
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are
inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its

Applications, by Gerald B. Folland. He was the first math teacher I had at
university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...

1. 2019.01.22

Let’s look at another example. Consider a circular shaped rod, like a rod that’s
been bent into a circle. Let’s mathematicize it! To specify points on the rod, we
just need to know the angle at the point. For this reason, we use the real variable
x for the position, where x gives us the angle at the point on the rod. We use
the variable t ≥ 0 for time. The function u(x, t) is the temperature on the rod at
position x at time t.

The heat equation (homogeneous, which means no sources or sinks) tells us that:

ut = kuxx,

for some constant k > 0. At this point our only techniques are separation of
variables and superposition. We first use separation of variables to find solutions.
So, let us do the same first step as we did in solving the homogeneous wave equation.
It’s just a means to an ends, by writing

u(x, t) = X(x)T (t).

Plug it into the heat equation:

T ′(t)X(x) = kX ′′(x)T (t).

We want to separate variables, so we want all the t-dependent bits on the left say,
and all the x-dependent bits on the right. This can be achieved by dividing both
sides by X(x)T (t),

T ′(t)

T (t)
= k

X ′′(x)

X(x)
.

We now know that both sides must be constant. Let us call the constant λ, so that

T ′

T
= λ = k

X ′′

X
.

Exercise 1. In your own words, explain why both sides of the equation must be
constant.

Now, we need to pick a side to begin... We actually have some information which
is hiding inside the geometry of the problem. The geometry is referring to the x
variable. What can you say about the angle x on the rod and the angle x+ 2π on
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the rod? They are the same. This means that our temperature function must be
the same at x and at x+ 2π. So, we must have

X(x+ 2π) = X(x).

We can repeat this, obtaining

X(x+ 2πn) = X(x) ∀n ∈ Z.

This means that X is a periodic function with period equal to 2π. So, we have a
bit of extra information about it. The equation for X is:

X ′′(x) =
λ

k
X(x)

for a constant λ.

Exercise 2. Case 1: Show that if λ = 0, there is no solution to X ′′(x) = 0 which
is 2π periodic, other than the constant solutions.

Case 2: If λ > 0, then a basis of solutions is,

{e
√
λx/
√
k, e−

√
λx/
√
k}.

So, we can write

X(x) = ae
√
λx/
√
k + be−

√
λx/
√
k.

For the 2π periodicity to hold, we need

X(0) = X(2π) =⇒ a+b = ae
√
λ2π/

√
k+be−

√
λ2π/

√
k =⇒ a(e

√
λ2π/

√
k−1) = b(1−e−

√
λ2π/

√
k)

=⇒ a = b
(1− e−

√
λ2π/

√
k)

e
√
λ2π/

√
k − 1

.

We also need

X(−2π) = X(0) =⇒ a+b = ae−
√
λ2π/

√
k+be

√
λ2π/

√
k =⇒ a(e−

√
λ2π/

√
k−1) = b(1−e

√
λ2π/

√
k)

=⇒ a = b
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

So, we have two equations for a, therefore they should be equal:

a = b
1− e−

√
λ2π/

√
k

e
√
λ2π/

√
k − 1

= b
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

If b = 0 then a = 0 so the whole solution is the zero solution. If b 6= 0 then we must
have

1− e−
√
λ2π/

√
k

e
√
λ2π/

√
k − 1

=
1− e

√
λ2π/

√
k

e−
√
λ2π/

√
k − 1

.

Changing the sign of the top and bottom on the right side, this is equivalent to:

1− e−
√
λ2π/

√
k

e
√
λ2π/

√
k − 1

=
e
√
λ2π/

√
k − 1

1− e−
√
λ2π/

√
k
.

Call the left side ?. Then the right side is 1
? . So the equation is

? =
1

?
=⇒ ?2 = 1 =⇒ ? = ±1.

Exercise 3. Show that ? > 0.
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If

? = 1 =⇒ 1− e−
√
λ2π/

√
k = e

√
λ2π/

√
k − 1 =⇒ 2 = e

√
λ2π/

√
k + e−

√
λ2π/

√
k.

I don’t like the negative exponent thing (it is really a fraction), so I am going to

multiply by e
√
λ2π/

√
k. Also, doing this turns it into a quadratic equation:

2e
√
λ2π/

√
k = e4π

√
λ/
√
k + 1 ⇐⇒ e4π

√
λ/
√
k − 2e2π

√
λ/
√
k + 1 = 0

Now we can factor this equation because the left side is

(e2π
√
λ/
√
k − 1)2 = 0 =⇒ e2π

√
λ/
√
k = 1 ⇐⇒ 2π

√
λ/
√
k = 0 .

