
FOURIER ANALYSIS & METHODS LECTURE NOTES

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2020.01.20

According to Gerry, Fourier Analysis is “A collection of related techniques for
solving the most important partial differential equations of physics (and chem-
istry).” For example, we’re going to be solving partial differential equations, ab-
breviated PDEs

∆ Laplace equations (related to computing energy of quantum particles)
� wave equations (describes the propagation of waves, hence also of light and

electromagnetic waves)
Ξ heat equation (describes the propagation of heat, is the quintessential dif-

fusion equation)

What is a PDE?

Definition 1. A PDE is an equation for an unknown function (unsub) which
depends on n > 1 independent real variables. Writing u for the unknown function,

u : Rn → C.

The PDE for u is an equation that u is supposed to satisfy and contains u together
with one or more partial derivatives of u. The PDE may also contain other, specified
functions.

Example 1. The Laplace equation for a function on R2 is:

uxx + uyy = 0.

The Laplace operator on R2 is:

∆ = ∂xx + ∂yy,

so writing it this way the Laplace equation looks like

∆u = 0.

The wave equation for a function on R3 × [0,∞)t is

utt = uxx + uyy + uzz.
1



2 JULIE ROWLETT

Sometimes there is a constant on one side or the other, but mathematicians often
use interesting time units to be able to assume ‘without loss of generality’ this
constant is 1. The heat equation for a function on R× [0,∞)t is

ut = uxx.

Similarly, I like to assume the constant is 1.

1.1. The sound check analogy. Have you ever noticed that at a metal concert,
even if the band has played thousands of concerts, even in the exact same venue,
they always do a sound check? Do you know why? It’s because the sound produced
by the band obeys the wave equation. This equation is really hard to solve. More-
over, it is really sensitive to the geometry of the space where the band plays. Even
if it’s the same venue, the number of people inside is not the same, and these people
are part of the geometry of the space. So, every time they play, the band has to
do a sound check to see how the geometry of everything is affecting the solution of
the wave equation which is basically how the band sounds.

The wave equation, and indeed all PDEs are HARD to solve. There is no single
unifying theory to guide us to the solution of all PDEs. It’s like the metal band:
we have to do a sound check for each and every concert. There is no magic pre-set
we can use for all our concerts. Similarly, we have to deal with each and every PDE
individually and carefully. To solve them, we must study a variety of methods and
learn how to use these methods and combine them when possible.

1.2. The first method: Separation of variables (SV). If you come to the
(obligatory for Kf, option for TM and F) extra three lectures, you will learn how
to classify every PDE on the planet. For the great majority of these, we have no
hope to solve then analytically (that is, to write down a mathematical formula as
the solution to the PDE).

In case you have forgotten, here is a reminder.

Definition 2. An ODE is an equation for an unknown function (unsub) which
depends on one independent real variable. Writing u for the unknown function, an
ODE for u is an equation that u is supposed to satisfy and contains u together with
one or more derivatives of u. The ODE may also contain other, specified functions.

Question 3. What is the difference between an ODE and a PDE?1

So, to introduce the technique of separation of variables, let’s think about a
really down-to-earth example. A vibrating string, like the guitar or bass strings in
our metal band. The ends of the string are held fixed, so they’re not moving. You
know this if you play or watch people play guitar. Let’s mathematicize the string,
by identifying it with the interval [0, `] ⊂ R. The string length is `. Let’s define

u(x, t) := the height of the string at the point x ∈ [0, `] at time t ∈ [0,∞[.

1Answer: the unknown function (unsub) in an ODE depends on only one variable, so the
derivatives in the equation are ‘ordinary derivatives.’ The unknown function in a PDE depends
on at least two variables, so we can no longer speak of ordinary derivatives, because the only

derivatives that make sense when a function depends on two or more variables are partial deriva-
tives. So, it’s just a matter of how many variables does the unknown function in the equation
depend on?
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Then, let’s just define the sitting-still height to be height 0. So, the fact that ends
are sitting still means that

u(0, t) = u(`, t) = 0 ∀t.

A positive height means above the sitting-still height, whereas a negative height
means under the sitting-still height. The wave equation (I’m not going to derive it,
but maybe you clever physics students can do that?) says that:

uxx = c2utt.

The constant c depends on how fast the string vibrates.

Question 4. Is this equation a PDE or an ODE?2

Technique 0 = Separation of Variables starts like this: we assume that

u(x, t) = X(x)T (t),

that is a product of two functions, each of which depends only on one variable.
Why can we do this? Who knows, maybe it is rubbish! Maybe u is not of this
form. Kind of like the sound check: we guess at the sound levels and then play a
bit to see if it sounds good. Same here. We just have to try.

