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1. Bevisa Samplingsatsen: L̊at f ∈ L2(R) och l̊at f̂ vara Fouriertransfor-
men av f . Antag att det finns L > 0 s̊adant f̂(x) = 0 ∀x ∈ R med
|x| > L. Visa att

f(t) =
∑
n∈Z

f
(nπ
L

) sin(nπ − tL)

nπ − tL
.

(10 p)

Proof. This theorem is all about the interaction between Fourier se-
ries and Fourier coefficients and how to work with both simultane-
ously. Since the Fourier transform f̂ has compact support, the follow-
ing equality holds as elements of L2([−L,L]),

f̂(x) =

∞∑
−∞

cne
inπx/L, cn =

1

2L

∫ L

−L
e−inπx/Lf̂(x)dx.

We shall next use the Fourier inversion theorem (FIT) to write

f(t) =
1

2π

∫
R
eixtf̂(x)dx =

1

2π

∫ L

−L
eixtf̂(x)dx.

On the left we have used the fact that f̂ is supported in the interval
[−L,L], thus the integrand is zero outside of this interval, so we can
throw that part of the integral away.

Now, we substitute the Fourier expansion of f̂ into this integral,

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

cne
inπx/Ldx.

Let us take a closer look at the coefficients

cn =
1

2L

∫ L

−L
e−inπx/Lf̂(x)dx =

1

2L

∫
R
eix(−nπ/L)f̂(x)dx =

2π

2L
f

(
−nπ
L

)
.



In the second equality we have used the fact that f̂(x) = 0 for |x| > L,
so by including that part we don’t change the integral. In the third
equality we have used the FIT!!! So, we now substitute this into our
formula above for

f(t) =
1

2π

∫ L

−L
eixt

∞∑
−∞

π

L
f

(
−nπ
L

)
einπx/Ldx

This is approaching the form we wish to have in the theorem, but the
argument of the function f has a pesky negative sign. That can be
remedied by switching the order of summation, which does not change
the sum, so

f(t) =
1

2L

∫ L

−L
eixt

∞∑
−∞

f
(nπ
L

)
e−inπx/Ldx.

We may also interchange the summation with the integral1

f(t) =
1

2L

∞∑
−∞

f
(nπ
L

)∫ L

−L
ex(it−inπ/L)dx.

We then compute∫ L

−L
ex(it−inπ/L)dx =

eL(it−inπ/L)

i(t− nπ/L)
−e
−L(it−inπ/L)

i(t− nπ/L)
=

2i

i(t− nπ/L)
sin(Lt−nπ).

Substituting,

f(t) =
∞∑
−∞

f
(nπ
L

) sin(Lt− nπ)

Lt− nπ
.

2. L̊at f vara en 2π-periodisk funktion med f ∈ C2(R). Bevisa att Fouri-
erkoefficienterna cn av f och Fourierkoefficienterna c′n av f ′ uppfyller

c′n = incn.

(10 p)

1None of this makes sense pointwise; we are working over L2. The key property which
allows interchange of limits, integrals, sums, derivatives, etc is absolute convergence. This
is the case here because elements of L2 have

∫
|f |2 < ∞. That is precisely the type of

absolute convergence required.



We quite simply use the definitions of the Fourier series and coefficients
of f and f ′ respectively. By the hypothesis,

f(x) =
∑
Z
cne

inx, cn =
1

2π

∫ π

−π
f(x)e−inxdx,

and

f ′(x) =
∑
Z
c′ne

inx, c′n =
1

2π

∫ π

−π
f ′(x)e−inxdx.

Integrating by parts and using the periodicity of f and consequently
also f ′ as well as the periodicity of e−inx we have

c′n =
1

2π

∫ π

−π
−f(x)(−in)e−inxdx = incn.

3. Lös
ut = uxx, t > 0, x ∈ (0, π),

u(0, x) = πx− x2, u(t, 0) = u(t, π) = 0.

