits. Thus the Fourier series
converges to

eπ + e−π

2
= cosh(π).

That wasn’t so tough, was it?

4. Hitta polynomet, p, av högst grad tre som minimera∫ 3

−3
| cosh(x)− p(x)|2dx.

(10 p)

We see that above, the interval is from −3 to 3. The Legendre polynomials will not
be orthogonal on that interval, but we can change the variable to remedy this. You
see, Legendre polynomials Pn(t) are pairwise orthogonal if t goes from −1 to 1. So,
if x is from −3 to 3, then we define

t := x/3.

Then we compute∫ 3

−3
Pn(x/3)Pm(x/3)dx =

∫ 1

−1
Pn(t)Pm(t)(3dt) =

{
0 n 6= m

6
2n+1 n = m

To find this calculation if you don’t already have it burned into your brains, see
β-12.2. However, I hope your brain is not too badly burned, so that you do not
mindlessly pass to the formula below the one which gives the above calculation (once
we have changed the variable to go from −1 to 1)!!! We are working on the interval
(−3, 3). We computed above that

{Pn(x/3)}n≥0



is an orthogonal set on this interval, (−3, 3). By the usual magical spectral theorem
for adults, they are an orthogonal basis for L2 on the interval (−3, 3). We expand
the given function on this interval using this basis. The coefficients are thus

cn =

∫ 3
−3 cosh(x)Pn(x/3)dx

6/(2n+ 1)
.

The denominator comes from the norm calculation we did above (using β):

||Pn||2 =

∫ 3

−3
Pn(x/3)2dx =

6

2n+ 1
.

Hence, the polynomial we seek is

3∑
n=0

cnPn(x/3).

Aren’t you glad you don’t actually have to compute those integrals∫ 3

−3
cosh(x)Pn(x/3)dx?

Yes, you’re very welcome ♥

5. Lös problemet:

utt − uxx = 20, 0 < x < 4, t > 0

u(x, 0) = v(x),

u(0, t) = 0,

ut(x, 0) = 0,

ux(4, t) = 0.

(10 p)

Feeling a bit of déjà vu? Oui, je sais. Allons-y! Oh, joy of joys, the inhomogeneity
in the PDE is time independent! So, we can deal with it by finding a steady state
solution. So, we are looking for f to satisfy

−f ′′(x) = 20

f(0) = 0

f ′(4) = 0



Start integrating the ODE:

−f ′′(x) = 20 =⇒ f ′(x) = −20x+ c =⇒ f(x) = −10x2 + cx+ b.

We find the constants using the boundary conditions:

f(0) = b = 0, f ′(4) = −20(4) + c =⇒ c = 80.

So, our steady state solution is

f(x) = −10x2 + 80x.

Now, if we were to solve for the homogeneous PDE and just add it to the steady
state solution, we’d screw up the IC. So, we instead look for a solution to:

utt − uxx = 0, 0 < x < 4, t > 0

u(x, 0) = v(x)− f(x),

u(0, t) = 0,

ut(x, 0) = 0,

ux(4, t) = 0.

Then, our full solution will be

u(x, t) + f(x) = u(x, t)− 10x2 + 80x.

So, let’s get to finding u, shall we? We are on a bounded interval, and we see really
nice self-adjoint boundary conditions (things equal to zero evokes self adjointness).
So, we will use separation of variables. Consider:

T ′′X −X ′′T = 0 =⇒ T ′′

T
=
X ′′

X
= constant = λ.

Above we have named the constant λ. The BCs in x are super nice, so we shall solve
for X first. There are three cases. First, what if λ = 0? Then,

X ′′ = λX =⇒ X ′′ = 0 =⇒ X(x) = ax+ b.

To satisfy the BCs, we need

X(0) = b = 0, X ′(4) = a = 0 =⇒ X = 0.

That’s not a legit solution. (Eigenfunctions shallt not be the constant zero function).
So this is out. What about λ > 0? Then,

X(x) = a cosh(
√
λx) + b sinh(

√
λx).



We need
X(0) = 0 = a =⇒ X(x) = b sinh(

√
λx).

We also need
X ′(4) =

√
λb cosh(4

√
λ) = 0.

The function

cosh(x) =
ex + e−x

2
= 0 ⇐⇒ ex = −e−x.

That is impossible for x ∈ R. So, the only way for X ′(4) = 0 is if b = 0. We end up
at the illegit zero solution. So, we know that λ < 0 is the only possibility. Then,

X(x) = a cos(
√
|λ|x) + b sin(

√
|λ|x).

To guarantee that X(0) = 0 we need a = 0. So, for now, let us drop the constant
factor b, and determine it later. Then, we need

cos(
√
|λ|4) = 0 =⇒

√
|λ|4 = (n+ 1/2)π, n ∈ N.

Thus√
|λ| = (n+ 1/2)π

4
, Xn(x) = sin((n+ 1/2)πx/4), λ = −(n+ 1/2)2π2

16
.

We can now find the partner function, and we let it absorb the constant factors:

T ′′n = λnTn =⇒ Tn(t) = an cos(
√
|λn|t) + bn sin(

√
|λn|t).

