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Chapter 1

Classification of ODEs and PDEs

1.1 Motivation

Why is mathematics in general and differential equations in particular important for chem-
istry and physics? Mathematics allows us to quantify natural phenomena and make predic-
tions. For example, we might wish to know:

1. How much of each chemical do I need to obtain a certain chemical reaction?

2. How much of the product will I then obtain from this chemical reaction?

3. What temperature do I need for my reaction?

4. In biology and medicine: how much of a particular medication do I need for a particular
patient to treat their condition?

Math offers incredible predictive power and can be used to answer questions like these.
Chemical reactions generally look like

A+B → C.

During this process, the two compounds A and B combine to create C. While this is going
on, the amounts of A, B, and C are changing over time. Whenever quantities are chang-
ing over time, we can describe them using differential equations! Differential equations are
all about understanding quantities which change over time. If we can actually solve a dif-
ferential equation, then we can predict these quantities at any point in time. Hence - the
aforementioned incredible predictive power of mathematics!

1.2 Ordinary differential equations

Even though they are called ordinary, they really are anything but ordinary. Maybe we
should call them extraordinary differential equations?
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Definition 1.2.1 (ODE). An “ordinary differential equation” is an equation for an unknown
function which depends on one variable.

Inspired by crime shows, I like to call the unknown function in an ODE the “unsub.” We
use the variable u to represent the “unsub.” Here are some examples:

1. u′′ = u. Equivalently, we can write this ODE as u′′ − u = 0. Note here that we don’t
always write the independent variable. If the independent variable is time, denoted by
t, then we could write the same equation as

u′′(t)− u(t) = 0.

One reason we can omit the t (no tea no shade) is because the function u depends only
on one variable. So this shouldn’t cause any confusion.

2. Another ODE is:

u2 = u.

An ODE is an equation for an unknown function of one variable, so it doesn’t necessarily
contain the derivative of the unknown function.

3. Here is an ODE:

t2u′′(t) + tu′(t) + u(t) = 0.

4. Another ODE is:

u′′ + λu = 0,

where λ ∈ C is a constant. An example of this type is:

u′′ + 100u = 0.

5. The ODE:

u′′ = 0

we solved this morning. Let’s recall how we did that.

6. We also saw how to obtain all the solutions to the ODE:

au′′ + bu′ + cu = 0,

Let’s recall how to do this here as well.
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1.2.1 Classifying ODEs

To classify an ODE is a way to give it a name. What’s in a name? Would not a rose by
any other name smell as sweet? Indeed, a rose by any other name would smell as sweet.
However, if we want to search for information about roses, it really helps to know that a
rose is called a rose. If we wanted to know about roses, but we didn’t know what they are
called, how on earth could we do a google search? I suppose you could photograph a rose
with your phone and find some app which identifies flowers? To do this, you would at least
need to know that a rose is a flower (i.e. you would need to know the word “flower” and
what it means). Or, perhaps it would suffice to know that a rose is a plant, and then look
for an app which identifies plants. In any case, you need some key words to be able to search
for information.

It is the same idea with ODEs. I would like to teach you how to give names to the different
kinds of ODEs. In this way, if you encounter them in your career as a chemist, you will be
able to search for information about them. It does not help to search for information about
a second order linear ODE if the equation you have is a fourth order non-linear ODE. What
is true for second order linear ODEs does not apply whatsoever to fourth order non-linear
ODEs! So, we need to learn how to distinguish between the different types of ODEs.

What is the order?

1. Look in the equation. Look for the highest derivative. This is the order of the ODE,
and is also called the degree of the ODE.

2. Next, look in the equation and see what it is doing to u and its derivatives. In partic-
ular, the ODE is linear if and only if it is a linear combination of u and its derivatives.
So, nothing like

u2

is allowed. Similarly
uu

is strictly forbidden. If the equation is not linear, then well, we call it non-linear.

1.2.2 Examples

Determine the degree of these ODEs, and also whether or not they are linear:

y′ = 1 + y2

y′ = ay(b− y)

txẋ = 1

y′ = xy

y′ = 1− y2
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x2y′ + y = 0

y′′′ + 3y′′ + 3y′ + y = 0

y′′′′ + 4y′′′ + 6y′′ + 4y′ + y = 0

An alternative way to think about differential equations is to use the notion of an operator.