(10 p)

Notice how the fact that x ∈ (0, π) just SCREAMS at you to use
Fourier series to solve this. Either you can see directly that it’s gonna
be sines, due to the Dirichlet Boundary Conditions u(t, 0) = u(t, π) =
0, or you do it by hand the old fashioned way starting off with sepa-
ration of variables. If you do that, you assume

u(t, x) = T (t)X(x).

The heat equation becomes

T ′X = TX ′′ ⇐⇒ T ′

T
=
X ′′

X
. (1)

Ergo both sides must be constant. Which side to solve first? The one
with the most easy information. We have

X(0) = X(π) = 0.

The only solutions to X ′′ = constant times X which satisfy these
conditions are

X = Xn = sin(nx),



as well as constant multiples of these. We shall deal with the constants
later.

Now, however, we can use this to find the partner T = Tn who is
paired up with Xn, due to the equation (1). From the Xn side, we get
that T ′/T = X ′′/X = −n2. So, we have the equation

T ′n = −n2Tn =⇒ Tn(t) = ane
−n2t.

Above, an is a constant. Now, we take our solution

u(t, x) =
∑
n≥1

ane
−n2t sin(nx). (2)

To determine the an we use the IC (initial condition),

u(0, x) = πx− x2 =
∑
n≥1

an sin(nx).

So, we need to expand the function πx − x2 as a sine series. The
L2 norm of sin(nx) on an interval is as usual half the length of that
interval, so in this case it is π

2 . We then compute for the sake of
simplicity first

bn =

∫ π

0
x sin(nx)dx = −xcos(nx)

n
|π0 +

∫ π

0

cos(nx)

n
dx

= −π(−1)n

n
.

We have used integration by parts.

Next we use integration by parts twice to compute

cn =

∫ π

0
x2 sin(nx)dx = −x2 cos(nx)

n
|π0 +

∫ π

0
2x

cos(nx)

n
dx

= −π
2(−1)n

n
+ 2x

sin(nx)

n2
|π0 −

∫ π

0
2

sin(nx)

n2
dx

= −π
2(−1)n

n
+ 2

cos(nx)

n3
|π0 = −π

2

n
if n is even

or
π2

n
− 4

n3
if n is odd.

We thus have

an =
2

π
(πbn − cn) =

8

πn3
n odd, even terms are all zero.

One can then insert this into (2) to obtain the solution.



4. Lös
ut = uxx, t > 0, x ∈ R.

u(0, x) =
1

1 + x2
.

(10 p)

Doesn’t this just SCREAM Fourier transform? If we take the Fourier
transform of the heat equation, we get

∂tû(t, ξ) = −ξ2û(t, ξ).

This is just an ODE in the variable t. So, we solve it to get

û(t, ξ) = a(ξ)e−ξ
2t,

where a(ξ) is a function that depends only on ξ and not on t. Then,
we use the initial condition

û(0, ξ) =
1̂

1 + x2
(ξ) =⇒ a(ξ) =

1̂

1 + x2
(ξ).

Now, we think about the Formula # 1. The Fourier transform of a
convolution is the product of the Fourier transforms. Using Formula
# 3, we see that the Fourier transform of

g(t, x) = (4πt)−1/2e−x
2/4t

is e−ξ
2t. Thus we have

̂g ∗ f(t, x)(ξ) = a(ξ)e−ξ
2t,

and therefore

u(t, x) = g ∗ f(t, x) =

∫
R

1

1 + y2
e−(x−y)

2/4t

√
4πt

dy.

Challenge! This is *not* required to receive full points on the exam,
but it is a little extra for the students who get bored easily. Can you
compute this convolution?

5. Lös
utt = uxx, x > 0, t > 0,

u(0, x) = 0, ut(0, x) = 0,



u(t, 0) = (1 + t)3/2.

(10 p)

Well, well, what do we have here? Half lines? Conditions like u(0, x) =
ut(0, x) = 0? What does that scream at us? Yes, Laplace transform!
Let us Laplace transform the wave equation here

z2ũ(z, x) = ∂2xũ(z, x).

