
FOURIER ANALYSIS & METHODS

JULIE ROWLETT

Abstract. Caveat Emptor! These are just informal lecture notes. Errors are

inevitable! Read at your own risk! Also, this is by no means a substitute

for the textbook, which is warmly recommended: Fourier Analysis and Its
Applications, by Gerald B. Folland. He was the first math teacher I had at

university, and he is awesome. A brilliant writer. So, why am I even doing

this? Good question...
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Proposition 1. On the interval [−π, π], the functions

φn(x) =
einx√

2π

are an orthonormal set with respect to the scalar product,

〈f, g〉 =

∫ π

−π
f(x)g(x)dx.

Proof: By definition, we consider∫ π

−π

einx√
2π

eimx√
2π
dx.

We bring the constant factor out in front of the integral the constant factor, and
we recall that eimx = e−imx, so we are computing

1

2π

∫ π

−π
einxe−imxdx.

Exercise 1. Why is

eimx = e−imx?

Explain in your own words or prove it algebraically.

So, we compute,∫ π

−π
eix(n−m)dx =

2π m = n
eix(n−m)

n−m

∣∣∣π
x=−π

n 6= m
.

Now, we know that

eiπ(n−m) =

{
1 n−m is even

−1 n−m is odd.
.

To see this, I just imagine where we are on the Liseberghjul... Or you can write
this out as

eiπ(n−m) = cos(π(n−m)) + i sin(π(n−m)).
1
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The sine term is always zero since n and m are integers, and the cosine is either 1
or −1. Similarly,

e−iπ(n−m) =

{
1 n−m is even

−1 n−m is odd.
.

So in all cases, when n 6= m,

eiπ(n−m) − e−iπ(n−m) = 0.

Hence,

1

2π

∫ π

−π
einxe−imxdx =

{
2π
2π = 1 n = m

0 n 6= m
.

This is precisely what it means to be orthonormal!

So, now we know that {φn(x)}n∈Z are an orthonormal set. We want them to
actually be an orthonormal basis, so that we can write for any u0(x),

u0(x) =
∑
n∈Z

cnφn(x), φn(x) =
einx√

2π
.

In analogue to linear algebra, we should expect the coefficients to be the scalar
product of our function u0(x) with the basis functions (vectors), φn(x). More
generally, for a 2π periodic function v(x), we hope to be able to write it as

v(x) =
∑
n∈Z

cnφn(x), cn =

∫ π

−π
v(x)φn(x)dx =

1√
2π

∫ π

−π
v(x)e−inxdx,

so that

v(x) =
∑
n∈Z

(
1

2π

∫ π

−π
f(ξ)e−inξdξ

)
einx.

This motivates:

Definition 2. Assume f is defined [−π, π]. The Fourier coefficients of f are

cn :=
1

2π
〈f, einx〉 =

1

2π

∫ π

−π
f(x)e−inxdx.

The Fourier series of f is ∑
n∈Z

cne
inx.

1.1. Computing Fourier series. Let’s start with the function f(x) = |x|. It
satisfies f(−π) = f(π). We will prove later that the Fourier series which is defined
to be ∑

n∈Z
cne

inx, cn =
1

2π

∫ π

−π
f(x)e−inxdx

converges to f(x) for all points x ∈ (−π, π). What happens at the endpoints
±π? We must postpone this question for now. Looking at the series, we make the
following observation ∑

n∈Z
cne

in(x+2π) =
∑
n∈Z

cne
inx.
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Consequently, the series is 2π periodic. So, although the series will converge to
f(x) = |x| for x ∈ (−π, π), because we are going to prove that it does, once we
leave this interval, the series will no longer converge to f(x) = |x|. The series will
converge to the function which is equal to f(x) = |x| inside the interval (−π, π),
and which is 2π periodic on the whole real line. So, the function to which the series
converges has a graph that looks like a zig-zag. It’s really important to keep this
in mind.

