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1. ALGEBRAS, SIGMA ALGEBRAS, AND MEASURES

We begin by defining an algebra. This could also be called “an algebra of sets.” Below we use
the notation
P(X) = the set of all subsets of X.

Definition 1.1. Let X be a set. A subset A C P(X) is called an algebra if

(1) Xe A

2)YeAd = X\Y=Yced

3) A, Be A= AUBecA
A is a o-algebra if in addition

{AnlnenCA = | JAn € A
neN
Remark 1. First, note that since X C A, and algebras are closed under complementation, (yes
it is a real word), one always has
h=X°e A
Moreover, we note that algebras are always closed under intersections, since for A, B € A,
ANB=(A°UB°° € A,

since algebras are closed under complements and unions. Consequently, o-algebras are closed
under countable intersections.

We will often use the symbol ¢ in describing countably-infinite properties.

Exercise 1. What is the smallest possible algebra? What is the next-smallest algebra? Continue
building up algebras. Now, let X be a topological space. The Borel o-algebra is defined to be the
smallest o-algebra which contains all open sets. What other kinds of sets are contained in the
Borel o-algebra?
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With the notion of o-algebra, we can define a measure.

Definition 1.2. Let X be a set and A C P(X) a o-algebra. A measure p is a countably
additive, set function which is defined on the o-algebra, A, such that (@) = 0. The elements
of A are known as measurable sets. We will only work with non-negative measures, but there
is such a thing as a signed measure. Just so you know those beasties are out there. Countably
additive means that for a countable disjoint collection of sets in the o-algebra

{4,} C Asuch that A, NA,, =0Vn#m = u (U An> = Z“(A")'

We shall refer to (X, A, 1) as a measure space. What this means is that a measure space is
comprised of a big set, X, and a certain collection of subsets of X, which is the o-algebra, A.
Moreover, there is a measure, 1, which is a countably additive set function that is defined on
all elements of A.

Proposition 1.3 (Measures are monotone). Let (X, A, u) be a measure space. Then p is
finitely additive, that is if AN B =0 for two elements A, B € A, we have

u(AU B) = pu(A) + pu(B).
Moreover, p is monotone, that is for any A C B which are both elements of A we have
H(A) < (B).

Proof: First we make the rather trivial observation that if A and B are two elements of A
with empty intersection, then

AUB=UA;, A=A, Ay=B, A =0Vj>3.

Then we have
HAUB) = p(UAj) = 3 i(Ay) = p(A) + p(B),

since p(@) = 0. For the monotonicity, if A C B are two elements of A, then
W(B) = u(B\ AUA) = u(B\ A) + p(A) > p(A),

since p > 0. t

So, in layman’s terms, when we’ve got a measure space, we have a big set, X, together with
a collection of subsets of X (note that X is a subset of itself, albeit not a proper subset), for
which we have a notion of size. This size is the value of the function p. So, if Y € A, then
w(Y) is the measure of Y. Roughly speaking, x(Y") tells us how much space within X the set
Y is occupying. For the case of the Lebesgue measure on R", and the n-dimensional Hausdorff
measure, we shall see that measure coincides with our usual notion of n-dimensional volume.

Proposition 1.4 (How to disjointify sets and countable sub-additivity). If {A,} C A is a
countable collection of sets, then we can find a disjoint collection {B,} C A such that

UA, = UB,,.

Let 1 be a measure defined on the o-algebra, A. Then countable sub-additivity holds for not-
necessarily-disjoint countable collections of sets, which means that for all such {A,} as above,

p(UAL) <) p(An).
Proof: We do this by setting
By :=A:, B,:=A,\UZ By, n>2.
Then for m > n, note that
B, N B, = (A, \UP'By) N B, =0
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since
B, C Ul ' By,
since n < m — 1. Thus they are in fact disjoint. Moreover,
By =A;, BsUBy=As\ A1 UA; = Ay U A;.

Similarly, by induction, assuming that

Ur=1Br = U1 4k,
we have

Ut By, = Bpy1 UUR_ By, = Apy1 UUR_ By = Ay UUR_ A,

where in the last equality we used the induction hypothesis. Thus,

Un>1Bn = Up>14,.

Moreover, the way we have defined B,, together with the definition of the o-algebra, A, shows
that B,, € A for all n. By the monotonicity of p,

B, C A,Vn = u(By,) < pu(Ay).
By the countable additivity for the disjoint sets, { B, }, and since UB,, = UA,,
(UA,) = p(UB,) = ZM(Bn) < ZN(AH)-

So, for not-necessarily disjoint sets, we have countable subadditivity, which means that

n(UA,) < Z p(An),

|

for all countable collections of sets {A,} C A.
Definition 1.5. A measure space (X, A, u) is o-finite if there exists a collection of sets {4, } C
A such that

X =UA,, and pu(A,) <oco Vn.

Exercise 2. What are some examples of o-finite measure spaces? What are some examples of
measure spaces which are not o-finite?

One unfortunate fact about measures is that they’re not defined on arbitrary sets, only on
measurable sets (remember, those are the ones in the associated o algebra). However, there is
a way to define a set function which is almost like a measure and is defined for every imaginable
or unimaginable set. This thing is called an outer measure.

Definition 1.6. Let X be a set. An outer measure p* on X is a map from P(X) — [0, 00]
such that

p (@) =0, ACB = p*(A) <p"(B),
and

pr(UA,) < Z 1 (An).

Whenever things are indexed with n or some other letter and are not obviously indicated to be
uncountable or finite, we implicitly are referring to a set indexed by the natural numbers.
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1.1. Carathéodory’s outer measures. We will require techniques from a great French math-
ematician, Carathéodory.

Proposition 1.7 (Outer Measures). Let E C P(X) such that ) € E. Let p be a map from
elements of E to [0, 00] such that p(§) = 0. Then we can define for every element A € P(X)

p*(A) :=inf {Zp(E]) cE;e EJAC UEj},

where we assume that inf{(}} = oo, so that if it is impossible to cover a set A by elements of F
then p*(A) := oo. So defined, p* is an outer measure.

Proof: Note that p* is defined for every set. Now since () C ) = UE}, taking all E; =0 € E
we have the cover for () given by this particular choice of {E;} C E. Therefore, since p > 0, we
have that p* > 0, and on the other hand since it is an infimum,

0<p(0) < Zp(@) =0 = p*(0) =0.

This is the first condition an outer measure must satisfy.

Next, let’s assume A C B. (By C we always mean C). Then, since any covering of B by elements
of F is also a covering of A by elements of F, it follows that the infimum over coverings of A
is an infimum over a potentially larger set of objects (namely coverings) as compared with the
infimum over coverings of B. Hence we have

p*(A) =inf{> p(E;): E; € E,A € UE;} <inf{> p(E;): E; € E,B € UE;} = p*(B).

This is the second condition.
Finally, we must show that p* is countably subadditive. So, let {A, } be a collection of sets in
P(X). If for any n we have no cover of A,, by elements of F, then since

Ap C UL Ag,
there is no cover of Uy A by elements of E either. Hence we have
p*(UA,) =00, p*(An) =00 < ZP*(Ak) = p"(UA,) =00 = Zp*(An)-

Thus countable subadditivity is verified in this case.

So, to complete the proof, we assume that each A, admits at least one covering by elements of
E. Let € > 0. Since the definition of p* is by means of an infimum, for each j € N there exists
a countable collection of sets {EF}72; where each Ef € E, such that

* € * €
P(A)) 2 D p(EY) — o = )+ g2 > p(ED).
k>1 E>1

Well then, the collection {E]k} is a countable collections of elements of E which covers
UAj.
Therefore by the definition of p* as the infimum over such covers, we have
pr(UA;) < D p(E).
Jk=1

Since for each E]k we have

summing over k we have

Jik>1 j>1 j>1
Thus following all the inequalities we have
pr(UA;) < e+ ) p(4)).

J
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Since this inequality holds for arbitrary ¢ > 0, we may let ¢ — 0, and the inequality also holds
without that pesky e. Hence we have verified countable subadditivity in this last case as well.

For each measure space, there is a canonically associated outer measure.

Corollary 1.8. Let (X, A, ) be a measure space. Then, there is a canonically associated outer
measure induced by p defined by

p(A) == inf{> u(E;), {E;} C A, ACUE;}.

Proof: By the definition of measure space, we have that ) € A, and p(@) = 0. Moreover,
w: A — [0,00]. Finally, we note that since for any A € P(X), A C X € A, we can always
find a covering of such A by elements of A. (In particular, one covering is to take E; = X
for all j). Thus, pu* is defined for all A € P(X). Moreover, p and A satisfy the hypotheses
of the preceding proposition. Therefore, since pu* is defined in an analogous way to p*, by the

preceding proposition we also have that p* is an outer measure.

Remark 2. For a measure space (X, A, 1), we shall use p* to denote the canonically associated
outer measure, which is defined according to the corollary. One of the reasons we require the
notion of an outer measure is because it is used to define what it means for a measure space to
be complete.

Exercise 3. For those of you who have taken integration theory, what is the difference between
the Lebesgue sigma algebra and the Borel sigma algebra? What is the definition of a measurable
function f : R — R?

1.2. Completeness. If our notion of size (volume) defined in terms of the measure of sets
belonging to a sigma algebra is a good notion, then if a certain set has size zero, anything
contained within that set ought to also have size zero. Eller hur? It is precisely this observation
that motivates the definition of a complete measure, which can be formulated in two different
but equivalent ways.

Proposition 1.9 (Completeness Proposition). The following are equivalent for a measure space
(X, M, ). If either of these hold, then u is called complete.

(1) If there exists N € M with u(N) =0, andY C N, then Y € M.
(2) If u*(Y) =0 then Y € M.

Proof:
First let us assume (1) holds. Then if Y C X with p*(Y") = 0, by the definition of p* for each
k € N there exists

{Ef}uz1 CM, Y CULEL, > u(EF) <27

Well, then
Y C N:=n, U, EF ¢ M,

where the containment holds because M is a o-algebra. Since N C U, EF for each k € N, by
monotonicity of the measure

w(N) < u(U, E¥) < 27"k e N = pu(N) =0.

By the assumption of (1) since Y C N € M and p(N) = 0, it follows that ¥ € M. So, every
set with outer measure zero is measurable (that’s what (2) says!)
Next, we assume (2) holds. Then if there exists N € M with ;(N) =0 and Y C N, then

YCUAj, Ay = N, AJZQV‘]Z2,
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and {A4,} C M. So, by definition of outer measure,
0<p*(Y)=inf... <> u(4;) = p(N) =0,
Consequently p*(Y) = 0, and by the assumption (2), Y € M. This shows that (2) = (1).

Hence, they are equivalent.

1.3. Homework: Measure theory basics.

(1) Let X be a finite set. How many elements does P(X) contain? Prove your answer!
(2) Given a measure space (X, A, u) and E € A, define
up(A) = (AN E)

for A € A. Prove that ug is a measure.

(3) Prove that the intersection of arbitrarily many c-algebras is again a o-algebra. Does
the same hold for unions?

(4) Let A be an infinite o-algebra. Prove that A contains uncountably many elements.

(5) Let X =N, and define the algebra A = P(X). Prove that all elements of A are either
countably infinite, finite, or empty. Define the measure to be 1 on a single element of
N and 0 on the empty set. Prove that this satisfies the definition of a measure space.
Will it also work to take X = R, and let A = P(R), using the same definition of the
measure? Do we get a measure space? Why or why not?

2. COMPLETION OF A MEASURE, CREATING A MEASURE FROM AN OUTER MEASURE, AND
PRE-MEASURES

Theorem 2.1 (Completion of a measure). Let (X, M, u) be a measure space. Let N := {N €
M | w(N) =0} and

M={EUF|EcMand F CN for some N € N'}.

