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1. L̊at {φn}n∈N vara en ortonormal mängd i ett Hilbert-rum, H. Om
f ∈ H, bevisa att

||f −
∑
n∈N
〈f, φn〉φn|| ≤ ||f −

∑
n∈N

cnφn||, ∀{cn}n∈N ∈ `2,

och = gäller ⇐⇒ cn = 〈f, φn〉 gäller ∀n ∈ N.

Finns i bevis samlingen.

(10 p)

2. Bevisa att Hermite polynomen, Hn(x) = (−1)nex
2 dn

dxn e
−x2 , uppfyller

∀x ∈ R och z ∈ C,
∞∑
n=0

Hn(x)
zn

n!
= e2xz−z

2
.

Finns i bevis samlingen.

(10 p)

3. Beräkna:
∞∑
n=2

1

1 + n2
.

(Hint: Utveckla ex i Fourier-series i intervallet (−π, π)).

Finns i lösningar till tentan 17:e mars, 2017, uppgift 3. Man m̊aste
bara ta ut n = 1 termen. Alts̊a summan blir

π cosh(π)

2 sinh(π)
− 1

2
− 1

2
=
π cosh(π)

2 sinh(π)
− 1.

(10 p)

4. Hitta siffrorna a0, a1, och a2 ∈ C som minimerar∫ π

0
|ex − a0 − a1 cos(x)− a2 cos(2x)|2dx.



(10 p)

So, we’re finding the Fourier-cosine coefficients of ex basically. Al-
ternatively, we know that the functions {cos(nx)}n∈N (here I mean
Swedish N :-) are an orthogonal basis for L2[0, π]. They are not, how-
ever, normalized. The L2 norm is∫ π

0
1dx = π,

∫ π

0
cos(nx)2dx =

∫ nπ

0
cos(θ)2

dθ

n

=
1

n

∫ nπ

0

(
cos(2θ) + 1

2

)
dθ =

1

n

(
sin(2θ)

4
+
θ

2

)nπ
θ=0

=
π

2
.

Thus the first three elements in our L2 ONB are:

1√
π
,

cos(x)
√

2√
π

,
cos(2x)

√
2√

π
.

We next compute the first three Fourier coefficients of ex with respect
to this L2 ONB,

c0 =
1√
π

∫ π

0
exdx =

eπ − 1√
π

.

c1 =

√
2√
π

∫ π

0
ex cos(x)dx,

c2 =

√
2√
π

∫ π

0
ex cos(2x)dx,

so we now compute for k ∈ N,∫ π

0
ex cos(kx)dx = <

∫ π

0
exeikxdx = <e

x(1+ki)

1 + ki

∣∣∣∣∣
π

0

= <(1− ki)e
π(1+ik) − 1

1 + k2
= <(1− ki)e

π(−1)k − 1

1 + k2
=

(−1)keπ − 1

1 + k2
.

Setting k = 1 and k = 2 we have

c1 =

√
2√
π

(
−eπ − 1

2

)
, c2 =

√
2√
π

(
eπ − 1

5

)
.

The best approximation is

c0
1√
π

+ c1

√
2 cos(x)√

π
+ c2

√
2 cos(2x)√

π



which shows that

a0 = c0
1√
π
, ak = ck

√
2√
π
, k = 1, 2.

Just because it is rather satisfying, let us write these out using our
calculation of the cs above,

a0 =
eπ − 1

π
, a1 = −(eπ + 1)

π
, a2 =

2(eπ − 1)

5π
.

5. Lös problemet:
ut − uxx = 0, t > 0, x ∈ R,

u(x, 0) = e−|x|

(10 p)

Lovely. Initial value problem for the heat equation. The solution is
given by the convolution of the initial data with the heat kernel, thus

u(t, x) = (4πt)−1/2
∫
R
e−|y|e−(x−y)

2/4tdy.

You’re welcome.

6. L̊at α > 0. Vi definerar

L̂Pα(f)(ξ) := f̂(ξ)χ(−α,α)(ξ).

Vi definerar

f̂(ξ) =

∫
R
f(x)e−ixξdx, χ(−α,α)(ξ) =

{
1 |ξ| < α
0 |ξ| ≥ α

Beräkna LPα(f) med
f(x) = e−|x|.

(10 p) I don’t know about you, but even though this is pretty simple,
it still kinda confuses me with all the back and forth between Fourier
transform, not Fourier transformed... Just keep calm and compute on.
The definition tells us that the FOURIER TRANSFORM of the thing
we want to know is

f̂(ξ)χ(−α,α)(ξ).



We know that the Fourier transform of a convolution is a product of
two Fourier transforms. Well, if we can find somebody whose Fourier
transform is this weird χ(−α,α), then we’ll be in good shape. Let’s try
looking in BETA. We see on p. 320 that the Fourier transform of

sin(αt)

πt

is χ, as desired. Thus, we now know that

LPα(f)(x) =

∫
R
f(x− t)sin(αt)

πt
dt.