This is just an ODE for ũ with respect to the variable x. We know
that a basis of solutions are

ũ(z, x) = e±zxa(z),

where a(z) depends only on z, not on x. We just need to solve, i.e.
find a solution. So, let’s choose one of these, and I like e−zx, because
it is physically reasonable. Then, we have

ũ(z, x) = e−zxa(z).

Using the initial condition

ũ(0, x)(z) = a(z) = ˜(1 + t)3/2(z).

If we can therefore find a function whose Laplace transform is

e−zx ˜(1 + t)3/2(z),

then that function is a solution! Looking at Formula #4 is rather
helpful. It shows us that H(t − x)f(t − x) has the desired Laplace
transform, where

f(t) = (1 + t)3/2,

and H is the Heavyside function. Thus our solution is

u(t, x) = (1 + (t− x))3/2, t > x, 0t ≤ x.

6. Legendrepolynomen

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n ≥ 0,

är en ortogonal bas p̊a L2([−1, 1]) med

||Pn||2L2 =
2

2n+ 1
.



Antag att f är kontinuerlig p̊a (−2, 2), beräkna

lim
n→∞

√
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx.

(10 p)

This is actually a theory problem masquerading as a special functions
problem. So, we know that these Pn are an orthogonal basis for L2

on the interval [−1, 1]. By the assumption that f is continuous on the
larger interval (−2, 2), f is uniformly continuous on the closed interval
[−1, 1] and it is also bounded there. Hence, it’s in L2. Hence, we can
write it using a basis for L2. We see that the Pn do not have L2 norm
equal to one, so let us define

φn =
Pn
||Pn||

=

√
2n+ 1

2
Pn.

Then, the set {φn}n≥0 is an orthonormal basis for L2 of [−1, 1]. We
can express f in terms of this basis with

cn = 〈f, φn〉 =

√
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx.

Note that the complex conjugate in the definition of the inner product
is not there because everything is real. For real. Now, you can either
use Bessel’s inequality, or the fact that since it’s an ONB, we have

∞ > ||f ||2 =

∫ 1

−1
|f(x)|2dx =

∑
n≥0

c2n.

The terms in any convergent sum tend to 0, thus

lim
n→∞

c2n = 0 =⇒ lim
n→∞

cn = 0.

So, the limit we seek is 0.

7. Hitta det polynom av högst grad 2 som minimerar∫ 1

−1
| sin(πx)− p(x)|2dx.

(10 p)



One could easily be tempted to use the Legendre polynomials as or-
thonormal basis polynomials here, and I started doing it that way, and
it got all messy. So, I prefer the following solution, which is simpler.
We need to find the first three orthonormal polynomials, of degrees
0, 1, and 2, respectively, on L2([−1, 1]). The first one is of degree
zero thus it is a constant, and since we need it to have L2 norm 1, we
compute ∫ 1

−1
c2dx = 2c2 =⇒ p0 =

1√
2
.

Next, we compute the polynomial of degree one which is orthogonal
to p0 and also has L2 norm 1. Such a polynomial is of the form
p1(x) = ax+ b. Orthogonality to p0 requires∫ 1

−1

1√
2

(ax+ b)dx = 0 ⇐⇒ b = 0.

Next, we wish to have L2 norm one, and thus we compute∫ 1

−1
a2x2dx = 2a2

∫ 1

0
x2dx =

2a2

3
=⇒ a =

√
3

2
.

So,

p1(x) =

√
3

2
x.

Finally, for the orthogonality condition on the polynomial of p2, with
respect to p1, we have for a generic degree two polynomial, ax2+bx+c∫ 1

−1
(ax2 + bx+ c)

√
3

2
xdx = 0 ⇐⇒ b = 0.

We can spare ourselves some work here. The polynomial we seek is

a0p0 + a1p1 + a2p2,

where

ak =

∫ 1

−1
sin(πx)pk(x)dx = 〈sin(πx), pk〉.

Using the fact that the sine is an odd function,

a0 = 0, a2 =

∫ 1

−1
sin(πx)(ax2 + c)dx = 0.