Then M is a o-algebra and 3! extension [i of i to a complete measure on M. Moreover, if
A is a o-algebra which contains M, such that (X, A,v) is a complete measure space, and v
restricted to M is equal to u, then A D M. In this sense, (X, M, i) is the minimal complete
extension of (X, M, u) to a complete measure space.

Proof: First we show that M is a o-algebra. We observe that every element of M can be
written as itself union with @), and ) C ) € N. So it follows that every element of M is an
element of M. Next, assume that {4,} C M and {E,, N,,} C M such that

A,=E,UF,, F,CN,cN.

Then
N :=UN, e M, and p(UN,) < ZM(Nn) =0.

Since § C N, we have by the monotonicity of p that

0= pu(0) < p(N) <Y u(N,) =0.

We also have that
E :=UE, € M.

Then, let us define F' := UF,, C N. It follows that
UA, =EUF e M.

Consequently M is closed under countable unions. What about complements? If A= EUF €
M with F C N € N then note that

(EUF)®=E°NF°=((E°NN)U(E°NN%)nF°,
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and since F C N = F° D N°¢, the intersection of the last two terms is just £°N N€, so
(FUF)=(E°NNNF°)U(E°NN°).

Since E,N € M = E°NN°®e€ M, and ENNNF° C N € N we see that (EUF)° € M. So,
M is closed under complements. Hence, we have shown that M is a o-algebra which contains
M.
Next, we must demonstrate that  is a well-defined, complete, and unique extension of u. It is
natural to ignore the subset of the zero-measure set, so we define

(B UF) = u(E).
If we have another representation of EUF = GUH with G € M and F,H C N,M € N,
respectively, then

A(E U F) = u(E).
Since EC FUF =GUH C GUM, with GUM € M, we have by the monotonicity of p,

w(E) < p(GUM) < u(G) + p(M) = pu(G).

Above, we have used countable subadditivity and the fact that M € A. Then, we note that

A(GUH) = u(G),
as we have defined pi. So, following the equalities and inequalities, we have

HEUF) = p(E) < p(G) = p(GU H).

To complete the argument, we use the Shakespeare technique: what is in a name? Would not
a rose by any other name smell as sweet? Simply repeat the same argument above, replacing
E by G and F by H, that is we do the same mathematical argument but we simply swap the
names. Then we obtain

B(GUH)<G(EUF).
Hence we have shown that

E(EUF)=np(GUH).
We conclude that ji is well-defined.
Now, let’s show that fi is a measure which extends p. By definition, for £ C M

A(E) = (B U0) = u(E).
So, this shows that
Blag = p
We also observe that since
DeM = p(d) = pu®) =o0.
Next we wish to show monotonicity. If
A=FEUF, EeM, FCNEeN,
and
ACB=GUH, GeM, HCMEeN,
then we have
EFECACB=GUHCGUM =
i(A) = p(E) < p(GU M) < p(G) + (M) = u(G) = p(B).
We therefore have shown that & is monotone.
Next we wish to show that f is countably additive. Assume that {A,} = {FE, U F,} C M are
disjoint. Then
A,NA,=E,UF,N(E,UF,) D E,NEp,,
which shows that
E,NE, =0, VYn#m.
Consequently,

i(UAR) = p(UE,) = ZM(EH) = Zﬂ(An)‘
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So, fi is countably additive. We have therefore proven that /i is a measure on M.
Let’s show that & is complete. Assume that ¥ € M with i(Y) = 0. Then we can write

Y=FEUF, EeN, FCNeN.
Hence, in particular,
YCEUNEeWN.
Therefore Z C Y € N. We can therefore write Z as

Z=0uzZ, OeM, ZCNeN.

It follows from the definition of M that Z € M. Thus, any subset of a M measurable set
which has i measure zero is also an element of M, which is the first of the equivalent conditions
required to be a complete measure.

Finally the uniqueness. Let’s assume v also extends p to a complete measure on M. This
means that

Vip = Bl = 1
For Y = EUF € M, we also have Y C EU N, so by countable subadditivity,
v(Y) <v(E) +v(N) = w(E) + p(N) = p(E) = a(Y).
Conversely
A(Y) = u(B) = v(E) < W(BUF) = (Y).
So, we’ve got equality all across, and in particular, v(Y) = a(Y).
Finally, let us assume that there is some other extension, ¢, of pu to a complete measure on
some c-algebra A4 which contains M. Thus, (X, A4, ¢) is a complete measure space, and

Pl = b
Then
e(N)=0 VN eN.
Now, let EUF € M. Then E € M, and thus E € A is also true. Moreover, F C N € N/, and
SO
NeA, ¢(N)=u(N)=0.
Since A is complete, by the completeness proposition, we have that

FeA— EUFecA.

We have therefore proven that M C A. m

Proposition 2.2 (Null Set Proposition). Let (X, M, i) be a non-trivial measure space, meaning
there exist measurable subsets of positive measure. Then

N:={Y eM:puY)=0}
is not a o-algebra, but it is closed under countable unions.

Proof: If {N,} C N is a countable collection, then since M is a o-algebra,
UN,, € M.

Moreover, we have

p(UN,) < Z,U(Nn) =0 = p(UN,) =0.
This shows that N is closed under countable unions. Why is it however, not a o-algebra? It’s
not even an algebra! This is because it is not closed under complements. What is always an
element of N7 The §) is always measurable and has measure zero. Hence () € N'. What about
its complement? This is where the non-triviality hypothesis plays a role. There is some Y € M
such that u(Y) > 0. Since Y C X, by monotonicity

p(X)>puY)>0 = X =0°¢ N.
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qﬂ

We shall now see that once we have an outer measure, we can build a sigma algebra and a
measure, and obtain a complete measure space!

Theorem 2.3 (Carathéodory: creating a measure from an outer measure). Let p* be an outer
measure on X. A set A C X is called measurable with respect to u* <V E C X the following
equation holds:

W(B) = (BOA) +p* (BNAY). ()

Then M :={A C X|A is u* measurable} is a o-algebra and ,u*|M s a complete measure.

Proof: Note that A € M = A° € M because (*) is symmetric in A and A°. Since p*(0) = 0,
we have
pr(END) +p (ENQ) =p 0) +p"(ENX)=0+p"(E) = p"(E).

Consequently, () € M.
Next we will show that M is closed under finite unions of sets. For A,B € M and £ C X we
get, by multiple use of (*):

§*(B) = w* (B0 A) + 1 (BN A%) = 5*((E 1 A) 0 B) + i* (BN A) 0 B)

+u ((ENA°)NB)+ pu*((E N A°) N B°).
Furthermore, we can write AUB = (AN B)U (AN B) U (A°N B), so that
ENn(AUB)=(ENn(ANB)U(EN(ANB°))U(EN(A°NB)),
so by countable subadditivity of outer measures, we have
wW(ENANB)+ " (ENA°NB)+pu (ENANB®) > u* (EN(AUB))
Since EN A°N B¢ = EN (AU B)¢, using this inequality in the above equation gives us:
W' (B) > w* (BN (AU B)) + u*(EN (AU B)°).
Moreover, by countable subadditivity of outer measures,
W (E) = 1'[(EN(AUB)) U(EN(AUB))] < 1*(EN (AU B)) + u*(E N (AU B)).
So the inequality is actually an equality, since we have shown that
W*(E) = 1" (BN (AUB)) + i*(EN (AU B)®) > u*(E).

Hence AU B € M.
Next we show that p* is finitely-additive:

VA, BEM, ANB=0= u*(AUB) = 5" ((AUB) N A) + " ((AUB) N A°) = p*(A) + 11*(B).

Now we will show that M is actually a o-algebra: For {A;};eny C M we can define a sequence
of disjoint sets {B;}jen C M fulfilling (J;cy 45 = U;en Bj by:

By := A1, B,:=A4,\ UZ;%Bk, n>2.

Let us also define

Then since M is closed under finite unions of sets and also closed under complementation, both
B,eM, B,eM.

U4, =B em.

JEN JEN

So, we need to show that
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For E C X, since B, € M,

—
*
~

p(ENB,) € p(ENB,NB,) +p (ENB,N B, = p*(ENB,) + u (EN B, 1)

Thus p*(E N B,) = p*(EN B,) + (BN B, _1). Repeating this argument, we have u*(E N
B,—1) = pu*(ENBp_1) + p*(E N By_2). Continuing inductively, we have:

p(ENB,) =p (ENB,) +p* (EN By 1)+ p*(EN => W (ENB)
k=1
Using this result together with the fact that B, € M, we get:

p(E) = p*(EN By)+p*(ENBS) =Y p*(ENBy) + p*(EN BY)
k=1

>N (ENBY) +p (BN (| Br)
k=1 k=1
Above, we have used that

o0
ENB; =EN(Up_ By =E\ U, B, D E\ | B,
k=1
together with the fact that outer measures are monotone. This inequality holds for any n € N,
so we obtain

C8

(%) > W (ENB)+p (EN\ (| Br)
k=1

k

1
Since

EN (U, By) = U, EN By,

by countable subadditivity of out measures,

p(En (| Br) <D p*(ENBy).

k=1 k=1
We therefore obtain, combining this with the above inequality

p(B) = (En (| Be) + (BN (| Br) = (En (| Br) +p (BN (| Br))
k=1 k=1 k=1 k=1
Since E C (ENY)U(ENY*®), by countable subadditivity of outer measures, for any ¥ we have
pH(E) S p (ENY)+p (ENYS).
We therefore also have the inequality

W) < (En( Bo)+ur(En (B9
k=1 k=1

Combining with the reverse inequality we demonstrated above, we obtain

pH(E) = (EN (Y Br) +u(En (Y Br))
k=1 k=1

This shows that UBj, satisfies the definition of M, so we have

LJ A = LJ_Bk e M.
k=1 k=1

Hence M is a o-algebra.
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Now we want to show that p* | v 18 @ measure. First we note that since p* is an outer measure,
we have p*(#) = 0. Moreover, outer measures are also monotone, so p* is monotone. Thus,
we only need to show that p* restricted to M is countably additive. Let {Bg}ren C M be
pairwise disjoint sets. Defining E := J;—, By and using (**), we get

w (U Bo =t (B) S S it (B0 B+ 0) =3 (B = (| Bo)
k=1 k=1 k=1 k=1
— (U B =D n*(By)
k=1 k=1

So p*
Finally, we show that it is a complete measure: For Y C X such that p*(Y) = 0, and for
arbitrary £ C X we have by countable subadditivity of outer measures

pr(E) Spt(ENY)+p (ENYS) < pt(Y) + p'(E) = p*(E)

Therefore Y € M. ﬁ

Remark 3. We briefly discussed the proof of completion, and I shall add a remark here. Tech-
nically speaking, we should be considering

pw* i P(X) = [0,00], u™(A)= inf{z p*(E;): ACUj>1E;, Ej; € M}

j=1

M 1S a measure.

If some set has p**(Y) = 0, then for each k € N there exists {EJ’“} € M such that
Y CUjsEf, Y pt(ER) <27
Jjz1
Since M is a o-algebra,
Ap = LJjZlE;C eM,
and
WAy < S (Y < 2k,

Jj=1

Moreover, since Y C Ay, for all k, we have

Y C ﬂkZlAk,
and we also have that since M is a g-algebra

mk21Ak e M.
Since

meIAk Cc A, VYneN,
by monotonicity,
/J,*(Y) < ILL*(ﬂk21Ak) <2™ VneN.

This shows that p*(Y) = 0. It is pretty straightforward to show that the converse holds as well,
that is if u*(Z) = 0 then p**(Z) = 0. So, by the completeness proposition, our p* is complete!

Another important concept in measure theory is that of a pre-measure.

Definition 2.4. Let A C P(X) be an algebra. A function pg : A — [0,00] is called a pre-
measure if

(1) po(@) =0
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(2) If {A;} is a countable collection of disjoint elements of A such that
UAj € ./4,
then

po(UA;) = ZMO(AJ‘)~

Exercise 4. We have shown how, given a measure space (X, M, 1), we can obtain a minimal
complete measure space, (X, M,[). We have also shown how, given a measure, [, we can
canonically construct an outer measure, pu*.