7. Lös problemet:

utt − uxx = tx, 0 < x < 4, t ≥ 0,

u(0, t) = 20,

ux(4, t) = 0,

u(x, 0) = 20,

ut(x, 0) = 0.

(10 p)

Almost déjà vu right? Mais pas precisement... We have here an in-
homogeneous wave equation. However, the inhomogeneity is time de-
pendent. So, a steady state solution ain’t gonna solve that problem.
Next, we look at our boundary and initial conditions. The constant
function, 20, satisfies that vertical list of conditions. So, we look for
a function v to satisfy the inhomogeneous wave equation *but* with
homogeneous BC and IC, thus we want v to satisfy

vtt − vxx = tx,

and v(0, t) = vx(4, t) = v(x, 0) = vt(x, 0) = 0. Our solution will be
u = 20+v. To solve the inhomogeneous heat equation, we will use the
Fourier series method (Fourier series because on a bounded interval).
The inhomogeneous part of the heat equation can be expressed using
an L2 OB {φn} for [0, 4] which satisfies the boundary condition and
the SLP,

φ′′n(x) + λnφn(x) = 0, φn(0) = φ′n(4) = 0.



I leave it to you to check that the only λn for which there is such
a φn 6≡ 0 are positive λn. The corresponding φn is thus a linear
combination of sine and cosine, and to satisfy the BC at x = 0, we
see that the cosine is out. So, we need a sine. In order to get the BC
at x = 4, we need (up to multiplication by a factor which is constant
with respect to x)

φn = sin((2n+ 1)πx/8), λn =
(2n+ 1)2π2

64
.

Next, we shall allow the constant factor multiplying φn, to depend on
time, and we write

v(t, x) =
∑
n∈N

cn(t)φn(x).

We can also express the xt side of the wave equation using the L2 OB,

tx = t
∑
n≥0

x̂nφn(x),

where

x̂n =
1

2

∫ 4

0
x sin((2n+ 1/)πx/8)dx =

8(−1)n

(n+ 1/2)2
.

Next, we apply the wave operator to the expression for v in order to
determine the unknown coefficient functions, cn,

vtt + vxx =
∑
n≥0

c′′n(t)φn(x)− cn(t)φ′′n(x) =
∑
n≥0

(
c′′n(t) + λncn(t)

)
φn(x).

We want this to equal

tx =
∑
n≥0

tx̂nφn(x).

To obtain the equality, we equate the individual terms in each series,
writing

(c′′n(t) + cn(t)λn)φn(x) = tx̂nφn(x).

Hence, we want cn to satisfy the ODE:

c′′n(t) + λncn(t) = tx̂n.



The homogeneous ODE

f ′′ + λf = 0, λ > 0, =⇒ f(x) = a cos(
√
λx) + b sin(

√
λx).

A particular solution to the inhomogeneous ODE is a function of the
form

c(t) = at+ b.

Substituting such a function into the ODE, we see that we need

cn(t) =
tx̂n
λn

.

Now we gotta look at the ICs. You see, the φn’s take care of the BC’s
because we built them that way. However, they don’t depend on time,
so they can’t help us with the ICs. We need the cn(t) to do that.
Now, if we just take the particular solution to the ODE, we see that
it vanishes at t = 0. However, we also want the derivative to vanish
at t = 0, and it don’t do that. So, we combine the particular solution
with a solution to the homogeneous ODE. Hence, we want

cn(t) =
tx̂n
λn

+ an cos(
√
λnx) + bn sin(

√
λnx).

To make sure cn(0) = 0 we need an = 0. To make sure c′n(0) = 0, we
need

x̂n
λn

+
√
λnbn = 0 =⇒ bn = − x̂n

λ
3/2
n

.

Hence, our full solution is

u(x, t) = 20 +
∑
n∈N

(
tx̂n
λn
− x̂n

λ
3/2
n

sin(
√
λnx)

)
φn(x),

with

λn =
(2n+ 1)2π2

64
, x̂n =

8(−1)n

(n+ 1/2)2
, φn(x) = sin((2n+ 1)πx/8).

8. Lös problemet:

ut − uxx − uyy = 0, −1 ≤ x, y ≤ 1, t ≥ 0,



med

u(−1, y, t) = 25,

u(1, y, t) = 25,

u(x,−1, t) = 25,

u(x, 1, t) = 25,

u(x, y, 0) = (6− |x|)(6− |y|).

(10 p)

The PDE is homogeneous. We would like to use Sturm-Liouville the-
ory, but the BCs are not homogeneous. However, we quickly observe
that a steady state solution, namely u0(x, y) = 25. Then we look
for v(x, y, t) which vanishes on the boundary of the rectangle and has
initial condition

v(x, y, 0) = (6− |x|)(6− |y|)− 25.