We then smash them together because the PDE is homogenous, writing

u(x, t) =
∑
n≥0

Tn(t)Xn(x)

=
∑
n≥0

(
an cos(

√
|λn|t) + bn sin(

√
|λn|t)

)
sin((n+ 1/2)πx/4).

We need
ut(x, 0) = 0.

So, differentiating termwise we get∑
n≥0

bn
√
|λn|Xn(x) = 0.

By the SLP theory, the set {Xn} makes an orthogonal basis for the Hilbert space
L2 on the interval (0, 4). The 0 function has an expansion: all of the coefficients are



zero. So, bn
√
|λn| = 0 for all n. This means we need bn = 0 for all n. So, our solution

looks like
u(x, t) =

∑
n≥0

an cos(
√
|λn|t)Xn(x).

To ensure that
u(x, 0) = v(x)− f(x),

we need ∑
n≥0

anXn(x) = v(x)− f(x).

Hence the left side should be the Fourier expansion of v−f in terms of the OB {Xn}.
These Fourier coefficients are:

an =

∫ 4
0 (v(x)− f(x))Xn(x)dx∫ 4

0 X
2
n(x)dx

.

You have no desire to compute these integrals (and the fact that v is not specified
makes it rather um impossible?) That is not a problem because we are already done!
Our solution is ∑

n≥0
an cos(

√
|λn|t)Xn(x) + f(x),

where an,
√
|λn|, Xn, and f(x) have already been specified above. If you want to

be really persnickety about the details, you can give names to the equations where
these are specified and refer to them here.

6. Lös problemet:
ut − uxx = G(x, t), t > 0, x ∈ R,

u(x, 0) = v(x).

(10 p)

Time to go back to the basics, because we have an inhomogeneous heat equation
which depends on both time and space. Not a problem. We got the cute heat kernel
style solution involving convolution, so let us just do the same thing here and now.
We hit the PDE with the Fourier transform on x ∈ R variable:

ût(ξ, t)− ûxx(ξ, t) = Ĝ(ξ, t).

We use β 13.2.F10 with n = 2 there:

ûxx(ξ, t) = (iξ)2û(ξ, t).



So the equation is
ût(ξ, t) + ξ2û(ξ, t) = Ĝ(ξ, t).

Stay calm. This is just an ODE for u with respect to the variable t. We look it up
in β. We find the solution is given in β 9.1.3. First, we compute

exp(−
∫
ξ2dt) = e−ξ

2t don’t need integration constant here according to β.

Next, we compute the solution is

û(ξ, t) = e−ξ
2t

(∫ t

0
eξ

2sĜ(ξ, s)ds+ C

)
.

We use the IC to determine C:

û(ξ, 0) = v̂(ξ) = C,

so

û(ξ, t) = e−ξ
2t

(∫ t

0
eξ

2sĜ(ξ, s)ds+ v̂(ξ)

)
=

∫ t

0
e−ξ

2(t−s)Ĝ(ξ, s)ds+ e−ξ
2tv̂(ξ).

We know (or look it up in β) that to get a product from the Fourier transformation,
we start with a convolution. In the second term, we can look up already that:

e−x
2/(4t)(4πt)−1/2 Fourier transforms to e−ξ

2t.

We get this from β 13.2 F37. Well, then similarly, the same formula shows that

e−x
2/((4(t−s))(4π(t− s))−1/2 Fourier transforms to e−ξ

2(t−s).

So, our solution is given by the sum of the convolutions:

u(x, t) =

∫
R

∫ t

0
e−(x−y)

2/(4(t−s))(4π(t−s))−1/2G(y, s)dsdy+

∫
R
e−(x−y)

2/(4t)(4πt)−1/2v(y)dy.

7. Lös problemet: 
ut − uxx = 0, x ∈ (0,∞), t ∈ (0,∞)

u(0, t) = f(t)

u(x, 0) = 0

(10 p)

The x variable is in a half line, and it has a weird BC at x = 0, which depends on
time. This just SCREAMS Laplace transform. So, let’s do it! We Laplace transform
the PDE in the t variable. Since u(x, 0) = 0, we get

zũ(x, z)− ∂xxũ(x, z) = 0.



This is just an ODE for the x variable. We solve it:

ũ(x, z) = a(z)e−x
√
z + b(z)ex

√
z.

The second of these will be impossible to invert Laplace transform, so we chuck it
out. We determine a(z) using the weird BC:

ũ(0, z) = f̃(z) =⇒ a(z) = f̃(z).

Really, above we mean
Θ̃f(z),

because the function f is only defined for t > 0, so we extend it to be identically zero
for t < 0, or equivalently just write Θf . Take your pick. So, our Laplace transformed
solution is:

ũ(x, z) = f̃(z)e−x
√
z.

The Laplace transform also turns convolutions into products. So, we are looking for
somebody whose Laplace transform is e−x

√
z. We turn to β 13.5 L61. This says that

Θ(t)
x

2
√
πt3

e−x
2/(4t) Laplace transforms in the t variable to e−x

√
z.