(1) Using the canonically associated outer measure, p*, determine whether or not the set
A={AecP(X): p"(E)=p"(ENA)+ p*(ENA) holds true for all E C X'}
s equal to the set
M:={FEUF:E€M, and FC N € N},

where again N is the set of elements of M which have p-measure zero.
(2) In this way, determine whether or not the spaces

(X, A, 1)
and

(X, M, z)
are the same? My sneaking suspicion is that they are the same, but I shall not spoil
your fun in investigating this question.

2.1. Homework: Constructing the Lebesgue measure. The n-dimensional Lebesgue
measure is the unique, complete measure which agrees with our intuitive notion of n-dimensional
volume. To make this precise, first we define a generalized interval and our notion of intuitive
volume.

Definition 2.5. A generalized interval in R™ is a set for which there exist real numbers a; < by
for k =1,...n, such that this set has the form

I:{xeRnwzz:wkek, ap < or <z < or <bg,k=1,...,n}

Above we are using e, to denote the standard unit vectors for R™. The intuitive volume function
on R” is defined on such a set to be

vn(I) = [ [ (b — ax).
Next we can extend our intuitive notion of volume to elementary sets.

Definition 2.6. An elementary subset of R™ is a set which can be expressed as a finite disjoint
union of generalized intervals. The collection of all of these is denoted by &,.

Exercise 1. Prove that v, is well-defined on &,.

Exercise 2. To make an algebra containing &, , in particular the smallest algebra containing
En, it is necessary to include compliments. Define

A={YCR"|Y €e, or3IZ e, s.t. Y =Z°
Prove that A is an algebra.

Exercise 3. Show that v, is well-defined on A where

- 0, if a; = «; for some i
Ia;, ou 1) =
l/n(H a; Olz[) {H(Oxl . ai)’ else

Exercise 4. Show that v, is a pre-measure on A.
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2.2. Hints.

(1) @ = [[Iz, I for z € R™. Notation: we use Ia,bl to denote either ]a,b|, [a,b], |a,b] or
[a,b]. Notation which is unnecessary shall be simplified when possible.

(2) Show that A is closed under compliments

(3) Let A,B € A. If A,B € ¢, then first consider the case where A, B are each single
intervals ie. A = [[la;, I, B = []1b;, 81 for a; < oy, b; < B;. For each i, if
1b;, B;1 C la;, a;1 then note that

Iai, CKZI\Ibz, le = Iai, bZI @] Iﬂ“ OZiI
If 1b;, Bi1 & la;, o1, then either Ib;, 51N Ia;, ;1 = 0 in which case Ia;, a;1\Ib;, 5;1 =

Iai, OéiL or Ibi, ﬁll n Iai, Oéil ;'é @ so that

Tai, a;1\Ib;, B;l =
ai, @ T\Ibi, B 18;, a;1 if a; < beta;(= b; < a;)

In both cases Ia;, a;I\Ib;, ;1 is the disjoint union of intervals. Repeating for each
i=1,..,n gives A\B € ¢,, and similarly B\A € ¢,. Note that AN B = [[Iz;, ]
with z; = max{a;, b;}, y; = min{«;, 8;} (and should z; > y; then it is understood that
Iz;, y;1 = (). Therefore,

AUB = (A\B)U(B\A)U (AN B) € g,.

In fact, for A = []Ia;, ;1 € &, note that

A° =R™\A

:Hl—oo,aiIUHIa,»,ooI

Allowing the endpoints x; and/or y; of Iz;,y;I to be £oo, the same arguments for
A, B as above show that A°U B and A¢ U B¢ are elements of A.

k m
More generally, for A = |J I; € e, with I; kQ Iy =0 and B= JJ; € g, with
j=1 J 1=1
Ji r; sz = () with end points possibly Fo0o, repeated application of the above arguments
m

shows that Iy U Jy € €, (I UJy) U I € &, and so forth. Therefore, AUB € ¢,,. So A
is closed under finite unions and hence A is an algebra.

(4) To show that v, is well-defined on A and that it is a pre-measure, first show that
vn(0) = 0.

(5) Next, let {A,,}m>1 C A such that LilAm eA Ay kQ A = 0 then 3{I;}¥_, disjoint

m

k 00
in A such that U I; = | An.

=1 m=1

! M M k k
By definition, v,( |J Am) = Y on(Am) < vu(U L) = Y va(lj)

m=1 m=1 j=1 =1
M 00 ! M ’
VM €N, Z Un(Am) < Zvn(lj) = Vn( U Am) < Z ’Un(Am)
m=1 j=1 m=1 m=1

= vp(

et

3. PRE-MEASURE EXTENSION THEOREM AND METRIC OUTER MEASURES

The name pre-measure is appropriate because it’s almost a measure, it’s just possibly not
countably additive for every disjoint countable union, since these need not always be contained
in a mere algebra (which is not necessarily a o-algebra). However, Carathéodory can help us
to extend pre-measures to measures. First, we require the following.

Proposition 3.1. Let ug be a pre-measure on the algebra A C P(X), and define
pr(Y) = 1inf{d  po(A;) : Aj € AVj,Y C U;jA;},
J
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where the infimum is taken to be oo if there is no such cover of Y. Then we have:
(1) p* is an outer measure.

(2) 1 (A) = po(A)¥A € A.
(8) FEvery set in A is u* measurable in the same sense as above, being that for arbitrary
ECX, forAe A,
pr(E) = p (ENA)+p*(ENA%).

Proof: First, note that ) € A since A is an algebra. Moreover, the map g is defined on A,
with po : A — [0, 00], and has po(@) = 0. Therefore by the Outer Measure Proposition, as we
have defined p*, it is an outer measure.
Next, we wish to show that p* and pg are the same when we restrict to the algebra, A. To do
this we will show that (1) pre-measures are finitely additive and (2) pre-measures are monotone.

Finite additivity of pre-measures: Next, we show that pre-measures are by definition
finitely additive since for A, B € A with AN B = (), then

AUB:UAj, A1:A,A2:B,Aj:®Vj>27
gives
po(AU B) = po(UA;) Z,uo (A) + po(B).

Monotonicity of pre-measures: Assume that A C B are both elements of A. Then B\ A =
BN A¢ € A, so finite additivity gives

po(B) = po(B\ A) + po(A) = po(A) = po(B) — po(B \ A) < po(B).
Showing that y* = yo on A: Now, let £ € A. If E C UA; with A; € AV, then let
B, :=En (A, \U'A)).
Then
B, € AVn, B, NB,, =0Vn#m.
The union
UB, =UEN (A, \U!"'A)) = ENU(A, \U"'4;) = ENUA, = E € A

So by definition of pre-measure,

po(E) = po(UBy,) Z/Jo ) < ZMO(A )

since B,, C A,Vn. Taking the infimum over all such covers of F comprised of elements of A,
we have

po(E) < p*(E).
On the other hand, E C UA; with Ay = E € A, and A; = (Wj > 1. Then, this collection is
considered in the infimum defining p*, so

E) < ZNO(AJ') = po(E).

We’ve shown the inequality is true in both directions, hence p*(E) = po(E) for any E € A.
Showing that A sets are p* measurable: Let A € A, E C X, and € > 0. Since we always
have by countable subadditivity

W (B) < 1 (B 0 A) + it (B0 A%),
if u*(F) = oo, then we also have
co <p(ENA)+u"(ENAY) = p"(ENA)+ u"(ENA°) = oo,
so the equality holds. Now, let us assume that p*(E) < oo. Then, by its definition, there exists

{B;} C Awith E C UB; and
S wo(By) < 1 (B) + 2.
Since pg is additive on A,

pH(E)+e =Y po(BiNA)+110(BiNAS) = po(BiNA)+Y  po(BNAY) > p* (ENA)+u* (ENA°).
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Above we have used the definition of p¢* as an infimum, together with the fact that since A € A
and B; € A for all j, we have B;N A € A and B; N A° € A for all j, and we also have

ENAcuB;nA, EnNA°CUB;nNA"
This is true for any € > 0, so we have
W(E) = p* (BN A) + " (B0 A) > i (B).

So, these are all equal, which shows that A satisfies the definition of being ©* measurable since

E was arbitrary.
Now we will prove that we can always extend a pre-measure to a measure. You will use this in
the first exercise to complete the construction of the Lebesgue measure.

Theorem 3.2 (Pre-measure extension theorem). Let A C P(X) be an algebra, po a pre-
measure on A, and M the smallest o-algebra generated by A. Then there exists a measure
on M which extends py, namely

W= restricted to M.

If v also extends po then v(E) < p(E)VE € M with equality when pu(E) < oco. If po is o-finite,
then v = on M, so p is the unique extension.

Proof: By its very definition, M is a o-algebra, and all elements of A are contained in M.
Moreover, by the proposition,
p(A) = po(4), VAeA
Since @) € A, we have
1 (0) = 0.

Moreover, since p* is an outer measure, by the proposition, it is monotone. Consider the set
{AC X|u*(E)=p"(ENA)+ " (EN A°) holds true for all E C X}.

By the preceding proposition, this set contains all elements of A. Moreover, since p* is an outer
measure, in Caratheodory’s Theorem, we proved that this set is a o algebra, and u* restricted
to this set is a measure. Hence, since it is a o algebra which contains A, it also contains M.
Therefore, u* restricted to M is countably additive, since p* on this larger (Carathéodory-
Theorem-o-algebra-set) is countably additive. Hence y is a measure.

So, we only need to consider the statements about a possibly different extension v which
coincides with pg on A and is a measure on M. If £ € M and

E CUA;, A e Avj,
then
v(E) <Y v(A;) =) no(4y).
This holds for any such covering of E by elements of A, so taking the infimum we have
v(E) < u*(E) = p(FE) since E € M.

If W(E) < o0, let € > 0. Then we may choose {A;} C A which are WLOG (without loss of
generality) disjoint (why/how can we do this?) such that

ECUA;, p(UA;) = po(A)) < p*(E) +& = pu(E) +¢,

since E € M. Note that E € M, {A;} C A, and M is a o algebra containing .A. We therefore
have

A= UA]' e M.
Then, we also have

n

v(A4) = lim p(Uf4)) = lim D v(A)) = lim Y puo(A;) = u(A).

n—oo n—oo
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Then we have since E € M, and {A,} C A, and M is a o algebra containing A that A € M.
By countable additivity of the measure p, we have
i(UA;) = p(A) = (AN E) + p(A\ E) = u(E) + u(A\ E) < u(E) +=
which shows that
WA\ E) < e.
Consequently, using monotonicity, the fact that u(A) = v(A), the additivity of v, and the fact
that v < u, we obtain

p(E) < p(A) = v(A) = v(ENA) + v(A\ E) <v(E) + p(A\ E) <v(E) +¢.
This holds for all € > 0, so
u(E) < v(E).
Consequently in this case u(F) = v(FE), whenever these are finite.
Finally, if X = UA; with A; € A, puo(4,) < ooVj, we may WLOG assume the A; are disjoint.
Then for £ € M,
E=U(ENA4;),

which is a disjoint union of elements of M. So by countable additivity

W(E) = w(UEN A;) = S w(ENA;) = S u(ENA;) = (UEN A;) = v(E),

since ENA; C A; shows that p(ENA;) < u(A4;) <oo,so u(ENA;) =v(ENA;). m

3.1. Introducing metric outer measures. To define the Hausdorff measure, we will intro-
duce metric outer measures. A metric outer measure requires an addition type of structure on
the big set X: we need a notion of distance between points. Thus, metric outer measures are
only defined when the set X also carries along a distance, d, also known as a metric. So, for a
metric space (X, d) and for A, B C X define
dist(A, B) := inf{d(x,y) : x € A,y € B}.
Define also the diameter of a set A C X
diam(A) := sup{d(z,y) : z,y € A}, diam(0) := 0.

