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1. (1P) To solve the initial value problem for the heat equation on R one can use

(a) the Fourier transform

(b) Fourier series

(c) neither of these

(d) both (a) and (b) will work.

The correct answer is A.

2. (1P) To solve the initial value problem for the wave equation on [0, 1] one can use

(a) the Fourier transform

(b) Fourier series

(c) neither of these

(d) both (a) and (b) will work.

The correct answer is B.

3. (1P) Assume f is continuously differentiable (C1) on [−π, π]. Let

cn =
1

2π

∫ π

−π
e−inxf(x)dx.

What can be said about ∑
n∈Z

cn?

(a) the series converges to
f(π) + f(−π)

2

(b) there is insufficient information about f to determine whether or not the series converges

(c) the series converges because it is bounded above by∫ π

−π
|f(x)|2dx

(d) the series converges to f(0)

We can see that this is the Fourier series for f evaluated at the point 0. That’s because∑
n∈Z

cne
i0n =

∑
n∈Z

cn.

By the theorem on the pointwise convergence of Fourier series, and since f is continuously differentiable
and thus continuous at 0, the Fourier series converges to f(0). So D is the correct answer.

4. (1P) Assume that f is continuous on [−π, π]. Define cn as in the previous problem. What can be said
about ∑

n∈Z

|cn|2?



MVE030/MVE290 2

(a) the series converges and is equal to ∫ π

−π
|f(x)|2dx

(b) the series converges and is equal to
f(π) + f(−π)

2

(c) the series converges because it is bounded above by:∫ π

−π
|f(x)|2dx

(d) none of these are correct

By the assumption that f is continuous on the closed interval, it is also bounded there. Consequently it
is in L2(−π, π). Bessel’s inequality therefore tells us that∑

n∈Z

|cn|2 ≤
1

2π

∫ π

−π
|f(x)|2dx ≤

∫ π

−π
|f(x)|2dx,

since 1
2π
< 1. So the correct answer is C.

5. (1P) Assume that f is in a Hilbert space, H. Let {φn}n∈N be an orthonormal set in H. Let f̂n = 〈f, φn〉.
What can be said about ∑

n∈N

f̂n?

(a) it is equal to f

(b) it is the “best approximation” of f

(c) both (a) and (b) are correct

(d) neither (a) nor (b) is correct

The thing above,
∑
n∈N f̂n, is a number. It is not an element of H. It is just a number. So D is the correct

answer here.