The Θ(t) is the heavyside function, which we need to make the function be Laplace
transformable. We can only Laplace transform functions which are zero for t < 0. So,
this is actually kinda sorta missing in β, but it is a little bit implicit in 13.5 L4, but
I still find that rather unsatisfying. At least I wrote about it in the lecture notes...
So, the solution is given by the convolution:

u(x, t) =

∫
R

Θ(t− s) x

2
√
π(t− s)3

e−x
2/(4(t−s))Θ(s)f(s)ds.

Since

Θ(t− s) =

{
0 s > t

1 s < t
,

and similarly

Θ(s) =

{
0 s < 0

1 0 < s

u(x, t) =

∫ t

0

x

2
√
π(t− s)3

e−x
2/(4(t−s))f(s)ds.



8. L̊at

I0(x) =
∑
n≥0

(
x
2

)2n
(n!)2

.

Visa att:

I0(x) =
1

π

∫ π

0
ex cos(θ)dθ.

(Tips: Taylorutvecklingen av exponentialfunktionen och beräkna
∫ π
0 cos

n(θ)dθ.) (10
p)

We follow the hint:
1

π

∫ π

0

∑
n≥0

xn cosn(θ)

n!
dθ.

So, we need to compute ∫ π

0
cosn(θ)dθ.

We turn to our trusty β. We have formula 7.4.212:∫
cosn θdθ =

1

n
sin(θ) cosn−1(θ) +

n− 1

n

∫
cosn−2(θ)dθ.

Let us use this to compute our definite integral:∫ π

0
cosn(θ)dθ =

1

n
sin(θ) cosn−1(θ)

∣∣∣∣π
0

+
n− 1

n

∫ π

0
cosn−2(θ)dθ.

The first part vanishes because sin(0) = sin(π) = 0. So we get a recursive formula:∫ π

0
cosn(θ)dθ =

n− 1

n

∫ π

0
cosn−2(θ)dθ.

We first compute ∫ π

0
cos0(θ)dθ = π.

We next compute ∫ π

0
cos1(θ)dθ = sin(π)− sin(0) = 0.

Hence by the inductive formula∫ π

0
cosn(θ)dθ =

{
0 n is odd
n−1
n

∫ π
0 cosn−2(θ)dθ n is even.



So, for the case n = 2, ∫ π

0
cos2(θ)dθ =

2− 1

2
π =

π

2
.

We then compute for n = 4, ∫ π

0
cos4(θ)dθ =

4− 1

4

π

2
=

3π

4 ∗ 2
.

Next for n = 6, ∫ π

0
cos6(θ)dθ =

6− 1

6

3π

4 ∗ 2
=

5 ∗ 3 ∗ π
6 ∗ 4 ∗ 2

.

Do you see the pattern? For even numbers, like 2k, we have∫ π

0
cos2k(θ)dθ =

(2k − 1)(2k − 3) . . . π

2k(2k − 2)(2k − 4) . . . 2
.

On the top, we got the odd factorials missing the even ones, on the bottom we just got the
even ones. Look at the bottom first:

2k(2k − 2)(2k − 4) . . . 4 ∗ 2 = 2(k)2(k − 1)2(k − 2) . . . 2(2)2(1) = 2kk!.

Making similar considerations, the numerator is:

(2k − 1)(2k − 3) . . . 3 ∗ 1 =
(2k)!

(2k)(2k − 2)(2k − 4) . . . 4 ∗ 2
=

(2k)!

2kk!
.

Hence, together we have that∫ π

0
cos2k+1(θ)dθ = 0,

∫ π

0
cos2k(θ)dθ =

(2k)!π

22k(k!)2
.

Therefore

1

π

∫ π

0

∑
n≥0

xn cosn(θ)

n!
dθ =

1

π

∑
k≥0

x2k

(2k)!

(2k)!π

22k(k!)2
=
∑
k≥0

(
x
2

)2k
(k!)2

= I0(x).

Please don’t be cross; there always needs to be some challenging and/or surprising problem
on exams. Don’t you want to test your limits? Also, this version is not as tough as the
previous solution where we didn’t use the recursion formula of β but did it all by hand
using the binomial theorem. That method works too, and it is beautiful, so props to you
in any case if you made some progress on this problem!



Figure 1: This is not actually from the current trip, but a previous trip to Oz. That’s a
baby wombat at a rescue center for wild animals. In general, you should NOT try to touch
wildlife, but rescue babies actually need to snuggle in order to grow up healthy, so in that
case, I was helping this little wombat. What’s this got to do with math? Well, when I
traveled to Oz that time, I was trying to solve some math involving geometric measure
theory, notoriously difficult stuff. A famous geometric measure theorist, Brian White,
Professor at Stanford, has an equally famous photo with a koala bear in Australia... You
can google that... So I had a silly idea that maybe the Australian animals impart GMT
intuition, because another famous GMT’er is Professor Leon Simon, originally from Oz.
So, that’s the scoop with this funny photo. Now let’s just hope that modern technology
allows me to upload these solutions from the other side of the world! Y’all have been a
great class, and I hope that y’all did well on the exam!