Definition 3.3. Let u* be an outer measure defined on a metric space, (X,d). Then p* is
called metric outer measure iff for each A, B C X we have

dist(4,B) > 0= u" (AU B) = u*(A) + u*(B).
Recall: A C X is p*-measurable iff for each £ C X
pH(E) = p*(ENA) + p* (BN A9).

Denote by M(p*) the p*-measurable subsets. Recall that the Borel sets B(X) is the smallest
o-algebra generated by the topology of X (induced by the metric). In other words, it is the
smallest o-algebra which contains all open sets. We note that () is both open and closed. A
non-empty subset, U, of a metric space (X, d) is defined to be open precisely when

Va € U360 > 0 such that Bs(xz) C U,

where

Bs(z) = {y € X|d(z,y) < d0}.
A subset of X is said to be closed precisely when its complement is open. We now prove a
Theorem due to Carathéodory which states that the Borel sets in X are contained in M (u™*).

Theorem 3.4 (Carathéodory). Let u* be a metric outer measure on (X,d). Then we have

B(X) € M(u*).
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Exercise 5. Show that p* is a measure on B(X). Denote by u the restriction of p* to B(X).
Let A be defined as in the completion theorem, that is:

A={EUF:E€B(X),FCNeBX), u(N)=0}

Define as in the completion p(EUF) = p(E). Is it true that M(u*) = A? Prove your answer.

3.2. Homework: properties of the Lebesgue o-algebra.

(1) In the previous homework, we proved that v, is a pre-measure on the algebra A.

A~~~
=~ W

[\

Note by the definition of A, it is the smallest algebra which contains ,. By the pre-
measure extension th_eorem, since v,, is o-finite on A, there exists a unique extension
of v, to a measure M on the smallest o-algebra containing ,. It is unique, because

R" = L;l[—M7 M = gle and v, (Ip) = (2M)™ < oo for each M. Canonically

completing this measure to M by applying the completion theorem yields the Lebesgue
measure and the Lebesgue o-algebra, the smallest o-algebra generated by &, such that
the extension of v, to a measure with respect to this o-algebra is complete. This is
the construction of the Lebesgue measure. In this exercise, the task is to review the
construction of the Lebesgue measure step-by-step, and make sure it makes sense to
you.

Prove that Borel sets are Lebesgue measurable.

Prove B C M

It is difficult to construct sets ¢ M, but actually there are many natural examples...
Ezercise: Construct a subset of R™ which is not measurable. Recall that f : R® — R™
is “measurable” usually is understood to mean that VB € B™, f~}(B) € M™. More
precisely, f is (R™, B™), (R™, B™) measurable. In general, f : X — Y is (X, A), (Y, B)
measurable if VB € B, f~}(B) € A, where A and B are o-algebras.

(5) Prove that all n — 1 dimensional sets have £" measure 0.

3.3. Hints.

(1) To prove that Borel sets are Lebesgue measurable, it suffices to show that open sets are

Lebesgue measurable. So, let O C R™ be open. Then we will show that O € M.
First consider O = []]a;, a;[€ €, C M. For an arbitrary open set O, for each x € O
there exists ¢ € Q,e > 0 such that z € [[ |gm — &,¢m +[C O, gm €Q, m =1,...,n.
Taking the union of all such intervals, namely those contained in O such that end-
points are rational is a countable union. Countability of course follows since Q™ C R” is
countable and Q is countable so a union of intervals with endpoints in Q™ is countable.
Therefore, O € M.

4. METRIC OUTER MEASURES

Theorem 4.1 (Carathéodory). Let pu* be a metric outer measure on (X,d). Then we have
B(X) C M(p*).

Proof:

Note that since M(u*) is a o-algebra (by Thm. 2.3) it is enough to prove that every closed set
is p*-measurable. (why does this suffice?) So let F' C X be a closed subset. Since the reverse
inequality always holds, it will be enough to prove that for any set A we have

p(A) = p (ANF) + p"(A\ F).

Define the sets

(+)

Ay = {x € A:dist(z, F) > ]1}

M*

Then dist(Ax, ANF) > %, so since p* is a metric outer measure we have
(

N F) + 1" (Ax) = 0 (AN F) U Ay) < " (A).

CA
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Let € A\ FF = AN F°. Since F° is open, there exists 6 > 0 such that Bs(x) C F°. Hence
d(z,F) > 0. So, in general, for all x € A\ F, we have

dist(x, F') > 0
Consequently, we have
ANF = Ay

The main and last step in the proof is to calculate the limit in (+) as k — oco. If the limit is
infinity there is nothing to do, because it shows that

p*(A) = 0o > anything we want, in particular > p*(ANF) + p* (AN F°).

So, let us assume that the limit in (+) is finite.
Note that A1 C A2 C A3 C ...
To get a bit of room between our sets, let us define

Bl = A17 Bn = An \An—la n Z 2.

By definition, Ay C A, so we also have By C A for all A. By definition of Ay and By, for all

r € By we have

1 1
where the second inequality follows since By, = Ay \ Ag—1. Therefore if j > k+2, for all y € B,
we have

1 1 1 1
- < dist(y, F < — < = < dist(a, F
jfls(y,) j—lik+1</€ ist(x, F).
Let € > 0 such that
1 1
FEE T

By definition, there exists z € F' such that
d(y, z) < dist(y, F) + ¢,
SO

1 1
d(y, z) < 1 +e< z < dist(z, F) < d(z, 2).

We therefore have by the triangle inequality,

1 1
d >d —d - — | — > 0.
(@) 2 de2) —de) 2 - (2 be) >
Since * € By, and y € B, are arbitrary, and € > 0 is fixed, we therefore have proven that
dist(B;, Bi) > 0.
This means we can apply the metric outer measure property (for even and odd indices) and by
induction we conclude that

n n
u (U sz—1> = ZN*(BQk—l)a
k=1 k=1
n n
" (U B?’f) =3 (B
k=1 k=1
These unions are each contained in As,, so we have the inequalities

W (U sz1> ZM (Bak—1) < p*(Az2n),

k=1

(U BZk) = (Bak) < 5 (Azn).
k=1



20 FRACTALS

Since Ay C Ay C ..., the values pu*(Asz,) are non-decreasing and by assumption bounded.
Hence both sums above, since they are comprised of non-negative terms, are convergent as
n — oo.

Therefore we conclude for any j

p(A\F) = p* <UAi>

:/1,* AjU U By,
k>j+1

o0

<A+ D (B
k=j+1

< lim p"(An) + > w(By).
k=j+1
N—————

—0,j—0c0

The last term tends to zero because it is comprised of the tails of two convergent series.
Since the latter sum goes to 0 by convergence we obtain

WA\ F) < Tim u*(Ay).
n—oo
Together with (+) this yields
W) 2 T it (Ag) + (AN F) 2 u*(A\ F) + u* (AN F)

which is the desired inequality. m

Corollary 4.2. Let (X,d) be a metric space, and let u* be a metric outer measure on X. Then
w* restricted to the Borel sigma algebra is a measure, that is (X, B(X), u*) is a measure space.

Proof: By the theorem, M(u*) D B(X). In a previous theorem, we proved that u* restricted
to M(p*) is a measure. Note that () € B(X) and p*(0) = 0. If {4;} C B(X) are pairwise
disjoint, then since they are also contained in M (u*) we have

pr(UAG) =D (A4)).

Hence p* vanishes on the empty set and is countably additive on B(X). Since p* is defined on

B(X) which is a o-algebra, we have that p* restricted to B(X) is a measure. m

4.1. General results which shall be used to obtain the Hausdorff measure. We shall
obtain the Hausdorff measure using results which can be applied much more generally to obtain
metric outer measures.

Definition 4.3 (Countable covers). Let C denote a collection of sets in X. Assume () € C.
Then for each A C X we denote by CC(A) the collection of sets in C such that there is an at
most countable sequence of sets {Fy, }nen € CC(A) such that

oo
Ac|JE.
n=1

These are the countable covers of A by sets belonging to C.
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Definition 4.4. With C a collection of sets in X, let v: C — [0, 00] with v(0)) = 0. We define
the following set function depending on C and v

(4.1) 1, c(A) == inf )ZV(D).

pece(A) 5=
If the infimum is empty, then we define p;) o(A4) = occ.

Theorem 4.5. The set function given by (4.1), which for simplicity we denote here by p*, is
an outer measure " on X with
i (4) < v(A), Aec
For any other outer measure i* on X with the above condition we have
fr(A) <p'(A), ACX.

So in this sense, u* is the unique mazimal outer measure on X which satisfies p*(A) < v(A)
for all A €C.

Proof: Let A € C. Then, A covers itself, so we have by definition
i (4) < w(A).
Next, we need to show that this p* is an outer measure. We have basically already done this
in the Proposition on Outer Measures! Since v > 0, it follows that p* > 0. Moreover, since §)
is a countable cover of itself, we have
0<p (0) <v® =o0.

Hence u(0)) = 0.

Monotonicity: Assume that A C B. Then, any countable cover of B is also a countable cover
of A. However, there could be covers of A which do not cover B. Hence, the set of countable
covers of A contains the set of countable covers of B, so the infimum over covers of A is smaller
than the infimum over covers of B, and therefore

p*(A) < p*(B).
Countable sub-additivity: Let {A4,} be pairwise disjoint. We wish to show that

pr(UA;) <>t (A)).

Note that if for any j we have p*(A4;) = oo, we are immediately done. So, assume this is not
the case for any j. Let € > 0. Then for each j there exists a countable cover {Df } such that

« €
Aj CUpDY, (A + 5 > > u(D).
k

Hence, we also have
k
UjAj - Uj,ij,
and so

pH(UA;) = inf . < ST w(DY) < 3t (4)) + 25] = e+ Y w4y
J.k J J

Since this holds for any € > 0, we obtain the desired inequality.

Another outer measure: Assume that i* is another outer measure defined on X which has
i*(A) < v(A) for all A € C. If u*(A) = oo there is nothing to prove. So assume that this is
not the case. Let ¢ > 0. Then there exists a countable cover {D;} which contains A such that

p(A) +e =Y w(Dy) =) i (Dy) 2 i (UDy) > i (A).
k k

Above we have used that v = i* on the Dy, followed by countable sub-additivity of the outer
measure *, followed by monotonicity of the outer measure i*. Since this inequality holds for
any € > 0, we get that

W (A) > i (A).
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qﬂ

Now, we shall specify to the case in which (X, d) is a metric space. For this, we recall that for
a non-empty set A C X we define its diameter,

diam(A) :=sup{d(z,y) :x € A, ye€ A}.
With this in mind, we can define the countable covers of diameter less than e.

Definition 4.6. Let C be as above. For € > 0, define
Cc:={Ae€C:diam(4) < €}.

Now define the outer measure depending on this cover as a special case of (4.1), in particular
we set

pi(A) == pyc, (A).

If € < ¢, then all covers which have diameter less than € also have diameter less than ¢, so
Ce C C.. Consequently, when we take the infimum to obtain p and p}/, there are more elements
considered in the infimum for C. (i.e. more covers), so the infimum is smaller, and

pe(A) < pér(A).
The following theorem shows how, starting from any arbitrary set function v which has v(0) = 0,

we can construct a “canonical metric outer measure.” We shall later see that for a particular
choice of v, we obtain the Hausdorff measure.

Theorem 4.7 (A canonical metric outer measure). The limit py(A) := lime_o puX(A4),A C X
defines a metric outer measure.

4.2. Homework.

(1) Prove that for any interval I C R", there exists a series {B;};>1 such that
(a) Each B is a ball in I.
(b) It is B; N By, = 0 for all j # k.
(c) We have £,(I \ |JB;) =0 (and therefore £, (I) = L,(U By)).
(2) Now for a bit of combinatorial fun... Let X be a non-empty set. Let {A;}7_, be
distinct, non-empty, proper subsets of X. How many elements does A, the smallest
algebra which contains {A;}7_, have?