Definition 1.2.2. Every ODE has a canonically associated differential operator, L. To
determine the canonically associated ODE operator, L, the ODE should be re-arranged to
the form

L(u) = f,

where f is an explicitly specified (known) function.

. The idea here is that one takes u and all its derivatives, and shoves them over to the left
side of the equation. The right side of the equation is a known function (which could very
well be simply 0, the constant = 0 function). Each term on the left side of the equation can
involve the independent (input) variable of the unknown function, x, as well as the unknown
function u, and its derivatives. All of this collected together defines the ODE operator, L.
The right side of the equation must not contain either the unknown function, u, nor any of
its derivatives. We consider some of the examples above:

1. The ODE u′′ = u is of order two. To write the ODE u′′ = u using an operator, we
re-write it u′′ − u = 0. The operator is then defined to be in this case

L(u) = u′′ − u.

The ODE is
L(u) = 0.

In this case, f = 0.

2. The ODE uu + u2 = u is an ODE of order zero. This is because the unknown function
(zero-th order derivative) appears in the ODE, but there are no first or higher order
derivatives in the ODE. To write this ODE using an operator, we re-arrange it to

uu + u2 − u = 0, L(u) = uu + u2 − 2.

3. Another ODE is: u′′ + λu = 0. For this ODE, the operator is L(u) = u′′ + λu, where
λ is a constant.

4. The ODE u′ = 0 is a first order ODE.

5. What is the order of the ODE, u = 0?

These examples motivate another definition.
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Definition 1.2.3. Let L be an ODE operator, with associated ODE

L(u) = f(x).

We say that the ODE is homogeneous, if and only if f(x) ≡ 0.

Why we are bothering to introduce all of these notations and definitions? This is an
intelligent thing to be asking at this point. The reason we are doing this is because the aim
of this chapter is to classify ODEs, and later PDEs. Classifying ODEs and PDEs is a method
which gives a precise, technical description of every ODE and PDE in the universe. There
are different tools and techniques which are useful for solving different classes, or types, of
ODEs and PDEs. However, the tools and techniques which can solve one type of ODE or
PDE could fail miserably to solve other types of ODEs and PDEs. One would like to avoid
such failures. Knowing what kind of ODE or PDE one is trying to solve, by classifying the
equation, facilitates being able to solve it!

1.3 Classification of ODEs

Recall that a linear function, f , of several variables, x1, x2, . . . , xn, can always be expressed
as

f(x1, x2, . . . , xn) =
n∑
j=1

ajxj, aj ∈ R (or C) for j = 1, . . . , n.

We shall analogously define linear operators.

Definition 1.3.1. An ODE operator, L, is linear if it can be written as a linear combination
of the unknown function, u, and its derivatives. A linear ODE operator, L, of order n can
always be expressed as

L(u) =
n∑
j=1

aj(x)u(j).

Above, u denotes the unknown function, and u(j) denotes the jth derivative of u, where
u(0) = u. The coefficient functions aj(x) are specifically given by the ODE. A linear ODE
operator L has constant coefficients if and only if each of the functions aj(x) is a constant
function.

In the following chapter, we will see a method that will allow us to:

1. determine whether any homogeneous, linear ODE with constant coefficients is solvable
or it is not solvable;

2. for every solvable such ODE, determine all its solutions.

These techniques are pretty powerful, and surprisingly simple once one gets accustomed
to them. Before we get ahead of ourselves, let’s consider some examples.
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Exercise 1. Determine in each case the ODE operator, L, and its order. Is L linear or not?
Is the ODE homogeneous or not?

1. u′ + u′′ = 0.

2. eu + 1 = 0

3. 4x2u′′(x) + 12xu′(x) + 3u(x) = 0.

4. 2tu′4u = 3

5. u′(x)
u(x)

= ex

6. u′(x) = x
u(x)

7. u′′(x) = 5

8. u′(x) = x2

9. u′(x) + 5u(x) = 2

10. u′′ = −u

At this point, one should be able to flip open any book on ODEs and execute the following
tasks:

1. identify the ODE operator, L, and its order,

2. determine whether or not L is linear,

3. determine whether or not the ODE is homogeneous.

