MATEMATIK

Chalmers Tekniska Hogskola

Dugga

Fourieranalys/Fourier Metoder, lp1, 2017

Skriv ditt namn och personnummer - tydligt!

1. (1P) Define the Fourier series of a function on $[-\pi, \pi]$. This includes defining the Fourier coefficients. For a function $f(x)$ defined on $[-\pi, \pi]$ the Fourier coefficients:

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

and the Fourier series is

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{i n x} .
$$

2. (1P)The Fourier series for $f(x)=x$ for the function $x \in(-\pi, \pi)$ is

$$
\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \sin (n x) .
$$

Evaluate

$$
\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \sin (3 \pi n / 2)
$$

We see here that $x=\frac{3 \pi}{2}$. This is outside of the interval $(-\pi, \pi)$. So we need to remember the whole copy-paste business: the Fourier series corresponds to the function inside the interval, but outside it is 2π periodic. To figure out the value of the series we observe that $3 \pi / 2-2 \pi=-\pi / 2$. This is inside the interval $(-\pi, \pi)$. The function f is continuous in the interval $(-\pi, \pi)$. Hence the series converges to the value of the function at $-\pi / 2$. Therefore:

$$
\sum_{n \geq 1} \frac{(-1)^{n+1}}{n} \sin (3 \pi n / 2)=-\frac{\pi}{2}
$$

3. (1P) Define the Fourier transform. For $f(x)$ in \mathcal{L}^{2} or \mathcal{L}^{1} we can define

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-i x \xi} d x
$$

4. (1P) Define convolution. For f and g both in \mathcal{L}^{2} we can define:

$$
f * g(x)=\int_{\mathbb{R}} f(x-y) g(y) d y
$$

5. (1P) What do you use to solve a PDE on \mathbb{R} : a Fourier series or the Fourier transform? What do you use to solve a PDE on $[-42,42]$: a Fourier series or the Fourier transform?
On \mathbb{R} we use the Fourier transform. On $[-42,42]$ we use a Fourier series.