4.3. Hints. First note that £,,(I \ I) = 0. So without loss of generality we can assume that [
is open. For x € I, there is § € @, > 0 such that Bs(x) C I. Also there exists ¢ € Q™ such
that |z — ¢| < § - 1076, This implies for every y with |y — q| < (1 — 107°)4,
ly—z|<ly—ql+|z—q <d = ye Bs(x) CI.
So we have
By := B—10-6)s(q) C I.

For N > 1and x € I, it is either x € U,ICV=1 By, or not. We are assuming { By} C I are disjoint
balls with rational radii and rational centers (centers are elements of Q). If z € |Ji_, By, we

consider - € I'\ |Jn_, Bx. Note that this set is open. So, if there exists « € I\ |J;_, B, then
the same argument shows that there is a new ball,

N
T € BN+1CI\UE
k=1

with the center and radius of By, rational (same argument as above). Then we note further
that the set of balls

{Bs(q): 6€Q, andgqgeQ"}
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is countable. Consequently, we require at most countably many of these balls to ensure that

Ic|JBe and L£,(Bp\ By) =0forall k = Lo J(Br\ B)=0.
k=1

So we get
Lo(I) = Lo Br)+ Lo\ JBr) = La((UBr) + Lo (B \ Bi) = La(| Br)-

5. CANONICAL METRIC OUTER MEASURES AND HAUSDORFF MEASURE

Theorem 5.1 (A canonical metric outer measure). The limit uy(A) := limeo pu*(A4),A C X
defines a metric outer measure.

Proof: Since p¥ is non-decreasing as € | 0, the limit exists (since we allow co as a limit value).
We have already proven that each p? is an outer measure.

Exercise 6. Prove that the outer measure property is preserved under the limit as € — 0, to
show that pf is indeed an outer measure.

Metric outer measure: Let A, B C X be such that dist(A4, B) > 0. Since p* is an outer
measure, by countable subadditivity,

110(AU B) < pig(A) + pig(B).

We would like to prove the reverse inequality. The idea is that since A and B are at a positive
distance away from each other, we can take € small enough so that our p} cover of the union
splits into two disjoint covers. (Draw a picture!)

Let us make this precise. Since the distance between A and B is positive, there exists ng € N
such that

1
dist(4,B) > —, for mn > no.
n

Let § > 0 be some arbitrary positive number (this is our fudge factor which we shall later
banish to zero). Then, cover the union A U B with sets E}’ such that

pwi(AUB)+4§ > v(E})
k=1

and such that for each k we have diam(E}") < 1. Let us delete any E} which has empty

intersection with A U B, that is we delete any unneeded, extraneous, superfluous covers. Still
denote this set by E}' for notational simplicity. We then still have

Wi(AUB)+6 > > v(Ep).
k

Since the diameter of E}} is less than or equal to % which is smaller than the distance between
A and B, we have that the E} intersect either A or B and not both in the sense that

EiNA#0=ENB=0, E;NB#0=E;NA=0.

To see this, draw a picture. If some E} intersected both A and B, then it would have to
contain at least one point in A and at least one point in B. The distance between those points
is strictly greater than % Hence the diameter of such a set would need to exceed %, which is
a contradiction.

So, with this consideration, let

E"(A):={E}:E;NA#0}, E™B):={E}:E;NB#0}.

Then, E™(A) and E™(B) have no sets in common and together they yield the sequence (E})$2 .
Since

AUBCUE]} — AC Ugn(a), BC Ugn(B)-
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We therefore have

piA) < Y wBR), paB)s Y w(ED),

EpeE™(A) EpeE™(B)

so the sum
pAA)+ELB) S Y wBN+ Y vE.
EpeEn(A) EpeE™(B)
Now, the sum on the right side is just

> v(Ep) < pi(AUB) +0.
k
So, we have proven that
u’%(A) +/f%(B) < u’%(Au B) +é.
This holds for all n > ng. So, letting n — oo, we obtain

i (A) + 1 (B) < (AU B) + 4.

Finally, we let 6 | 0, which completes the proof that pf is a metric outer measure. E

Remark 4. Making a special choice of the function v, we shall obtain the Hausdorff measure,
below. However, our preceding results are super general. If you are so inclined, it could be pretty
interesting to play around with different functions, v, satisfying the hypotheses, and thereby
obtain different metric outer measures according to the theorem above.... Once you've got a
metric outer measure, then you can use our results to obtain its sigma algebra of measurable
sets. Moreover, our results prove that this sigma algebra contains the Borel sigma algebra. Our
results also prove that this metric outer measure together with its sigma algebra of measurable
sets yields a complete measure. So, now you have quite a collection of tools to build all kinds
of different measures!

5.1. The Hausdorff measure. We shall use the general results from the preceding lecture to
obtain the Hausdorff measure.

Definition 5.2. Let (X, d) be a metric space, § > 0 and ¢ € (0,00). Then for S C X, define
the set function

/Hf;(S) ;= inf {Z(dlamUl)tS C U U“dlam(Uz) < (5}
i=1 i=1

where the infimum is taken over all countable covers of S by sets U; C X with diam(U;) < 6.

Remark 5. In the definition if one requires the U;’s to be closed in this definition, the result is
the same because
diam(U;) = diam(U;).

If one requires the U;’s to be open, call the corresponding thing 7—22 Note that the infimum is
now taken over fewer covers, since the U; need to be open. So & priori one has 7—13 > H¥. For
S such that

H5(S) = oo,
then one also has ~

H5(S) = 0,
so there is nothing to do. Let us assume this is not the case. Fix n > 0. Let {U;} be a cover
which has

H5(S) +n > diam(U;)".
J
Then let
Bj={r € X :d(z,U;) < 27771},
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Choose €; > 0 so that the diameter of B;, which is at most diam(U;) + €277 is still less than &.
Since the diameter of Uj is strictly less than ¢ this is always possible. Without loss of generality
assume that e¢; <1 for all j. Then the B; are an open cover of S, with diameter less than 4, so
we have

H5(S) <> (diam(B;))" < > (diam(U;) + ¢,277)".
J J
As the €; — 0, the right side converges to Zj diam(U;)*. So, let this happen, to obtain

H5(S) < 3 (diam(U)" < Hy(S) +n.

Since 1 > 0 was arbitrary, letting now 1 — 0 we obtain that H% < H%. So it’s still the same.
Thus, if it’s more convenient to consider (1) closed covers in definition of Hausdorff measure or
(2) open covers in definition of Hausdorff measure, DO IT! There is no loss of generality.

Corollary 5.3 (Hausdorff measure). The set function H is an outer measure. Moreover,

H = lim Hf;
6—0

is a metric outer measure. All Borel sets are H' measurable, and these sets form a o-algebra.

Proof: First, set

v(U) = diam(U)".
Then note that

H5(S) = 113,¢,(S5)
is just a special case of the “canonical outer measure” theorem. By that theorem, we therefore
obtain that

HE(S) == lim H5(S)

6—0

is a metric outer measure. By an earlier theorem (2.3, all the Borel sets are H!-measurable.
These Borel sets are contained in the c-algebra of “H!-measurable sets from Theorem 5.1.

Moreover, by this same theorem, H' on this o-algebra is a complete measure. m

We shall call H! the t-dimensional Hausdorff measure. The reason for this is that if t € N
and A is t-dimensional, then the amount of A contained in a region of diam = r” should be
proportional to . This is because a ball in t-dimensional space has volume proportional to rt.
What exactly is the volume of a ball in R anyways?

5.2. The volume of the unit ball in R".

Proposition 5.4. The volume of the unit ball in R™ is

wy = Vol (B1(0)) = m

1
/ / "1 drdo.
51(0) Jo

For starters, we would like to compute
Op = / do,
S1(0)

that is the surface area of the unit ball. Let us start by computing a famous integral. Define

I, = /e‘”‘“'zdx.

Rn

Proof: Our goal is to compute



26 FRACTALS

Note that I,, = (I1)™ by the Fubini-Tonelli theorem, since everything converges beautifully. So,
in particular,

I, = (I,)*'™.

15 is particularly lovely to compute:

27 s} o) s}
d
I, = / / e ™ r drdf = 277/ oo 205 / e 2sds
0 0 0 ™ 0

We have used the substitution s = \/7r. So we see that I, = 1 for all £ € N. Then, we can
apply this to compute o,,.

o0 o0
2 2 2
1= /e_”‘zl dr = / /6_” "t drde = an/e_” 1 dr,
R~ 51(0) 0 0

Well, the latter integral we may be able to compute, because it is one-dimensional. Let s = r2r.

Then ds = 2rndr, so

. s\(n=1)/2 (g /21
r" i dr = (7> = .
ony/s/m  2m"/?

™

So,

O_ oo
1= "/2 / e 5s"2 s,
27Tn 0

This looks familiar... Recall:

I(z) = /sz_le_sds, z€C, R(z)>1
0

So,
27n/2
7T T2y’
We compute using integration by parts:
I(s+1)= /tse_tdt —t%e™!] / e tst*ldt = sT(s).
0 0

Exercise 7. Prove that the T' function admits a meromorphic continuation to C which is
holomorphic with the exception of simple poles at 0 U —N.

Finally, we compute the volume of the ball:
mlt o
/ dx = Vol (B1(0 //”ldrdaa/”ldr[an} =" —w,
nl, n
B1(0) S1(0) 0

n/2 . .
Therefore, we have w,, = 712_’117@)7 which finishes our proof.
2

ﬂ

Corollary 5.5. Vo € R™ and r > 0, the area of S.(z) is " Lo, and Vol (B,(z)) = w,r".
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Proof:
/ do = / do = / r"tdo =r""lo,
Sr(x) Sr(0) 51(0)
Analogously for B,.(z). t

Exercise 8. Compute I'(n/2) for n € N.

5.3. Homework: Relationship between Lebesgue and Hausdorff measures. To un-
derstand the relationship between Lebesgue and Hausdorff measures, we require the notion of
absolute continuity of measures.

Definition 5.6. Let v and p be measures on (X, M). Then v is absolutely continuous with
respect to p and we write v << p if (V) = 0 VY € M with pu(Y) = 0. We say that p and
v are mutually singular and write pv if there exists B, F €e M with ENF =0, EUF = X,
w(E)=0,v(F)=0.

Exercise 5. Prove that H" << L,, and L,, << H".
5.4. Hints. Showing that H" << L,: First, we consider I = []Ia;, b1, l; :== b; — a;. If any

l; = 0 let’s WLOG assume that [;, ..., [} are all non-zero and Iy = ... = [, = 0. Then Ve > 0,
we can cover an interval of length L by % balls (one-dimensional) of radius €. Similarly, we can

k
cover I by [] % balls of radius €. It follows that
i=1

0—=0=H"(I)=0.
If I; = 0 for all 4, then I is either a point or the empty set which both have H™ = 0. For a point,

this is because for any § > 0, we can cover a point by a ball of radius §/2, so that HJ (p) < §”
holds for all §, which letting § | 0 gives H"(p) = 0.