That  indicates a contradiction. Therefore, in the case where λ > 0, the only
solution which is 2π periodic is the zero solution.

Hence, we are left with Case 3: λ < 0. Then, a basis of solutions is

{sin(
√
|λ|x/

√
k), cos(

√
|λ|x/

√
k).

We need these solutions to be 2π periodic. They will be as long as
√
|λ|/
√
k is an

integer. So we need

λ < 0,

√
|λ|√
k

= n ∈ Z =⇒ λn = −n2k.

Hence, our solution

Xn(x) = an cos(nx) + bn sin(nx), n ∈ N0.

Exercise 4. Show that allowing complex coefficients, it is equivalent to use a basis
of solutions

{eπinx}n∈Z.
Find An and Bn in terms of an and bn so that

Xn(x) = Ane
inx +Bne

−inx.

Now, we can solve for the partner function, Tn(t). Since

T ′n(t)

Tn(t)
= λn = −n2k,

the equation for Tn is

T ′n(t) = −n2kTn(t).

Consequently,

Tn(t) = e−n
2kt up to constant factor.

So, we now have found the solutions

un(x, t) = Xn(x)Tn(t) = e−n
2kt(an cos(nx) + bn sin(nx)).

These solutions satisfy the heat equation

∂tun − k∂xxun = 0.

Let us define the heat operator for functions of one real variable and one time
variable,

Ξ := ∂t − k∂xx.
Then we have

Ξun(t) = 0∀n ∈ N0.
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Consequently, we can use the superposition principle to smash all these solutions
we have found into a super solution

u(x, t) =
∑
n≥0

un(x, t) =
∑
n≥0

e−n
2tk(an cos(nx) + bn sin(nx)).

We do this because we do not know how many of the un functions we will need. In
case we don’t end up needing them all, then their coefficients will be zero, so they
will just disappear on their own anyways. Let’s think about the physics. The rod
has some temperature function at time t = 0, which we call u0(x). Then u0(x) is
also a 2π periodic function. We would like

u(x, 0) = u0(x) ⇐⇒
∑
n≥0

an cos(nx) + bn sin(nx) = u0(x).

So, given u0(x), can we find an and bn so that this is true?
Fourier made the bold statement that we can do this. It took a long time to

rigorously prove him right (like 100 years, because this whole theory about Hilbert
spaces, measure theory, and functional analysis needed to get developed by Hilbert
& his contemporaries).

1.1. Introduction to Fourier Series of periodic functions. If we have a finite
one dimensional, connected set, then we can always mathematicize it as either (1) a
bounded interval or (2) a circle. When we take a bounded interval of length 2`, and
we take any function whatsoever on that interval, we can always extend it to the
rest of R to be 2` periodic, by simply repeating its values from the interval. Hence,
for both of these contexts we can do everything we desire with periodic functions.

Definition 1. A function f : R → R is periodic with period p iff for all x ∈ R,
f(x+ p) = f(x), and moreover, p > 0 is the smallest real number for which this is
true.

For example, sin(x) is periodic with period 2π. Our heat equation examples,
fn(x) = an cos(nx) + bn sin(nx) are periodic with period 2π/n. We shall prove a
super useful little lemma about periodic functions and their integrals.

Lemma 2 (Integration of periodic functions lemma). If f is periodic with period
p then for any a ∈ R ∫ a+p

a

f(x)dx

is the same.

Exercise 5. Give an example for how this fails to be true if the function f is not
periodic. That is, take some non-periodic function and show that integrating it from
say a to a+ p is not the same as integrating it from c to c+ p.

Proof: If we think about it, we want to show that the function

g(a) :=

∫ a+p

a

f(x)dx

is a constant function. This looks awfully similar to the fundamental theorem of
calculus. Now, this statement above is not true for non-periodic functions. So,
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we’re going to need to use the assumption that f is periodic with period p. This
tells us that f has the same value at both endpoints of the integral, so

f(a) = f(a+ p) =⇒ f(a+ p)− f(a) = 0.

Now, since we want to consider a as a variable, we don’t want it at both the top and
the bottom of the integral defining g. Instead, we can use linearity of integration
to write

g(a) =

∫ a+p

0

f(x)dx−
∫ a

0

f(x)dx.

Then, using the fundamental theorem of calculus on each of the two terms on the
right,

g′(a) = f(a+ p)− f(a) = 0.

Above, we use the fact that f is periodic with period p. Hence, g′(a) ≡ 0 for all
a ∈ R. This tells us that g is a constant function, so its value is the same for all
a ∈ R.