So, now let’s compute the Fourier coefficients:

cn =
1

2π

∫ π

−π
|x|e−inxdx, c0 =

1

2π

∫ π

−π
|x|dx =

2π2

2(2π)
=
π

2
.

Since

|x| =

{
−x x < 0

x x ≥ 0

we compute: ∫ 0

−π
−xe−inxdx,

∫ π

0

xe−inxdx.

We do substitution in the first integral to change it:∫ 0

−π
−xe−inxdx =

∫ π

0

xeinxdx =
xeinx

in

∣∣∣∣π
0

−
∫ π

0

einx

in
dx

=
πeinπ

in
− einπ

(in)2
+

1

(in)2
.

Similarly we also use integration by parts to compute∫ π

0

xe−inxdx =
xe−inx

−in

∣∣∣∣π
0

−
∫ π

0

e−inx

(−in)
dx

=
πe−inπ

−in
− e−inπ

(−in)2
+

1

(−in)2
.

Adding them up and using the 2π periodicity, we get

2einπ

n2
− 2

n2
=

2(−1)n − 2

n2
.

OBS! We need to divide by 2π to get

cn =
(−1)n − 1

πn2
, n ∈ Z \ {0}.

The Fourier series is therefore

π

2
+

∑
n∈Z, odd

einx
(
− 2

πn2

)
.

Exercise 2. Use these calculations to compute the series∑
n≥0

an cos(nx) + bn sin(nx)

and to show that all of the bn are equal to zero.
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Now let’s return to our example from Wednesday. We wish to solve the heat
equation on a circular rod. Let

u(x, t) = the temperature at the point/angle x and time t.

Then the heat equation (physics!) dictates that

ut − kuxx = 0 ∀x ∈ R, t > 0.

Above k > 0 is a constant which comes from - you guessed it - physics! There is
some initial temperature along the rod as well,

u(x, 0) = f(x).

Since the rod is circular,

u(x+ 2π, t) = u(x, t) ∀x ∈ R,

so similarly,

f(x+ 2π) = f(x) ∀x ∈ R.
When we solved the heat equation using separation of variables we obtained a
solution which could be written either using complex exponentials or using sines
and cosines. For simplicity, I am taking the complex exponentials,

u(x, t) =
∑
n∈Z

e−n
2ktcne

inx.

So, we would like

u(x, 0) =
∑
n∈Z

cne
inx = f(x).

Now we know how to find the coefficients,

cn =
1

2π

∫ π

−π
f(x)e−inxdx.

For the function, for example, f(x) = |x| for x ∈ (−π, π) which is defined on the
rest of the real line to be 2π periodic, this is a function which makes sense as the
initial temperature of the rod. We have computed these coefficients. The theory
we will prove later will show that the Fourier series converges to f(x) for all x ∈ R.
Moreover, the theory will show that our solution u(x, t) is the unique solution to
the heat equation with initial condition given by f . Nice!

We are not limited to computing Fourier series of periodic functions, it’s just that
Fourier series will always be periodic functions themselves. For example, consider
the function f(x) = x defined on (−π, π). By the theory we shall prove later, the
Fourier series will converge to this function inside the interval (−π, π). Outside this
interval, the series will converge to a function which is 2π periodic, and is equal
to x for x ∈ (−π, π). So this will have little jumps at the points (2n + 1)π for
n ∈ Z. It will be discontinuous there. We don’t need to worry about that, it’s no
problem whatsoever. For the moment we just are content that the Fourier series
will converge to f(x) = x for x ∈ (−π, π). This is because in our applications, we
will use these series to solve PDEs in bounded intervals. For now we are working
with the bounded interval (−π, π) but later we’ll see that we can use the same
techniques to handle any bounded interval.
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Exercise 3. Compute in the same way the Fourier coefficients

cn =
1

2π

∫ π

−π
xe−inxdx n ∈ Z.

Use that calculation to show that an = 0 for all n, and then compute the Fourier
sine series, ∑

n≥1

bn sin(nx).

Exercise 4. Look at these two Fourier series, that is the series for |x| and x. Do
the series converge? Do they converge absolutely? Compare and contrast them!