Finally, if for all ¢, I; # 0, then we can cover I by [] % balls of radius €. Then
i=1

Vo >e, Hps(I) < H%(za)n =2"Ly(I).
=1

Consequently, if £,,(I) = 0, then H}(I) = 0 which implies that %" (I) = 0.
If £,,(A) =0, then 3{I;};>1 such that A C ‘L>J1Ij and, for a fixed € > 0, > L,(I;) < 57. Then
3> j>1
H,(A) <Y Ho(;) 2™ Lo(Ij) <e

j=1 Jj=1
Hence H,,(A) = 0. Therefore H,, << L,.
Showing that £, << H": Let A C R” such that H"(A4) = 0, where A € B. Then, since
Hy < Hn,
H5(A) =0V >0
= 3 a sequence {B,},>1, which is closed in R", such that A C |J B; and ) (diam(B;))" < ¢,

=1 i>1
where € > 0. Note that for « € B;, p(z,y) < §; = diam(B;)Vx € B;. So we can fix z; € Bj,
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and we get B; C By, (x;).
So we have

LN(B]) < Ln(Béj (37_7)) = ’LUn(S;L

where w, = Vol (B1(0)) denotes the volume of the unit ball with radius 1 (around zero).
Alltogether, we get

e> Y diam(B))" =Y £nlBs (;)) > 1 > Lu(B))

w w
J>1 J>1 " " i>1

o0
and since A C |J B; we get
j=1

e> S Lu(B)) > o La(A)

"zl "

Letting ¢ | 0 = £,(A) =0.

6. HAUSDORFF DIMENSION

If the notion of Hausdorff dimension is to be well-defined, then it should be invariant under
isometries. We prove that the Hausdorff measure is indeed invariant under isometries, and
therefore the Hausdorff dimension, which we shall define using the Hausdorff measure, will
similarly enjoy this invariance. Let HP denote p-dimensional Hausdorff measure. We first prove
a more general fact. Before proceeding to that proof, there is an exercise which will allow us to
be a little sloppy (or for a more positive connotation, allow us to be a little more mellow and

groovy).

Exercise 9. Change the definition of C¢ covers to require diameters less than or equal to e.
Show that the corresponding py remains unchanged. Thus, in the definition of Hausdorff outer
measure (and Hausdorff measure), it does not require if our Hy = pj , for v(A) = diam(A)P
is for covers with diameter < & or < §. Either way one obtains the same outer measure H.
Therefore, either way one also obtains the same HP.

Proposition 6.1. Let (X,d) be a metric space, and f, g be maps from some set Y into X. If
f.9:Y = X satisfy d(f(y), f(2)) < Cd(g(y),9(2)) Vy,z €Y, then HP(f(A)) < CPHP(g(A)).

Proof: Lete >0, ACY. Then g(A) C X. If HP(g(A)) = oo, there is nothing to prove. So,
we assume this is not the case. Then, for all § > 0 small, we can find {B;};>1 C X such that

go(A)c BB, diam(B;) < 2,
j=1 C
and -

i>1
Of course, the particular collection B; does depend on the particular small value of d§, but we
shall suppress this dependence for notational convenience.
Let us define

Bj = f(g7(By)).
We claim that these are going to cover f(A). Let y € A so that f(y) € f(A). Then, since
y € A, we also have g(y) € g(A) C UB;. So, in particular, g(y) € B, for some j. Hence

yeg Y(Bj)={2€Y :g(2) € Bj}.

Therefore f(y) € f(g~'(B;)) = B;.
We therefore have
f(A) C U7, B;.



FRACTALS 29

Now, if f(y) and f(z) are both in B; = f(g~'(B;)), this means that y and z are both in
g~ '(Bj), so there exist x and 2’ in B; with g(y) = x € B; and g(z) = 2’ € B;. Then

A(f(9), £(2)) < Clgly),9(2)) < Caiam(B,) < C s =5

Consequently diam(B;) < d. So,
HE(f(4)) < 3 diam(B;)7.
j>1

Moreover, by the same calculation as above, we also see that

dlam(Bj) < Odlam(B]) — diam(Bj)p < deiam(Bj)p.
Consequently,
HE(f(A)) <) diam(B;)” < CP " (diam(B;))” < CPHP(g(A)) + €.
Jj=1 Jj=1

This holds for any € > 0, so we obtain the desired result:

HP(f(A)) < CPHP(g(A)).

Corollary 6.2. HP is invariant under isometries.

Proof: Let I : (X,d) — X be an isometry. Let id : X — X be the identity map. Then since I
is an isometry, we have
d(I(x),1(z)) =d(z, z) =d(id(x),id(z)), Vz,z € X.
Hence the hypotheses of the proposition hold true taking X =Y, f =1, g =1id, and C = 1.
So, we obtain
HP(I(A)) < HP(id(A)) = HP(A).
On the other hand, we also have
d(id(z),id(z)) = d(z, z) = d(I(z), I(z)) < d(I(z),I(z)).

So, we apply the same proposition taking X =Y, f =id, g = I, and C = 1. We therefore
obtain
HP(A) = HP(id(A)) < HP(I(A)).

Thus, the inequality goes in both directions, and we have in fact an equality,

HP(A) = HP(I(A)).

ﬂ

Proposition 6.3 (Hausdorf dimension). If HP(A) < oo, then H1(A) = 0Vq > p. IfHI(A) > 0,
then HP(A) = oo Vp < q.

Proof: For the first statement, assume HP(A) < co. Then, for any sufficiently small § > 0,
we can find a cover of A by {B;},>: with diam(B;) < ¢, and

HE(A) < diam(B;)P < HP(A) + 1.
i>1
If ¢ > p, then
HI(A) <> diam(B;)? = > diam(B;)PT97P < > diam(B;)P57 "

Jj=1 Jj=>1 j=21
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=097y " diam(B;)P < 697 (HP(A) + 1),
Jj21

which tends to zero as § — 0. Hence we can show that HJ(A) tends to zero as § — 0, thus it
follows that H(A) = 0.

The second statement is the contrapositive. To see this let us first fix ¢ > p. We shall write x to
denote the statement HP(A) < oo, and © to denote the statement H9(A) = 0. We have proven:
if x then ©. The contrapositive says: if not © then not %. It is well known from elementary
logic that a statement is true if and only if its contrapositive is true. In this case, not © says
that H9(A) # 0. Since H9(A) > 0, we have H?(A) > 0. This should imply not x. Not « is the
statement that HP(A) = oo. Since the g > p was arbitrary, we have shown that if H4(A) > 0,

Corollary 6.4 (Definition of Hausdorff dimension). Let A C X, where (X, d) is a metric space.
Then the following infimum and supremum are equal

6 =inf{p = 0 | HP(A) = 0} = sup{p = 0 | H"(A) = oo}

This is how we define the Hausdorfl dimension of A, §, denoted by dim(A). If for some p we
have

then HP(A) = oo for any p < q.

HP(A) € (0,00)
then p = dim(A).

Proof: Let {p,} be a sequence which converges to the infimum on the left. Then, HP»(A) =0
for all n. Let {g,} be a sequence which converges to the supremum on the right. Then,
H(A) = oo for all n. By the second statement of the preceding proposition, since H"(A) > 0,
HP(A) = oo for all p < ¢q. This shows that p,, > ¢, for all n and m. Therefore

lim inf p,, > lim sup ¢,,.
Since in these cases the limits exist, we have
liminf p, = limp,, limsupg,, =limg,,.

This shows that

inf{p > 0 | HP(A) = 0} > sup{p > 0 | HP(A) = oo},
For the sake of contradiction, let us assume that this inequality is strict, so that

inf{p > 0 | HP(A) = 0} > sup{p > 0 | HP(A) = oc}.
Then, there is some number, x which lies precisely between these two values,

inf{p >0 | HP(A) =0} >z > sup{p > 0| HP(A) = co}.

Since x is less than the infimum, we cannot have H*(A) = 0, (because then 2 would be included
in the infimum, so the infimum would be < z which by assumption it is not). So we must have
H*(A) > 0. By the proposition, it follows that HP(A) = oo for all p < x. Hence, the supremum
on the right side is taken over a set of p which contains all p < x. Therefore, by definition of
the supremum, the supremum is greater than or equal to x. This is a contradiction. Hence, we
cannot have

inf{p > 0 | HP(A) = 0} > sup{p > 0 | H¥(A) = oo},
as it leads to a contradiction. Thus, since the infimum is greater than or equal to the supremum,
both sides must be equal.
Finally, assume that for some p we have HP(A) € (0,00). Then, by the proposition, H?(A) =0
for all ¢ > p. This shows that all ¢ > p are considered in the infimum, hence the infimum must
be less than or equal to p. On the other hand, by the same proposition, H?(A) = oo for all
q < p. Hence, the supremum is taken over a set which includes all ¢ < p, hence the supremum
must be greater than or equal to p. So, we get inf < p < sup, but since the infimum and
supremum are equal, we have an equality all the way across.
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This shows that the supremum here is less than or equal to p. Since the supremum and infimum
equivalently define dim(A), we have dim(A) > p and dim(A) < p. Hence we have dim(4) = p.

If our notion of dimension is a good one, then it ought to be monotone. We see below that this
is the case.

Lemma 6.5 (Monotonicity of Hausdorff dimension). If A C B, then dim(A) < dim(B).

Proof:

If AC B, and HP(B) =0, then H?(A) = 0. This is because H? is an outer measure, which we
proved, and outer measures are by definition monotone.

Therefore

dim(B) = inf{p > 0|HP(B) = 0} > inf{p > 0|HP(A4) = 0} = dim(A).

If our definition of dimension is a good one, then we know what the dimension of R™ should
be... To prove this, we shall prove a general fact about Hausdorff dimension.

Lemma 6.6. The dimension of a countable union of sets, E;,
E = UE,

is equal to

dim(E) = sup{dim(E};}.
Proof: We note that

E; C EVj = dim(F;) < dim(F) Vj,

SO

sup{dim(E;)} < dim(E).

If the supremum on the left is infinite, there is nothing to prove, because both sides are therefore
infinite and equal. Let us assume that it is not infinite. So, let us call this supremum 6. By
the definition of dim(E;) < §, we have

HP(E;) =0 Vp>4.
Consequently, for all p > §, we have by countable subadditivity of Hausdorff outer measure

0<HP(E) <> HP(E;) =0,

Thus
HP(E) = 0.
Since
dim(E) = inf{p > 0|HP(E) = 0},
and HP(E) = 0 for all p > 9, we have
dim(E) < 4.

Since dim(F) > sup{dim(E;)} = §, we obtain the equality. m
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6.1. Homework.

1) Compute the Hausdorff measure of the curve {(z,sin(1/z)) : 0 < x < 1} C R%

2) Compute the Hausdorff measure of the curve {(z,sin(1/z)):1/2 <z < 1} C R?.

3) Compute the Hausdorff measure of the unit sphere sitting in R®.

4) We shall see that a set whose Hausdorft dimension is positive is uncountable. Is the con-
verse true, that is if the Hausdorff dimension of s set is zero, then is that set necessarily
countable? Prove or give a counter example.

(5) Is it always true that HI™(4)(A) € (0,00)? Prove or a give a counter example. What

if you assume that dim(A) € (0,00), then is it always true that H4™(A)(A) € (0,00)?

(6) How should one define the Hausdorff dimension of the empty set? Philosophically and

mathematically justify your answer.

(7) What is the Hausdorff dimension of a product of sets? How should this work? Figure

it out and rigorize your answer.

(
(
(
(

7. PROPERTIES OF HAUSDORFF DIMENSION
Any set with positive Hausdorff dimension is uncountable!
Corollary 7.1. Let E C X. If dim(F) > 0, then E is uncountable.

Proof: If E is countable, then E = |Je;, where e; € X is a point. Therefore, we have proven

J
that

0 < dim(E) = supdim({e;}).
Now let p > 0. Note that a single point is contained in a ball of radius ¢ for any § > 0. Thus
by definition
Hf;(ej) S 2P4P.
Letting § — 0, we obtain
HP(ej) = 0.

Therefore the Hausdorff dimension of a point is equal to inf{p : p > 0} = 0. By the result we
proved, the dimension of F is the supremum over the dimension of e;, and this is the supremum

|

Corollary 7.2 (Hausdorff dimension of R™). The Hausdorff dimension of R™ is n.

over zero, hence it is zero.