Assuming that u is of this form, we put this into the PDE:

uxx = c2utt ⇐⇒ X ′′(x)T (t) = c2X(x)T ′′(t).

Now, we would like to separate variables by getting everything dependent on x to
one side of the equation and everything dependent on t to the other side. To achieve
this, we divide both sides by X(x)T (t):

X ′′

X
(x) = c2

T ′′

T
(t).

Stop. Think. The left side depends only on x, whereas the right side depends only
on t.

Exercise 1. Explain in your own words why if one side of an equation depends on
x and the other side depends on t, then both sides must be constant.

What should we solve for first? X or T? We’ve got more information on X than
we do on T , because we know that the ends are still. This means that

X(0) = X(`) = 0.

So, the equation for just f is

X ′′

X
(x) = constant ,

X(0) = X(`) = 0.

Let’s give the constant a name. Call it λ. Then write

X ′′(x) = λX(x), X(0) = X(`) = 0.

Well, we can solve this. There are three cases to consider:

2Answer: it’s a PDE because the function depends on two independent variables: position on
the string x and time t.
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λ = 0 This means X ′′(x) = 0. Integrating both sides once gives X ′(x) = constant
= m. Integrating a second time gives X(x) = mx + b. Requiring X(0) =
X(`) = 0, well, the first makes b = 0, and the second makes m = 0. So,
the solution is X(x) ≡ 0. The 0 solution. The waveless wave. Not too
interesting.

λ > 0 The solution here will be of the form

X(x) = ae
√
λx + be−

√
λx.

Exercise 2. Show that it is equivalent to write the solution as A cosh(
√
λx)+

B sinh(
√
λx), for two constants A and B. Determine the relationship be-

tween A and B and a and b. Show that in order to guarantee that X(0) =
X(`) = 0 you need a = A = B = b = 0. You should do this exercise,
because it I strongly suspect you can do it. Think of it as a warm-up for
Folland’s exercises.

Thus, with our teamwork, (me providing hints and you doing the actual
work by solving the exercise) we have gotten the 0 solution again. The
waveless wave. No fun there.

λ < 0 Finally, we have solution of the form

a cos(
√
|λ|x) + b sin(

√
|λ|x).

To make X(0) = 0, we need a = 0. Uh oh... are we going to get that stupid
0 solution again? Well, let’s see what we need to make X(`) = 0. For that
we just need

b sin(
√
|λ|`) = 0.

That will be true if

|λ| = k2π2

`2
, k ∈ Z.

Super! We still don’t know what b ought to be, but at least we’ve found all
the possible X’s, up to constant factors.

Just to clarify the fact that we’ve now found all solutions, we recall here a
theorem from your multivariable calculus class.

th:omc Theorem 5 (Second order ODEs). Consider the second order linear homogeneous
ODE,

au′′ + bu′ + cu = 0, a 6= 0.

If b = c = 0, then a basis of solutions is given by

{x, 1},
so that all solutions are of the form

u(x) = Ax+B, A,B ∈ R.
If c = 0, then a basis of solutions is {e−b/ax, 1} so that all real solutions are given
by

u(x) = Ae−bx/a +B.

If c 6= 0, then a basis of solutions is one of the following:

(1) {er1x, er2x} if b2 6= 4ac, where

r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.
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(2) {erx, xerx} if b2 = 4ac, with r = − b
2a .

Exercise 3. Our equation is

X ′′ = λX ⇐⇒ X ′′ − λX = 0.

So, in the language of the above theorem, a = 1, b = 0, and c = λ. Use this to find
all solutions which satisfy X(0) = X(`) = 0.

The solutions we’ve found are, up to constant factors:

Xk(x) = sin

(
kπx

`

)
, λk = −k

2π2

`2
.

Do not worry about the constant factors at this point in time. Save
them for later.3

Now, let’s find the friends of X, the time functions, T which depend only on
time. These come in pairs, so that X1 comes together with T1. This is because
the value of the constant λ1, comes from X1. However, we’ve also got X2, and the
value of the constant λ2 is different. So, for each pair we have

X ′′k
Xk

= λk = −k
2π2

`2
= c2

T ′′k
Tk
.

This is almost the same equation we had before. Here we have, re-arranging:

T ′′k = −k
2π2

c2`2
Tk.

Exercise 4. Use Theorem
th:omcth:omc
5 to show that a basis of solutions is given by{

e
ikπt
c` , e−

ikπt
c`

}
.

Show that it is equivalent to use{
cos

(
kπt

c`

)
, sin

(
kπt

c`

)}
as a basis. Hint: remember eiθ = cos θ + i sin θ for i =

√
−1 for any θ ∈ R.