1.4 Classification of PDEs

Partial differential equations are called so because they involve partial derivatives. Partial
derivatives are only relevant in the context of functions of several variables.

Definition 1.4.1. A partial differential equation (PDE) for a function of n real variables is
an equation for an unknown function u : Rn → R. The order of the PDE is the order of the
highest partial derivative (or mixed partial derivative) which appears in the equation.

Here are some examples:

1. For a function u : R2 → R, the equation, uxx + uyy = 0. What order is this equation?
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2. For a function u : Rn → R, the equation,

n∑
j=1

ujj = λu, λ ∈ R.

What order is this equation?

3. For u : R3 → R, the equation

uxyz − exux = sin(yz).

What order is this equation?

We can also express partial differential equations using operators, and this will be quite
useful.

Definition 1.4.2. For a PDE of n real variables of order m, the associated PDE operator,
L, is defined so that the equation is equivalent to

L(u) = f,

where f is an explicitly specified function, with f : Rn → R. The PDE is homogeneous if
and only if f ≡ 0. The PDE is linear if and only if L(u) has the form

L(u) =
∑
|α|≤m

cα(x)∂αu.

It has constant coefficients if and only if cα(x) is constant for all α. Above, α is a multi-index
of length at most m, so that if α is a multi-index of length k, then α is of the form j1 . . . jk,
and

∂αu = ∂j1 . . . ∂jku,

where ∂j1 is the partial derivative in the j1 coordinate direction.

1.4.1 Classification of second order linear PDEs in two variables

As we have seen in Fourier Analysis, second order linear PDEs in two variables are in fact
very important, even if they may seem simple. They are in fact, not that simple, but
tractable. For problems in higher dimensions, it may often occur that the “action” is only
really occurring in one space direction. Thus, for the laws of physics (and the laws which
chemistry obeys as well), we only need to consider one space variable and one time variable:
two variables total. Another way in which we are dealing with a three dimensional problem,
but the problem can be reduced to a one (space) dimensional problem plus the time variable,
is when we are able to separate the different space directions and deal with them individually.

Why is it that so many important PDEs and ODEs (like those with names) are of order
two? This is due to the laws of physics, so many of which are written with second order PDEs
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and ODEs. Hence, when we want to understand the behavior of physical (and chemical)
systems, we use the laws of physics to describe these systems, and many of these laws are
written in the language of PDEs and ODEs. Luckily, many of these laws also happen to be
linear PDEs. There are some important equations which are non-linear, but those are much
more difficult to solve. However, a standard way to attack such problems is to linearize
them, that is to approximate the non-linear problem using a linear problem. It is therefore
important to non-linear problems as well to be fluent in the methods used for solving linear
PDEs.

To be able to apply the most relevant methods, it helps to be able to specify what type
of equation one would like to understand. Imagine trying to search in a library or scholarly
database: one needs some terminology in order to begin searching! We already have built
up some very useful terminology for classifying equations:

1. Is it an ODE or a PDE?

2. What order is the equation?

3. Is the equation homogeneous or inhomogeneous?

4. Is the equation linear or non-linear?

5. If the equation is linear, the does it have constant coefficients or not?

There are a few additional considerations and specifications for second order linear PDEs
in two variables. A second order linear PDE in two independent variables, written x and y,
can always be written as:

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G, A, . . . , G are functions of x and y.

A few important examples are:

1. the heat equation, ut = uxx, which has A = 1, E = −1, and the other capital letters,
B,C,D, F,G are all equal to zero. Note that here y = t is the time variable, whereas
x ∈ R or x in some bounded subset of R is the spatial variable.

2. The wave equation, utt = uxx. Setting y = t, the time variable, what are the values of
the coefficients here?

3. Laplace’s equation: uxx+uyy = 0. Same question: what are the values of the coefficients
in this case?

More generally, we have the following classifications:

1. Parabolic: if B2 − 4AC = 0.

2. Hyperbolic: if B2 − 4AC > 0.

3. Elliptic: if B2 − 4AC < 0.
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4. None of the above.

If at least one of the coefficients, A,B,C is non-constant, it could happen that none of
the above hold. However, if these three coefficients are all constant, clearly one of the three
conditions above must hold.