Proof: We can write the euclidian space R™ as R® = |J B,,, where B,, are balls of radius m
m>1

centered at the origin. Here is where we are going to use some teamwork. In the exercises, you

have proven that

H"(B,) = cn L7 (By) = cpm"wy,

where ¢, is a constant that depends only on n, and w, is the volume of the unit ball in R",
and L£" is n-dimensional Lebesgue measure. (i.e. our usual human notion of n-dimensional
volume). By a corollary proven today, the Hausdorff dimension of a ball in R™ is equal to n,
since the Hausdorff measure of a ball of radius m is a positive, finite number. Moreover, a ball
is an open set, so it is therefore contained in the Borel sigma algebra which is contained in
the Hausdorff sigma algebra. So, since R™ is the union of these balls, and these balls are all
Hausdorff measurable sets, the dimension of R™ is equal to the supremum of the dimensions of
the balls. That is the supremum over the constant number n. Hence the supremum is n which

1

Corollary 7.3. For any A C R"™, we have dim(A) < n.

gives the dimension of R™.
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Proof: This follows immediately taking B = R™ in the lemma showing monotonicity of

Hausdorff dimension. m

Lemma 7.4. Let E C R™ such that dim(E) < n. Then E = {).

Proof: If E # 0, then there Ir > 0 and =z € F such that B.(z) C E. = dim(E) >
dim(B,(z)) = n

Sowe get n >dimE >n=dimFE = n. m

Remark 6. The Hausdorff Dimension of a subset £ C R" is the same if we consider E as a
subset of R™ for any m > n via the canonical embedding, R” — R™ x {0}. In this sense, if
we have a set F which naturally lives in k-dimensions, if we view the set F as living in 10
zillion dimensions, the Hausdorff dimension of E remains the same. This is simply because
the Hausdorff dimension, which is determined by the Hausdorff (outer) measure is defined in
terms of diameter, and the diameter of sets does not change if we embed the sets into higher
dimensional Euclidean space. That is another reason the Hausdorff dimension is “a good notion
of dimension,” because it is invariant of the ambient space.

7.1. Similitudes. To study the relationship between fractals and Hausdorff dimension, we
shall use a notion of a similitude.

Definition 7.5. For r > 0, a similitude with scaling factor r is a map S : R®™ — R"™ of the form
S(x) =rO(x) + b,

where O is an orthogonal transformation (rotation, reflection, or composition of these), and
beR" If S = (S, --Sn) is a family of similitudes with common scaling factor » < 1, for
E C R" we define

S%E)=E, S(E)= 6 S;(E),  SME)=S(S""YE)) for k > 1.

We say that E is invariant under S if S(E) = E.

Why is such a thing called a similitude? Indeed, this is aptly named if we ponder what a
similitude does. If we apply S to a set F, then first E undergoes some composition of rotations
and reflections. Next, it is scaled by the factor r. Finally, it is translated by b. So, the image
under S, that is S(E) is similar to E. It has just been reflected and/or rotated, shrunken or
stretched, depending if » < 1 or > 1, and then translated.

Similitudes are maps of the form 7 - O(z) + b, where O(z) is an orthogonal transformation, and
b is a vector in R™. These are therefore affine linear maps. We would like to understand how
similitudes and invariant sets under similitudes relate to Hausdorff measure which motivates
the following.

Proposition 7.6. Ifk <n, A C R¥ and T: R*¥ — R" is an affine linear map, then H*(T(A)) =
Vdet(MTM)H*(A), where Tx = Mx +b.
Proof: First note that ¥ is translation invariant because H*(A + b) = H*(A) since
Ac|JE <= A+bc|JE; +0),
J

and diam(FE;) = diam(E; 4+ b). So, without loss of generality, we shall assume b = 0. First, we
consider the case n = k. Then, Tx = Mx, where M is an n X n matrix. Therefore, using the
relationship between Hausdorff and Lebesgue measures,

HY(T(A)) = enln(T(A)) = cn /

T(A)

dl, =cp det(MTM)dL,, = cpr/det(MTM)L,(A) = 1/det(MTM)H" (A).
Vet TN, = enfaet (MTAL,(4) = fact ()
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If k < n, since T : R¥ — R™, the matrix M must have k columns and n rows, so the span of
the columns has dimension at most k, and therefore the image MR* has dimension at most
k. For this reason there exists an isometry R of R" (a change of coordinates composed with a
translation) which maps T(R¥) to the canonical embedding of R¥ in R™ (where the last n — k
components are taken to be zero). Let us call this isometry R, with

R:T(R*) - {y e Ry = > <yje;,y; = 0V > k}

Now, to reduce to the case in which we map between the same dimensional Euclidean space,
let ®: R® — R* be the orthogonal projection,

n k
‘I’(Z yiei) = Zyiei-
Let
S:=®oRoT:RF - RF.

Note that the action of S is given by multiplication with a matrix, and so it is an affine linear
map. Indeed, each of these maps is given by matrix multiplication, so we abuse notation slightly
by identifying the maps with their matrices. We can therefore apply the first case:

HE(S(A)) = \/det(STS)H*(A).

\/det(STS) = | /det(DRT)T (®RT).

Since R is an isometry, and @ is projection, all that remains is

Then we have that

\/det(TTT) = \/det(MT M),

since M is the matrix giving the action of T'. m

7.2. Exercises.

(1) Prove thatif f : X — f(X) is a Lipschitz map between metric spaces then the Hausdorff
dimension of f(X) does not exceed that of X.

(2) Prove that if the Hausdorff dimension of X is d, and the Hausdorff dimension of Y is
d’, then the Hausdorff dimension of the Cartesian product X x Y is at least d+d’. Can
it ever happen that the Hausdorff dimension of the product actually ezceeds d + d'?
Prove or give a counter-example.

(3) Prove that any connected set (in a metric space) which contains more than one point
has Hausdorff dimension greater than or equal to one.

8. SIMILITUDES, HAUSDORFF AND LEBESGUE MEASURES, AND URYSOHN’S LEMMA

Let us nail down the relationship between Hausdorff and Lebesgue measures once and for all.
First, let us define

H°(Z) = #7Z = the number of elements of the set, Z.

Theorem 8.1 (Hausdorff and Lebesgue measures). For all n € N we have

HP = 27;6”,

w n

where wy, is the n-dimensional volume of a unit ball in R™.
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Proof: Let B, be a ball of radius » > 0. Fix € > 0. Then, by the definition of the Lebesgue
measure (and outer measure), there exist countably many hypercubes, denoted by R; such that

B, C UjRj,

and

(B,) +e> Y L(R))

Next, fix 6 > 0.

Claim 1. There exist countably many open balls {Bf} which are disjoint, and satisfy
L™(R; \ UpBY) =0.

Moreover, given § > 0, we may choose these balls to have diameters at most equal to §.

The proof of the claim is an exercise! From the claim it follows that £"(R;) = L™(UBJ).
Therefore we have the inequality

)+e> ZC” ZE” B’C : deiam(Bf)”
3,

By the absolute continuity of Lebesgue and Hausdorff measures with respect to each other,
H"(R;j \UpB}) =0 = H3(R; \UpBf =0) V5> 0.
This shows that
Hy(R;) = H (U BY),
and
H3 (UR;) = Hy (U BY).
Then, we also have by monotonicity, since B, C U;R;,
HE(B,) < HE(UR;) = My (U;BY).

Since UB]’-C covers itself, by definition of Hausdorff measure

JkB Zdlam BlC

Thus we get
w. n w . n n
M3 (B,) < diam(B})" = 27’;715 (B,) < ?:Zdlam(Bf) < LY(B,) + e
3.k Jik
Letting § — 0, we get

%H”(BT) < LMB,) + e,

and then letting e — 0, we get
w
TZHH(BT) < L™(B,).
To complete the proof, we just need to get a lower bound for the Hausdorff measure in terms

of the Lebesgue measure.
There is a nifty shortcut one can use here:

Proposition 8.2 (Isodiametric Inequality). For any A C R™, one has

wpdiam(A)™
n(A) < )
LM(A) < 5n
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Exercise 10. Locate a proof of this fact! Note that when A = B, the ball of radius r and hence
diameter 2r, the isodiametric inequality states that
diam(B, )"

2n '
Thus in that case, equality holds. This is a geometric fact which says that the ball of a specified
diameter contains the largest volume amongst all sets of the same diameter. A proof can be
found in Lawrence Evans & Ronald Gariepy’s Measure theory and fine properties of functions,
or even earlier on p. 32 in Littlewood’s miscellany.

L"(B,) = wy,

So, now let € > 0. Then, there exists a cover of B, by {B,} of diameter at most ¢ such that
H'(By)+e> Y diam(B;))".
J
Then, by the isodiametric inequality,
2n
So, we have
2n 2n
"(B, > — L"(B;) > —L"(B,),
(B +e> 30 LBy = —L'(B,)
where we have used in the last inequality the countable sub-additivity of the Lebesgue outer
measure, since the B; cover B,. Since this can be done for any e > 0, we obtain
2’ﬂ
H"(B,) > —L"(B,).

n

Combining with the reverse inequality, we get
H"(B;) = 2"w, L™(B,).

Since this holds for all balls which generate the Borel sigma algebra, it holds for all Borel sets.
Then, the completion is the same in both cases, so we obtain both the equality of the Hausdorff
and Lebesgue sigma algebras, as well as the equality of the Hausdorff and Lebesgue measures.

ﬂ

8.1. Similitudes and Cantor sets. Let S be a set of similitudes.
Lemma 8.3. If S(E) = E, then S*(E) = E for all k > 0.

Proof:

It is S(E) = -, S;(E) = E and also

j=

NG

SQ(E)DSJ U Si(E) :OSj(E):E'

By induction we have S*(E) = E for k > 2. t

What does that mean if S(E) = E? Especially, in the case that E # R™ and F # ()7 Well, the
scaling factor r is less than one, so applying each S; spins/flips/shrinks and slides E. Hence
E looks like, for each k, m* copies of itself which are scaled down by a factor of r*. If these
copies are disjoint or have little (negligible) overlap, F is “self-similar.” So, in particular, if

S(E) =F — E=S5FUSFEU...US,E =: UznzlEk.

|
<.

Il

—

Each Ej is geometrically the same shape as FE, it has just been shrunken by a factor of r,
orthogonally translated (i.e. rotated and or reflected), and then translated (i.e. slid to be
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sitting in some other spot in R™). None of these procedures changes the shape of E. For this
reason, when S(F) = E, we may call E a self-similar set. Moreover, we can do this again, with

S*(E)=E = E=U/"; _15,5,(F) =Uj=E,,

i1,i9=
where J is a multi-index of length two which each element in {1,2,...,m}. Similarly, we can
write
E=U=NnEy,
for any N € N. Note that when we do this, there are m® elements in the union, and each E;
is a copy of E at scale 717, Let’s recall a well-known example: generalized Cantor sets!

Example 8.4 (Generalized Cantor sets). Let § € (0,1), and Iy = [a, b] for some a < b. Define

Bla,B) = (a—;b_ﬁ<b;a)7a—2|—b+ﬂ<b;a>>.