Let us pause to think about what this means. The physics students may recognize
that the numbers

{|λk|}k≥1
are the resonant frequencies of the string. Basically, they determine how it sounds.
The number |λ1| is the fundamental tone of the string. The higher |λk| for k ≥ 2
are harmonics. It is interesting to note that they are all square-integer multiplies
of λ1. Here’s a question: if you can “hear” the value of |λ1|, then can you tell me
how long the string is? Well, yes, cause

|λ1| =
1

`2
, =⇒ ` =

1√
|λ1|

.

So, you can hear the length of a string. A couple of famous unsolved math problems:
can one hear the shape of a convex drum? Can one hear the shape of a smoothly
bounded drum? We can talk about these problems if you’re interested.

3The reason we should do this is because the less baggage we are carrying around, (i.e. the
fewer symbols we got to write), the less likely we are to screw something up. So, we should

remember the patience principle and be patient, wait to get the constants later.
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So, now that we’ve got all these solutions, what should we do with them? Good
question...

1.3. Superposition principle and linearity. Superposition basically means adding
up a bunch of solutions. You can think of it like adding up a bunch of solutions to
get a super solution!

Definition 6. A second order linear PDE for an unknown function u of n variables
is an equation for u and its mixed partial derivatives up to order two of the form

L(u) = f,

where f is a given function, and there are known functions a(x), bi(x), cij(x) for
x ∈ Rn such that

L(u) = a(x)u(x) +

n∑
i=1

bi(x)uxi(x) +
n∑

i,j=1

cij(x)uij(x).

In this context, L is called a second order linear partial differential operator.

The reason it’s called linear is because it’s well, linear.

Exercise 5. For two functions u and v, which depend on n variables, show that

L(u+ v) = L(u) + L(v).

Moreover, for any constant c ∈ R, show that

L(cu) = cL(u).

Definition 7. The wave operator, �, defined for u(x, y) with (x, y) ∈ R2 is

�(u) = −uxx + c2utt.

Exercise 6. Verify that the wave operator is a second order linear partial differ-
ential operator.

We have shown that the functions

uk(x, t) = Xk(x)Tk(t)

satisfy

�uk = 0∀k.
Hence, if we add them up this remains true:

�(u1 + u2 + u3 + . . .) = 0.

OBS!4

Exercise 7. Show that the equations

X ′′k = λkXk ⇐⇒ f ′′k − λkXk = 0

do not add up. In particular, show that just the first two of these equations do not
add up,

X ′′1 +X ′′2 − (λ1 + λ2)(X1 +X2) 6= 0.

4I love this Swedish expression. Nothing quite like it in the languages I know. Well, the closest

is maybe which is also very cute.



FOURIER ANALYSIS & METHODS LECTURE NOTES 7

The reason these equations do not add up is because it’s not the same L. The
equation for Xk is

X ′′k − λkXk = 0.

This depends on k, and since each λ1 6= λ2 6= λ3, . . ., the differential operator is

Lk =
d2

dx2
+ λk.

This exercise shows that one must take care when smashing solutions (i.e. super-
posing) together!

When we look at the different uk(x, t) in the wave equation, it’s all good, because
it’s always the same wave operator. Hence, we may indeed smash all our solutions
together, include the (to be determined) coefficients, and write

u(x, t) =
∑
k≥1

uk(x, t) =
∑
k≥1

sin

(
kπx

`

)(
ak cos

(
kπt

c`

)
+ bk sin

(
kπt

c`

))
,

and it satisfies
�u(x, t) = 0, u(0, t) = u(`, t) = 0.

We’ve still got some unanswered questions:

(1) What are the constants ak and bk?
(2) If we can figure out what the constants are, then we are still left with this

thing: ∑
k≥1

sin

(
kπx

`

)
(ak cos(kπt/`) + bk sin(kπt/`)) .

Is this hot mess going to converge?

2. Exercises to be done by oneself

1.1.1 Show that u(x, t) = t−1/2e−x
2/(4kt) satisfies the heat equation

ut = kuxx.

1.2.5(a) Show that for n = 1, 2, 3, . . . un(x, y) = sin(nπx) sinh(nπy) satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

1.3.5 By separation of variables, derive the solutions un(x, y) = sin(nπx) sinh(nπy)
of

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

1.3.7 Use separation of variables to find an infinite family of independent solu-
tions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated.


	1. 2020.01.20
	1.1. The sound check analogy
	1.2. The first method: Separation of variables (SV)
	1.3. Superposition principle and linearity


