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1. (10 p) L̊at f vara en 2π periodisk funktion. Antar att f är styvvis
kontuerlig (piecewise continuous) och att ∀x ∈ R, dess höger och
vänster gränsvärde existerar:

lim
y→x+

f(y) = f(x+) ∈ R, lim
y→x−

f(y) = f(x−) ∈ R.

L̊at

SN (x) =

N∑
−N

cne
inx, cn =

1

2π

∫ π

−π
f(x)e−inxdx.

Bevisa att gäller:

lim
N→∞

SN (x) =
1

2
(f(x−) + f(x+)) , ∀x ∈ R.

Solution is in the theory-proof compendium!

2. (10 p) Definerar Fourier transformen och ger dess Inversion-Formel.

Solution is in the theory-proof compendium!

3. (10 p) Beräkna:
∞∑
n=0

1

4 + n2
.

(Hint: Utveckla e2x i Fourier-series i intervallet (−π, π)).

We follow the hint. To do that, we compute the Fourier coefficients:

cn =
1

2π

∫ π

−π
e2xe−inxdx =

e2x−inx

2π(2− in)

∣∣∣∣π
x=−π

=
e2π−inπ − e−2π+inπ

2π(2− in)

= (−1)n
sinh(2π)

π(2− in)
.

Above, we use the fact that e±inπ = (−1)n together with basic rules
for exponentials, like ea+b = eaeb, and the definition of sinh.



So, now we know that

e2x =
∑
n∈Z

cne
inx, x ∈ (−π, π).

What happens for x = π or x = −π? The series on the right does
NOT converge to the function on the left!!!!! Remember Theorem
2.1! Even easier on this particular exam is THEORY QUESTION
#1. It tells you (p̊a svenska även!) what happens! When we do a
Fourier expansion, we extend e2x from the interval (−π, π) to R as a
2π periodic function. Doing this, the function jumps at odd-integer
multiples of π. The Fourier series converges to the average of this
“jump” at these points, so

e2π + e−2π

2
=
∑
n∈Z

cne
inπ =

∑
n∈Z

cn(−1)n =
∑
n∈Z

sinh(2π)

π(2− in)
.

The left side is none other than cosh(2π) so we bring it together with
its buddy sinh,

π coth(2π) =
∑
n∈Z

1

2− in
.

Next, we take away the n = 0 term and pair up the ±n terms, so that

π coth(2π) =
1

2
+
∑
n≥1

1

2− in
+

1

2 + in
=

1

2
+
∑
n≥1

4

4 + n2
.

Re-arranging, we have∑
n≥1

1

4 + n2
=
π coth(2π)− 2

4
.

4. (10 p) Hitta siffrorna a0, a1, och a2 ∈ C som minimerar∫ π

0
| sin(x)− a0 − a1 cos(x)− a2 cos(2x)|2dx.

This is just expanding the sine in terms of a cosine basis on L2(0, π).
You can probably find some stuff in β, or you can just do it by hand.
The first three basis vectors here are constant multiples of cos(kx) for
k = 0, 1, 2. These are already orthogonal, because∫ π

0
cos(jx) cos(kx)dx = 0 if k 6= j.



So, they just need to get normalized. Thus, we compute the L2 norm
(squared)∫ π

0
cos2(kx)dx = π, k = 0; or

π

2
for k = 1, 2.

The trick to computing the integral for k = 1, 2 is to use the double
angle formula for the cosine,

cos(2x) = cos2(x)− sin2(x) = cos2(x)− (1− cos2(x)) = 2 cos2(x)− 1,

where we use the identity cos2 + sin2 = 1. Now, we have our basis
vectors:

1√
π
,

cos(kx)
√

2√
π

, k = 1, 2.

Next, we compute the coefficients by computing the inner product of
sin(x) with the basis vectors. It suffices for this purpose to compute:

1√
π

∫ π

0
sin(x)dx =

1√
π

(− cos(π) + cos(0)) =
2√
π
.

√
2√
π

∫ π

0
sin(x) cos(x)dx =

√
2√
π

∫ π

0

1

2
sin(2x)dx = 0.

√
2√
π

∫ π

0
sin(x) cos(2x)dx =

√
2√
π

(
sin(x) sin(2x)/2|π0 −

∫ π

0
cos(x)

sin(2x)

2
dx

)
= −
√

2√
π

(∫ π

0
cos2(x) sin(x)dx

)
=

√
2√
π

(
cos3(x)

3

∣∣∣∣π
0

)
= − 2

√
2

3
√
π
.

Hence, the best approximation of sin(x) in terms of this basis is

2√
π

1√
π
− 2
√

2

3
√
π

cos(2x)
√

2√
π

=
2

π
− 4

3π
cos(2x).

The siffror we seek are therefore

a0 =
2

π
, a1 = 0, a2 = − 4

3π
.



5. (10 p) Lös problemet:

ut − uxx = 0, t > 0, x ∈ R,

u(x, 0) = e−x
2

There’s nothing like the IVP for the heat equation. We use the heat
kernel (Schwartz integral kernel of the fundamental solution to the
heat equation - you can learn more about Schwartz integral kernels in
the future :-)

u(x, t) =
1√
4πt

∫
R
e−

(x−y)2

4t e−y
2
dy.

For extra fun: compute this! It isn’t too bad...

6. (10 p) Beräkna ∫ ∞
0

sin(x)

xex
dx.