The full solution shall be v(x, y, t) + 25.

To find v, we shall first separate all the variables, writing

v = TXY.

Then our equation becomes

T ′(XY )−X ′′(TY )−Y ′′(TX) = 0 ⇐⇒ T ′

T
=
X ′′

X
+
Y ′′

Y
= constant = λ.

Due to the fact that we have more information on X and Y , specifically

X(−1) = X(1) = 0, Y (−1) = Y (1) = 0,

we consider them first. So, we have the equation

X ′′

X
= λ− Y ′′

Y
= constant = µ.

Thus, we have

X ′′ = µX, X(−1) = X(1) = 0.

We see that there are non-zero solutions to this only if µ < 0. In that
case, X is a combination of sines and cosines. However, to get both



boundary conditions, X can in fact be either a sine or a cosine. The
two possibilities are (up to constant factors)

X(x) = sin(nπx) =⇒ µ = −n2π2,

and
X(x) = cos((2m+ 1)πx/2) =⇒ µ = (2m+ 1)2π2/4.

We compute the L2 norm of these to be one, conveniently.

The equation for Y is

−Y
′′

Y
= µ− λ =⇒ Y ′′

Y
= λ− µ.

Similarly we have the possible solutions Y ,

Y (y) = sin(nπy) =⇒ λ− µ = −n2π2 =⇒ λ = µ− n2π2,

and

Y (x) = cos((2m+1)πx/2) =⇒ λ−µ = −(2m+1)2π2/4 =⇒ λ = µ−(2m+1)2π2/4.

Thus, we have the full set of solutions which consists of products of

sin(nπx), cos((2n+1)πx/2), together with sin(mπy), cos((2m+1)πy/2).

The corresponding λs are

−(n2π2 +m2π2), −
(
n2π2 +

(2m+ 1)2π2

4

)
,

and

−
(

(2n+ 1)2π2

4
+m2π2

)
, −
(

(2n+ 1)2π2

4
+

(2m+ 1)2π2

4

)
.

Then, we have (up to constant factors)

T (t) = eλt.

Next, we determine said constant factors, by writing

v(t, x, y) =
∑
λ

cλe
λtXλ(x)Yλ(y),



where the sum is over all λ given above. The initial condition says
that

v(0, x, y) =
∑
λ

cλXλ(x)Yλ(y) = (6− |x|)(6− |y|)− 25.

Hence, the coefficients cλ come from the Fourier coefficients of (6 −
|x|)(6− |y|)− 25. We observe that this is an even function. Thus for
any odd function Xλ(x), we have∫ 1

−1
((6− |x|)(6− |y|)− 25)Xλ(x)dx = 0,

and similarly, for an odd function Yλ(y),∫ 1

−1
((6− |x|)(6− |y|)− 25)Yλ(y)dy = 0.

Thus, the only non-zero Fourier coefficients come from the cosine
terms. These coefficients are given by

cm,n =

∫ 1

−1

∫ 1

−1
((6−|x|)(6−|y|)−25) cos((2m+1)πx/2) cos((2n+1)πy/2)dxdy.

The corresponding

λm,n = −(2m+ 1)2π2 + (2n+ 1)2π2

4
.

Hence,

v(t, x, y) =
∑
m,n∈N

cm,ne
λm,nt cos((2m+ 1)πx/2) cos((2n+ 1)πy/2),

and the full solution is

u(t, x, y) = 25 + v(t, x, y).

Comment regarding grading and partial credit: If your answer
is wrong, but you received some partial credit, you’re welcome. That’s
because a wrong answer is, strictly speaking, worth nothing. What happens
if you solve the heat equation wrong, use that erroneous solution at work
to, say create a rocket to be sent to space with some astronauts inside?
Your solution was really worth a lot of partial credit if it results in a ruined



rocket and some dead astronauts. In the case of PDEs, there’s also no
excuse. A PDE is an equation. So, you can always PLUG your solution
in to the equation and check whether it solves the equation or not... So,
please don’t whinge for more partial credit for wrong solutions, because
this may end up having the result that the entire concept of partial credit
disappears for future generations, and they probably don’t want that. Just
know that all exams shall be graded by the same rules, because fairness is
the fundamental theorem of grading. These rules are slightly difficult to
articulate precisely, because people find so very many and creative ways
to go wrong. It’s all about giving equal points for equal progress (or lack
thereof) on each problem. Each problem is graded across all exams before
moving on to the next one, to try to ensure fairness (i.e. #1 on all exams
graded, to make sure all the #1s are graded the same way, then proceeding
to #2 on all exams, etc).

Errors do happen on some occasions though, and if you feel there may
have been an error (it is helpful to compare with classmates), please let me
know, and I will fix it! ♥ Julie Rowlett