Thus, we only need to compute

a1 =

√
3

2

∫ 1

−1
x sin(πx)dx =

√
6

∫ 1

0
x sin(πx)dx

= −
√

6x
cos(πx)

π

∣∣∣∣1
0

+
√

6

∫ 1

0

cos(πx)

π
dx

=

√
6

π
.

The polynomial we seek is

√
6

π

√
3

2
x =

3

π
x.

8. L̊at H vara halvskivan

H = {(x, y) ∈ R2 : y ≥ 0, x2 + y2 ≤ 1}.

Hitta alla λ < 0 och funktioner f 6≡ 0 s̊adana att det i polära koordi-
nater (r, θ) gäller att{

frr + r−1fr + r−2fθθ = −λf p̊a H, och

f = 0 p̊a ∂H.

(10 p)

This is classical separation of variables using polar coordinates. Write

f(r, θ) = R(r)Θ(θ).

The equation becomes

R′′Θ + r−1R′Θ + r−2RΘ′′ = −λRΘ.

Divide both sides by RΘ and multiply by r2.

r2
R′′

R
+ r

R′

R
+

Θ′′

Θ
= −r2λ.

Now, if we subtract the Θ′′/Θ from both sides we get

r2
R′′

R
+r

R′

R
+r2λ = −Θ′′

Θ
=⇒ both sides are equal a constant. (3)



Which part of the equation is simplest? (Well, the constant, but still,
I am talking about the Θ part!). Always start simple.

The boundary conditions require that

Θ(0) = Θ(π) = 0.

If you don’t see this, draw a picture of a half disk, centered at the
origin, like in the definition of H. The bottom flat boundary corre-
sponds to θ = 0 on the right half and θ = π on the left half. So,
we’re looking for functions Θ with Θ′′ equal to a constant times Θ and
Θ(0) = Θ(π) = 0. Look familiar? It’s not a coincidence! The only
solutions to this are constant multiples of

Θ = Θn(θ) = sin(nθ).

Then we have
Θ′′n
Θn

= −n2.

So, this tells us what constant to put into the equation (3) to solve for
R. We do this, and we are getting

r2
R′′

R
+ r

R′

R
+ r2λ = n2 ⇐⇒ r2R′′ + rR′ + (r2λ− n2)R = 0.

This is so close to Bessel’s equation, but not quite. Since we are told
to look for solutions with λ > 0, we can write

λ = µ2, µ > 0.

Let

R(r) = f(µr), R′(r) = µf ′(µr), R′′(r) = µ2f ′′(µr), x = µr.

Then, our equation for R becomes

x2f ′′(x) + xf ′(x) + (x2 − n2)f(x) = 0. (4)

Let us check out the very last Formula. It tells us that this is Bessel’s
equation of order n. The Bessel function Jn solves it. So, we have a
solution given by

f(x) = Jn(x) =⇒ R = Rn(r) = Jn(µr) solves (4).



What remains is to determine µ and therefore λ = µ2. To obtain
this, we use the boundary condition. We need to use Rn to make the
solution vanish along the circular arc, which is at r = 1. Therefore,
we need

Rn(1) = Jn(µ) = 0.

How do we do this? The Bessel functions have loads of positive zeros,
similar to how sines and cosines have loads of positive zeros. So, let
µ = µn,k be the kth positive zero of Jn. Then this guarantees that

Jn(µn,k) = 0.

Consequently, we actually have lots of Rn,k = Jn(µn,kr) for each of
the Θn(θ) = sin(nθ). Our set of solutions to the problem are

un,k(r, θ) = Jn(µn,kr) sin(nθ), λn,k = µ2n,k, n, k ∈ N.

Formler:

1. f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

2. f̂g(ξ) = (2π)−1(f̂ ∗ ĝ)(ξ)

3. ê−ax2/2(ξ) =
√

2π
a e
−ξ2/(2a)

4. L (H(t− a)f(t− a)(z)) = e−azL(f(z)), därH är Heavysidefunktionen.

5. Bessels ekvation av ordning n: x2f ′′ + xf ′ + (x2 − n2)f = 0.