We just need to put on our Plancharel/Parseval (I always forget which
is which so just lump them together) glasses. We know that∫

R
f(x)g(x)dx =

1

2π

∫
R
f̂(x)ĝ(x)dx,

as long as the two functions are real valued. If they’re complex valued,
we gotta include some complex conjugation up in there.

Well, what we’ve got is not an integral over R dagnammit. That
is rather annoying. However, we can modify the integral to get an
integral over R with a few observations. The function sin(x)/x is
even. We have the product of that with e−x. We can extend e−x to be
an even function, using e−|x|. So, in this way∫ ∞

0

sin(x)

xex
dx =

1

2

∫
R

sin(x)

x
e−|x|dx.

So, while I don’t really fancy doing the above integral, using the Par-
seval/Plancharel trick, we can replace those functions by the Fourier
transforms:

1

2

∫
R

sin(x)

x
e−|x|dx =

1

4π

∫
R
πχ(−1,1)(x)

2

x2 + 1
dx =

1

2

∫ 1

−1

1

x2 + 1
dx

=
1

2
arctan(x)|1−1 =

1

2

(π
4
−−π

4

)
=
π

4
.

How cute.



7. (10 p) Lös problemet:

uxx + uyy = −20u, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = 0,

u(x, 0) = 0,

u(x, 1) = x2 − x.

We begin by separating variables, writing u = XY . Then, we get

X ′′

X
+
Y ′′

Y
= −20.

This means that X ′′/X and Y ′′/Y must both be constant, and we
write

X ′′

X
= −20− Y ′′

Y
= µ.

The BCs for X are nicer, so we start with X. We have

X ′′ = µX, X(0) = X(1) = 0.

You can show that the only µ which have a non-trivial solution X are
µ < 0, specifically,

X = Xn = sin(nπx), µ = µn = −n2π2, n ∈ N, n ≥ 1,

up to a constant factor. Then, this also specifies the partner solution,
because we know that Y satisfies

Y ′′n
Yn

= −X
′′

X
− 20 = n2π2 − 20 = λn.

For n = 1, we note that λ1 < 0. Thus, we have Y1 is a linear combi-
nation of sin(

√
|λ1|y) and cos(

√
|λ1|y). For n ≥ 2, λn > 0, so there

Yn is a linear combination of sinh(
√
λny) and cosh(

√
λny). To figure

out the constant factors, we use the BCs. We need Yn(0) = 0 for all
n. Thus,

Y1(y) = sin(
√
|λ1|y), Yn(y) = sinh(

√
λny), n ≥ 2,



up to multiplication by a constant factor. Our full solution is then
given by summing

u(x, y) =
∑
n≥1

an sin(nπx)Yn(y).

We need
u(x, 1) =

∑
n≥1

an sin(nπx)Yn(1) = x2 − x.

Hence, we need to expand the function x2− x in terms of the L2(0, 1)
OB (not yet normalized) {sin(nπx)}. We compute the L2 norms of
the sines to be 1/

√
2. Hence, the Fourier coefficients shall be

cn = 2

∫ 1

0
(x2 − x) sin(nπx)dx.

Then, the coefficients, an are given by

an =
cn

Yn(1)
.

We note that Y1(1) = sin(
√

20− π2) 6= 0, and that sinh has no zeros
on the real line. So, phew, we aren’t dividing by zero.

8. (10 p) Lös problemet:

ut − uxx = 0, 0 < x < 1, t > 0,

u(0, t) = t+ 1,

u(1, t) = 0,

u(x, 0) = 1− x.

Staring at those weird BCs, we see that

(t+ 1)(1− x) = (t+ 1) at x = 0,

and
(t+ 1)(1− x) = 0 at x = 1,

and
(t+ 1)(1− x) = (1− x) at t = 0.



What happens if we hit (t+ 1)(1−x) with the heat equation? We get

(∂t − ∂2x)(t+ 1)(1− x) = 1− x.

So, we look for a steady state solution to:

−f ′′(x) = x− 1 =⇒ f(x) = −x
3

6
+
x2

2
+ ax+ b.

Now, because (t+1)(1−x) takes care of the BCs, we want f to vanish
at the boundaries. So, we want

f(0) = f(1) = 0 =⇒ b = 0 and a = −1

3
.

However, now the function f is going to screw up the IC, so we gotta
fix it by finding v which satisfies

vt − vxx = 0, 0 < x < 1, t > 0,

v(0, t) = v(1, t) = 0,

v(x, 0) = −f(x),

and our full solution will be

u(x, t) = (t+ 1)(1− x) + f(x) + v(x, t).

This is just an IVP for the standard heat equation! We can solve it
using separation of variables and a Fourier series. When we do that,
we get

T ′X − TX ′′ = 0 =⇒ X ′′ = constant X,

with BCs
X(0) = X(1) = 0.

Hence,
Xn(x) = sin(nπx) up to constant factor.

We then also get
Tn(t) = e−n

2π2t,

up to constant factor. Our full solution is

v(x, t) =
∑
n≥1

ane
−n2π2t sin(nπx).



To get the constants, we use the IC which says

v(x, 0) =
∑
n≥1

an sin(nπx) = −f(x) =
x3

6
− x2

2
+
x

3
.

The coefficients are therefore given by

an = 2

∫ 1

0
(
x3

6
− x2

2
+
x

3
) sin(nπx)dx.

The 2 in front comes from the fact that the L2 norm of the basis
vectors sin(nπx) is 1/

√
2.