Exercise 2. Classify the heat equation, wave equation, and Laplace equation.

Exercise 3. Classify the following equations:

1. ut = uxx + 2ux + u

2. ut = uxx + e−t

3. uxx + 3uxy + uyy = sin(x)

4. utt = uuxxxx + e−t

Exercise 4. Investigate solutions of the form

u(x, t) = eax+bt

to the equation
ut = uxx.

Exercise 5. Solve:
∂u(x, y)

∂x
= 0.

Exercise 6. Solve:
∂2u(x, y)

∂x∂y
= 0.

Compare with the ODE u′′(t) = 0. How many solutions are there to the ODE, and what are
they? How many solutions are there to the PDE (above)? Describe them.
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Chapter 2

Systems of ODEs

Some Chalmers students may recall the Matlab project, Enzymkinetik, which contained
the unknown concentrations of four substances each as functions of time. To determine the
concentrations of these substances one must therefore solve a system of four first order ODEs.
There are many other circumstances in science and engineering which may arise in which
we have several functions representing quantities that depend on one another. In a chemical
reaction involving 10 different molecules, the quantities of all of these different molecules
depend on each other in a specific way. The way in which they depend on each other can
be expressed using differential equations! Many of these systems could be non-linear which
will create some difficulties. However, the first step to understanding non-linear ODEs (and
PDEs) is actually to understand their simpler, linear versions. So, we continue to consider
linear, constant coefficient homogeneous equations here.

2.1 Systems of ODEs in matrix-vector form

Definition 2.1.1. A first-order homogeneous system of constant coefficient, linear ODEs,
with n unknown functions u1, . . . , un, which each depend on one independent variable, often
denoted by t, is an equation

U ′ = MU, U :=


u1
u2
. . .
un

 ,
where M is an n× n matrix.

This equation looks a lot like the single differential equation

f ′ = cf, c is a constant.

Solutions to that equation are f(x) = aecx where a = f(0). So, it makes sense to look for a
vector version of such a solution for the matrix-vector equation

U ′ = MU.
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In particular, let’s first try a vector of the form

U =


c1e

r1t

c2e
r2t

...
cne

rnt

 .
Then

U ′ =


r1 0 . . . 0
0 r2 . . . 0
...

...
...

...
0 0 . . . rn

U.
Let us call the matrix

R =


r1 0 . . . 0
0 r2 . . . 0
...

...
...

...
0 0 . . . rn

 .
So, the equation is satisfied if and only if

U ′ = RU = MU ⇐⇒ U = R−1MU.

The inverse matrix

R−1 =


r−11 0 . . . 0
0 r−22 . . . 0
...

...
...

...
0 0 . . . r−1n


OBS! The inverse matrix is usually WAY more difficult to calculate. The reason this one is
so simple is because the matrix is diagonal. Now, in order to have

U = R−1MU =⇒ R−1M = the identity matrix,

which has ones on the diagonal and zeros everywhere else. By definition of inverse matrix,
then

M = R.

So, a vector of this form is only a solution when the matrix M is a diagonal matrix. When
M is a diagonal matrix, then the system of equation looks like:

u′1 = r1u1

u′2 = r2u2

...
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u′n = rnun.

In particular, these are just n equations that have nothing to do with each other. It’s not
super interesting, and we know how to solve these. What about when M is not of this form?

For general M , we will look for solutions of the form

U = V eλt, V ∈ Cn, λ ∈ C.

Then
U ′ = V λeλt = MU ⇐⇒ V λeλt = MV eλt.

Dividing both sides of the last equality by eλt, we see that a function U = V eλt is a solution
to the equation if and only if

MV = λV.

This holds if and only if V is an eigenvector for the matrix M , and λ is the corresponding
eigenvalue. Note that for U of this type,

U(0) = V.