1.2. Introducing Hilbert spaces. A Hilbert space is a complete normed vector
space whose norm is induced by a scalar product.

Definition 3. A Hilbert space, H, is a vector space. This means that H is a set
which contains elements. If f and g are elements of H, then for any a, b ∈ C we
have

af + bg ∈ H.
This is what it means to be a vector space. Moreover, Hilbert spaces have two
other nice features: a scalar product and a norm. Let us write the scalar product
as

〈f, g〉 : H ×H → C.
To be a scalar product it must satisfy:

〈af, g〉 = a〈f, g〉 ∀a ∈ C,

〈h+ f, g〉 = 〈h, g〉+ 〈f, g〉,
and

〈f, g〉 = 〈g, f〉.
The norm is defined through the scalar product via:

||f || :=
√
〈f, f〉.

The norm must satisfy

||f || = 0 ⇐⇒ f = 0, ||f + g|| ≤ ||f ||+ ||g||.
Finally, what it means to be complete is that if a sequence {fn} ∈ H is Cauchy,
which means that for any ε > 0 there exists N ∈ N such that

||fn − fm|| < ε ∀n,m ≥ N,
then there exists f ∈ H such that

lim
n→∞

fn = f,

by which we mean that

lim
n→∞

||fn − f || = 0.

Exercise 5. As an example, we can take H = Cn. For z = (z1, z2, . . . , zn) ∈ Cn
and w = (w1, . . . , wn) ∈ Cn the scalar product

〈z, w〉 :=

n∑
j=1

zjwj .
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Show that the scalar product defined in this way satisfies all the demands made upon
it in the definition above. Why is H = Cn complete?

Now, let us fix a finite interval [a, b]. We shall be particularly interested in a
Hilbert space known as L2([a, b]) or once we have specified a and b, simply L2. This
is the actual grown-up mathematician definition of the Hilbert space, L2. It can be
gleefully ignored.

Definition 4 (The precise definition of L2). The Hilbert space L2([a, b]) is the set
of equivalence of classes of functions where f and g are equivalent if

f(x) = g(x) for almost every x ∈ [a, b] with respect to the one dimensional Lebesgue measure.

Moreover, for any f belonging to such an equivalence class, we require

l2finitel2finite (1.1)

∫ b

a

|f(x)|2dx <∞.

If f and g are each members of equivalence classes satisfying (
l2finitel2finite
1.1) the scalar product

of f and g is then defined to be

l2spl2sp (1.2) 〈f, g〉 =

∫ b

a

f(x)g(x)dx.

One can prove that with this definition we obtain a Hilbert space.

Theorem 5. The space L2([a, b]) for any bounded interval [a, b] defined as above,
with the scalar product defined as above, is a Hilbert space.

This theorem is beyond the scope of this course. Moreover, the precise mathe-
matical definition of L2 is overkill for what we would like to do (solve PDEs). This
is why I offer you:

Definition 6 (Our working-definition of L2). L2([a, b]) is the set of functions which
satisfy (

l2finitel2finite
1.1), and is equipped with the scalar product defined in (

l2spl2sp
1.2).

Although we don’t necessarily need it right now, you may be happy to know that
the L2 scalar product satisfies a Cauchy-Schwarz inequality,

|〈f, g〉| ≤ ||f ||||g||.

Exercise 6. Use the Cauchy-Schwarz inequality to prove that for any f ∈ L2 on
the interval [−π, π], the Fourier coefficients,

cn =
1

2π

∫ π

−π
f(x)e−inxdx,

satisfy

|cn| ≤
||f ||√

2π
.

2. Exercises to be done by oneself: Answers

1.3.7 Use separation of variables to find an infinite family of independent solu-
tions to

ut = kuxx, u(0, t) = 0, ux(`, t) = 0,

representing heat flow in a rod with one end held at temperature zero and
the other end insulated.
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Answer:

un(x, t) = e−(2n+1)2π2kt/(4l2) sin

(
(2n+ 1)πx

2l

)
.
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