So you survived a bit of theory, now let’s return to our physical motivation!
We wanted to find coefficients so that the u(x, t) we found to solve the heat equa-
tion would match up with the initial data, u0(x). If it does, then (using some
advanced PDE theory beyond the scope of this humble course), u(x, t) is indeed
THE UNIQUE solution to the heat equation with initial data u0(x). Hence, u(x, t)
actually tells us the temperature on the rod at position x at time t. Cool. So,
setting t = 0 in the definition of u(x, t) we want

vxvx (1.1) u0(x) =
∑
n≥0

an cos(nx) + bn sin(nx).

It is totally equivalent to work with complex exponentials, because

cos(nx) =
einx + e−inx

2
, sin(nx) =

einx − e−inx

2i
.

Exercise 6. Show that we can write u0(x) as a series above in (
vxvx
1.1) if and only if

we can write
u0(x) =

∑
n∈Z

cne
inx.

Moreover, show that

c0 =
a0
2
, cn =

1

2
(an − ibn), n ≥ 1, cn =

1

2
(an + ibn), n ≤ −1.

Finally, use this to show that

a0 = 2c0, an = cn + c−n, n ≥ 0, bn = i(cn − c−n), n ≥ 0.

It is slightly more convenient for these purposes to do the calculation using the
{einx}n∈Z basis. This will be elucidated in a moment. The equation we want to
obtain is:

u0(x) =
∑
n∈Z

cne
inx.

The object on the right is a sum of coefficients cn ∈ C times functions einx. It is
simply a linear combination of the functions einx. If we could show that in a suitable
sense these functions for a sort of “basis” then we should be able to expand our
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function u0 in terms of this basis. Sure, the basis is infinite, so, you’ve graduated
to “linear algebra for adults,” in which your vectors are now infinite dimensional.
1 To continue with the linear algebra concept, we need a notion of dot product,
in order to expand u0 in terms of our basis functions einx. This is obtained using
something called a scalar product, or dot product, or inner product: they all mean
the same thing.

Definition 3. For two functions, f and g, which are real or complex valued func-
tions defined on [a, b] ⊂ R, we define their scalar product to be

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

We say that f and g are orthogonal if 〈f, g〉 = 0. We define the L2([a, b]) norm of
a function to be

||f ||L2([a,b]) =
√
〈f, f〉.

OBS! Learn this definition right now!!!! It is really important. Every detail:

〈f, g〉 =

∫ b

a

f(x)g(x)dx, ||f ||2 = 〈f, f〉.

Now, if you wonder why it is defined this way, that is because defining things this
way has the very pleasant consequence that it works. Meaning, when we define
things this way, we are able to use the separation of variables technique to solve
the PDEs.

2. Exercises to be done by oneself: Hints

1.1.1 Show that u(x, t) = t−1/2e−x
2/(4kt) satisfies the heat equation

ut = kuxx.

Hint: Use the product rule when you’re differentiating with respect to
t. When you’re differentiating with respect to x, remember that from x’s
perspective, t is just a constant.

1.2.5(a) Show that for n = 1, 2, 3, . . . un(x, y) = sin(nπx) sinh(nπy) satisfies

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

Hint: Use the product rule and remember that in the eyes of x, sinh(nπy)
is constant. Similarly, in the eyes of y, sin(nπx) is constant.

1.3.5 By separation of variables, derive the solutions un(x, y) = sin(nπx) sinh(nπy)
of

uxx + uyy = 0, u(0, y) = u(1, y) = u(x, 0) = 0.

Hint: Start by writing u(x, y) = X(x)Y (y). Plop it into the PDE. Get
all the x dependent terms to one side of the equation and the y dependent
terms to the other side. (probably do this by dividing by XY ). Solve for
X first. Use the conditions on X(0) = X(1) = 0. (Why?) Then once you
have found your Xs (there will be many!) find their partner functions. Use
the condition Y (0) = 0 (Why?) to help with this.

1Grigori Rozenblioum, who taught this class for many years, and is in general an awesome
mathematician, used to say “If you can pass this course, then you’ve earned the right to buy

Vodka at Systembolaget, regardless of your actual age.”
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1.3.7 Use separation of variables to find an infinite family of independent solu-
tions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated. Hint: Start by writing u(x, t) = X(x)T (t). Follow
the same type of procedure as for the preceding problem, but now you have
the conditions on X that X(0) = 0, X ′(`) = 0 (Why?) Find the X first
(there will be many!), and then use these to find their partner functions. It
will be kind of similar to the example from lecture today, but the boundary
conditions are different, so this will change things.
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