Theorem 2.1.2. Let M be an n× n matrix. Then the eigenvalues of M are the roots of its
characteristic polynomial

p(x) = det(M − xI),

where I is the n×n identity matrix. There are precisely n eigenvalues, counting multiplicity,
denoted by λ1, λ2, . . .λn, with

p(x) = a
n∏
j=1

(x− λj),

for a constant a ∈ C, with each of λj ∈ C for j = 1, . . . , n. The eigenvalues which occur
precisely once are simple. Each eigenvalue has one or more corresponding eigenvectors, so
that for an eigenvalue λ, there is at least one vector V ∈ Cn with

MV = λV.

Exercise 7. Show that if M has real valued matrix entries and λ ∈ C is an eigenvalue of
M , then λ is also.

The eigenvalues of the n× n matrix, M , are the roots of its characteristic polynomial,

p(x) = det(M − xI).

Above, I is the n×n identity matrix, which has ones along the diagonal and zeros everywhere
else. The polynomial p(x) is a polynomial of degree n. By the Fundamental Theorem of
Algebra, the characteristic polynomial factors over C, so that

p(x) = a

n∏
j=1

(x− λj), λ1, . . . , λn ∈ C.
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The numbers λj don’t need to be different, they could all be the same. For example, the
matrix

M = I =⇒ p(x) = det(I−xI) = (1−x)n = (−1)n
n∏
j=1

(x−1) =⇒ λ1 = λ2 = . . . = λn = 1.

The number of times a specific number appears in the list λ1, . . . , λn is its algebraic multi-
plicity.

Actually finding the eigenvalues of a matrix is pretty annoying, and it becomes more and
more annoying the larger the matrix is. Fortunately, matrices come up all over the place;
did you know that Google is fundamentally based on really large matrices? So, the good
news is that one must simply stick the matrix into a computer program or a sophisticated
calculator, and technology does the annoying work. The skills required by the human are
thus reduced to the following tasks:

1. Do the individual equations each only have one unknown function in them? If so, then
we can solve all the equations individually.

2. If not, then put the system of first order equations into matrix-vector form, defining
M and U as above according to your equations. (If the matrix is diagonal then the
individual equations only have one unknown function in each, so return to step one).

3. Ask a computer to find the eigenvectors and eigenvalues of the matrix.

4. If there are no initial conditions, then any

V eλt,

such that V is an eigenvector with eigenvalue λ is a solution.

5. If the initial condition, U(0) is specified, then there is a solution if and only if there is
an eigenvector V asuch that

U(0) = V

If so, then U(t) = V eλt is the solution, where λ is the eigenvalue for V .

A more sophisticated way to explain the last condition above is that we are checking to
see if the initial data U(0) is in one of the eigenspaces. For an eigenvalue λ, the eigenspace
associated to λ is the span of all the eigenvectors which have eigenvalue equal to λ.

2.1.1 Turning a higher order ODE into a system of first order
ODEs

Another way to obtain a first-order homogeneous system of constant coefficient, linear ODEs
is to start with a higher order ODE. For example, consider the equation

u′′′ + 2u′′ − u′ + 3u = 0.
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Exercise 8. Classify the above equation.

This is a linear, homogeneous ODE with constant coefficients. We can use the same
matrix-system technique to solve this higher order equation in the following way. Let u0 = u,
u1 = u′, u2 = u′′. We can write the ODE as

u′0 = u1, u′1 = u2, u′2 = −2u2 + u1 + 3u0.

Let

U =

u0u1
u2

 .
The equation is now

U ′ =

 u1
u2

3u0 + u1 − 2u2

 = MU,

where

M =

0 1 0
0 0 1
3 1 −2

 .
To solve the system:

1. Begin by classifying the ODE. Make sure it is linear, has constant coefficients, and is
homogeneous. Assume it has degree n.

2. Define

U =


u0
u1
. . .
un−1


with

u0 = u, u1 = u′, . . . , un−1 = u(n−1),

where u is the unknown function we seek to satisfy the ODE.

3. Look at the ODE. Re-arrange it to look like:

u(n) = . . . ,

where the right side contains u and its derivatives of order less than n.
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4. Remember that, the way we’ve defined things,

u′0 = u1

u′1 = u2

u′2 = u3
...

u′(n−1) = u(n) = . . . terms with u0, u1, and up to un−1. (2.1.1)

Collect these equations to define a matrix M such that the ODE is equal to

U ′ =


u′0
u′1
. . .
u′n−1

 = MU = M


u0
u1
. . .
un−1

 .

5. Use software to find the eigenvalues and eigenvectors of M .

Exercise 9. Put the following systems of ODEs into matrix form:

1. u′1 = 4u1 + 7u2 und u′2 = −2u1 − 5u2

2. u′1 = 3u2 + u3, u
′
2 = u1 + u2 + u3, u′3 = 0.

Put the following higher order ODEs into matrix form:

1. 2y′′ − 5y′ + y = 0

2. y(4) − 3y′′ + y′ + 8y = 0

Tip: In order for a system of ODEs to be solvable, one requires the same number of
linearly independent equations as the number of unknown functions. The reason for this is
that to use a matrix and its eigenvalues, one needs the matrix to be square, that is the same
number of columns as rows. There is no such thing as the eigenvalue or eigenvector of a
non-square matrix. Once the system of ODEs has been put into matrix form, as

U ′ = MU,

then one solves for the eigenvalues of M and corresponding eigenvectors.
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2.1.2 Summary

For a system of first order, linear, homogeneous ODES (whether it came from a higher order
ODE or not), write it as

U ′ = MU,

where M is a matrix.

1. Is M an n × n matrix for some n ∈ N? If the answer is yes, then we can continue to
find the solutions. If the answer is no, then we stop.

2. In case M is an n×n matrix, use some technological assistance to find all its eigenvalues
and corresponding eigenvectors.

3. General solutions, without any specified data, are all functions of the form

U(t) = V eλt,

such that V is in the eigenspace of λ, and λ is an eigenvalue of M .

4. To find a particular solution, we need to know the initial data,

U(0).

There exists a particular solution if and only if for some eigenvalue λ, U(0) is contained
in the eigenspace of λ. (Remember the eigenspace is the span if the eigenvectors who
have eigenvalue equal to λ.)

2.2 The magical Laplace transform

Later in this course, we will learn about something known as the Laplace transform. It is
defined for functions which do not grow super-exponentially.

Definition 2.2.1. Assume that

f(t) = 0 ∀t < 0, (2.2.1)

and that there exists a, C > 0 such that

|f(t)| ≤ Ceat ∀t ≥ 0. (2.2.2)

Then for we define for z ∈ C with <(z) > a the Laplace transform of f at the point z to be

Lf(z) =

∫ ∞
0

f(t)e−ztdt.
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Exercise 1. Show that if f is continuous and piecewise C1 on [0,∞), and f ′ satisfies (2.2.2)
and (2.2.1), then

L(f ′)(z) = zLf(z)− f(0).

(Hint: integrate by parts!)

The Laplace transform can be used to solve any linear, constant coefficient ODE, whether
it is homogeneous or not! This is super amazing. Time permitting, we will learn how to do
this here.

Proposition 2.2.2. Assume that everything is defined, then

L(f (k))(z) = zkLf(z)−
k∑
j=1

f (k−j)(0)zj−1.

Proof: Well clearly we should do a proof by induction! Check the base case first:

L(f ′)(z) = zLf(z)− f(0).

Here k = 1 and the sum has only one term with j = k = 1. It works. Now we assume the
above formula holds and we show it for k + 1. We compute

L(f (k+1))(z) = L((f (k))′)(z) = zL(f (k))(z)− f (k)(0).

By induction this is

z

(
zkLf(z)−

k∑
j=1

f (k−j)(0)zj−1

)
− f (k)(0).

This is

zk+1Lf(z)−
k∑
j=1

f (k−j)(0)zj − f (k)(0).

Let us change our sum: let j + 1 = l. Then our sum is

k+1∑
l=2

fk−(l−1)(0)zl−1 =
k+1∑
l=2

f (k+1−l)(0)zl−1.

Observe that
f (k)(0) = fk+1−1(0)z1−1.

Hence

−
k∑
j=1

f (k−j)(0)zj − f (k)(0) = −
k+1∑
l=1

f (k+1−l)(0)zl−1.

So, we have computed

L(f (k+1))(z) = zk+1Lf(z)−
k+1∑
l=1

f (k+1−l)(0)zl−1.

That is the formula for k + 1, which is what we needed to obtain.
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