Let I := Iy \ BIDO. This is closed and the union of two intervals, written I; = U3:1 Ijl. Then
we define

2
o 1 al
L= I;\ BI},
j=1
which is a union of two disjoint unions of two closed intervals. Again we write Is = szl If.
In general we write and define
2k

2k
L= I¥ and Ioy:=JI0\BI}
j=1

j=1
As defined note that
IpD>L D...DI1kD I

are a sequence of nested compact sets in R which is complete. Consequently,
mlk = lim Ik = O,B
k—o0
is a compact subset of R. Note that
Li(Io) =b—a, Li(I1) = (b—a)=B(b—a) = (1-)(b—a) = (1=F)L1(Io), Li(Ix+1) = (1=B)L1(Ik),

and so

£1(Cp) = (b—a) lim (1 B) =0,

since 8 € (0,1). Note that more generally, one can let 8 vary at each step, so that

2
L=1I\plo=]J 1},

j=1

and in general
2k
I = |J IF\ Bed).
j=1

Similarly we have nested compact sets and so

C := lim Iy is a compact subset of R.
k—o0

This is known as a generalized Cantor set. The Lebesgue measure
L1(C)=(b—a) [T - 5.
k>0
Hence, if 8 = f is fixed and lies in the open interval (0,1), then
L1(C)=(b—a) lim (1-p5)"=0.
n—roo
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So, we also have H1(C) = 0. However, we shall see that the Hausdorff dimension of such a
Cantor set is non-zero.
This is the usual way in which Cantor sets are described: by a procedure of cutting out the
middle bit of each remaining interval at each step. It is perhaps not totally obvious that we
can describe the Cantor set using the notion of similitudes and invariance under similitudes.
However, we can indeed do this.
Now, fix 5 € (0,1/2).
S:=1(51,852), Si(z):=px, Sa(x)=px+(1-7).
For the sake of simplicity, let us set I = [0, 1], that is take a = 0, b = 1, so that IH'T‘I = % = b_Ta.
We compute
S(Io) = Sl(Io) U 52(10) = [O,ﬂ] U [1 - B, 1] = 1.
Similarly, we see that
S(I) =1, = S*(Iy), Iy = S*(Iy).
So, since each §; is continuous we have

S <klim 5’“(1@) = S(Cp) = lim S*1(Iy) = C.
— 00

k—o0

Consequently we see that Cjg is invariant under the family of similitudes S = (S1, S2).

8.2. Urysohn’s Lemma. The following lemma will be required to prove our results about the
dimension of iterated function system fractals as well as construct the invariant measure on
said fractals.

Lemma 8.5 (Urysohn-light). Let (X, d) be a complete metric space and A, B C X non-empty,
closed sets with AN B = (). Assume that either A and B are both compact or that A and B are
at a positive distance apart. Then 3f € C(X) s.t.

fla=0 flp=1
Proof: First we know that the distance between A and B is finite because Ja € A, b €
B d(A,B) < d(a,b) < .
In the case that A and B are compact, if they were at a distance of zero, then we would have
at least one sequence {ay,,b,} with a,, € A, b, € B, and

nh_)ngo d(an,b,) = 0.

Since A is compact, the sequence {a,} has a convergent subsequence. Let us pass to that
subsequence, but rename it {a,} because we may as well have started the argument with it.
We then also rename the corresponding {b,} as well, so that we still have

d(an,bn) — 0.
Now, however, we also have
an, — a € A.

Next, let us look at the sequence {b,} C B. Since B is compact, there exists a subsequence
of b, which converges to some b € B. Oh, the abuse of notation, as we shall still call this
subsequence b, and the corresponding terms a,,. Then, we still have a,, = a € A, since these
are a subsequence. Now, however, we also have b, — b € B. Then, we have

d(a,b) < d(a,an) + d(an,bn) + d(bp,b) = 0 as n — co.
Thus,
d(a,b)=0 = a=b = a=bec ANB,
which contradicts ANB = (). Thus it turns out that the first assumption, that A and B are both
compact, actually implies that they are at a positive distance apart. Hence, we only need to

consider the case in which A and B are closed (but not necessarily compact), and at a positive
distance apart, because it covers all the possibilities. Let

§=d(A,B) > 0.
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Let
Ur-:={z e X|dz,B) > (1-r)}, re(0,1), U :=X,
and
f(z) :=inf{r € (0,1]] z € U, }.

Note that f(z) is well defined because it’s an infimum and defined Vz € X since every « € Uj.
If © € B, then d(z, B) = 0, so we shall not be able to obtain x € U, for any r > 0 except for
x € U;. Thus,

fx)=1 VzeB.

If z € A, then d(z, B) > d(A, B) = 6. This shows that for every r > 0, we have d(z,B) > § >
(1 =7r)d. So, x € U, for all r € (0, 1], which shows that

f(@) =o.
Since x € A was arbitrary, we get
flz)=0 Vxe A

The last thing to show is the continuity of the function f. Let z € X, and z,, — z. This is
equivalent to saying that d(z,,x) — 0 as n — co. Then, for any b € B we have

d(z,b) < d(z,x,) + d(x,,b).
Exercise 11. Show that f is continuous.

Now with our teamwork, the proof is done!

We require Urysohn’s Lemma (at least on metric spaces; it holds in the more general setting of
a normal topological space under the assumption that the sets are closed and disjoint) to prove
one of Riesz’s Representation Theorems. For this, we recall the definition of the dual space for
the continuous functions with compact support.

Definition 8.6. Let X be a Banach space. Let C.(X) denote the set of functions from X — R
which are continuous and compactly supported. Compactly supported means that there exists
a compact set K C X such that

f(z) =0vx € K.

The dual of C.(X) is the set of all bounded, (and thus continuous) linear functions from C(X)
to R. This dual space is denoted by C.(X)". In particular L € C.(X)’) if and only if L satisfies:

L(af +bg) = aL(f) + bL(g), Va,b€eR, f,g€C(X),
and

IL(OI< LM Moo Y € Ce(X),

for a finite, fixed constant ||L||. Above ||f|/sc is the £ or supremum norm of f, which is
defined by

[ lloc = sup | f(2)[-
zeX

Theorem 8.7 (Riesz Representation for C.(X)"). If 0 < L € Co(X)" = 3 measure p1 on X
s.t.

Hﬁ:wa

and Borel sets are p measurable. Here by L > 0 we mean that for all functions f > 0 we have

L(f) = 0.
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8.3. Exercises.

1) Determine the Hausdorff measure and Hausdorff dimension of the standard Cantor set.

2) Compute the Hausdorff dimension of a generalized Cantor set.

3) Compute the Hausdorff dimension of the product of two Cantor sets.

4) Show that every subset of R™ is measurable with respect to the 0-dimensional Hausdorft
outer measure.

(5) Construct a subset of R which has Hausdorff dimension one but has zero Lebesgue

measure. Note that since this will imply the set also has H! measure zero, yet has

Hausdorff dimension equal to one, so it will be an example as we discussed in class.

(
(
(
(

8.4. Hints: continuity in Urysohn’s Lemma. Let x € X with f(z) = r. First, consider
when f(x) = 1. This means that € U; but not in U, for any r < 1. Consequently, d(z, B) = 0.
(Why?) Therefore, since B is closed, x € B. Assume that x,, — . Then, d(z,,B) — 0
as n — oo. Consequently, letting r, = f(z,), we must have r, — 1 as n — oco. Thus

f(an) = ().
Next, consider when f(z) < 1. Write r = f(x). Then, for r <7’ < 1, we have x € U, so that
d(xz,B) > (1 —r")d. If z, — x, then d(z,,z) — 0. Then, for any b € B, we have

d(z,b) — d(z,z,) < d(xn,b).
Since for all b € B,

d(z, B) < d(z,b)
we have
d(x,B) —d(x,z,) < d(z,b) — d(z, z,,) < d(zp,b).

Taking the infimum now over all b on the right side, we get

d(xa B) - d(ﬂl‘, xn) < d(ﬂ?n, B)
Similarly,

d(xpn,b) — d(zy, ) < d(x,b).

So, taking the inf over all b € B on the left (but not on the right), we first get that for any
particular b € B,

d(zpn, B) — d(xn,x) < d(z,b).
Next, taking the infimum over all b on the right we get
d(xn, B) — d(zp,x) < d(x, B).
Thus,
d(z, B) < d(z,, B)+d(z,x,), d(zn,,B) <d(z,B)+d(z,x,) = |d(x,,B)—d(z, B)| < d(z,z,).

Since d(z,x,) — 0 as n — oo, we get that d(z,, B) — d(z,B) as n — oo. It follows that

flan) = f(2).

9. SIMILITUDES AND ITERATED FUNCTION SYSTEM FRACTALS

We shall begin by determining a sufficient condition to guarantee that a set of similitudes has
an associated non-empty, compact, invariant set. When such an invariant set exists, it is also
unique. It is known in this contact as an iterated function system fractal.

Proposition 9.1. Let S be a family of similarities with common scaling factor r € (0,1). If
there exists U open, non-empty and bounded such that S(U) C U, then S is said to satisfy the
open set condition. (OSC) Equivalently, one may say that S admits a separating set. When
this is the case, then there exists a unique X CC R™ such that S(X) = X # 0. More generally,
if there exists X CC R™ such that S(X) = X, X # 0, then the set, X, is unique.
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Proof: First we note that since U is non-empty and bounded, then U is closed and bounded
inside R™ and therefore compact. Moreover, we note that each similitude is an affine linear
function from R™ — R™, and is therefore continuous. Consequently, the image of U under each
S; is compact. We also obtain by continuity that

Si(U)=5;U), i=1,....,m, S{U)=S).

Consequently, since

SU)cU = S(U)=SU)cU.
Therefore, the sets
Sk, SHYU)c SHU), k>o.
Moreover, these are each compact and non-empty since U is nonempty and open, which guar-
antees that S;(U) is non-empty and open for each i since S; is an affine linear transformation.
Thus S(U) D S(U) is also nonempty, and repeating the argument, since S*(U) is non-empty
and open for each k£ > 1, we have that
S*(0)
is non-empty and compact for each k. It therefore follows that
X = ﬂkzosk(f]) £ 0
and is compact. Then, since the S¥(U) are nested, we have
X = lim S*(U).
k—o0
Since all the similitudes are continuous, we also have
lim S(S¥(U)) =S < lim S’“(U)) = S(X).
k—o0 k— o0
On the other hand, it is always true that
lim S(S¥(U)) = lim S*1(U) = lim S*(U) = X.
k— o0 k— o0 k—o00

Thus X is compact, non-empty, and invariant under S.
Now let us show that X is the unique compact set which has this property. So, if Y # 0 is
compact, and S(Y) =Y, we wish to show that Y = X. For this purpose we define

D(Y, X) :=supd(y, X) = sup inf d(y,z).
yeyY yey z€X

Similarly, we define

D(Si(Y), 5:(X)) = sup d(Si(y), Si(X)) = sup inf d(Si(y), Si(z)).

yey yey z€X
O;(y) + b;, we have that
)

=T
D(5i(Y),8i(X)) = sup inf d(rO;(y),rOi(x)) = sup inf rd(y,z),
yey reX yey reX

Now, recalling that S;(y) =

since O; is an orthogonal transformation, and so it does not change the distance between points,
and r is simply the scaling factor. So, in fact we see that

D(5i(Y), 8i(X)) = rD(Y, X).

Now we shall use the invariance of Y to eventually reach a contradiction. By the invariance of
Y

Y = U, S(Y) = (),
so we have

D(Y,X) = max D(S;Y,X) = D(5,Y, X),

1<i<m
for some specific j (or perhaps it is achieved by more than one j, we do not care). Now, for
fixed

y ey, d(S;y, X) = meX)llngkamd(Sjy, Six) < xlg)f(d(S’jy,ij) =d(S;y,S;X).
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Here we use that X = S(X) = US,X. Taking the supremum over y € Y, we have
d(S;Y, X) <d(S;Y,S;X) =rd(Y, X).
Since r < 1 this is only possible if
dY,X)=0= sggd(y,X) =0 = yeX Wyev.
y

The last statement above follows because X is a compact, and therefore closed, set. Conse-
quently, we see that Y C X. We can repeat the exact same argument, swapping places with X

and Y, and we obtain that X C Y. Hence they are equal.

Theorem 9.2 (Riesz Representation for C.(X)'). If 0 < L € C.(X) = 3 a unique measure
won X s.t.

Hﬁ=Afw

and Borel sets are p measurable. Here by L > 0 we mean that for all functions f > 0 we have
L(f) > 0. For the sake of simplicity, we may take X = R"™.

Proof: Write f < U if U is open, f € C.(X), 0 < f < 1, and supp(f) C U. Recall that the
support of a function is

{r e X: f(z) #0}.
We shall define

and for U open,
w(U) == sup{L(f)| f < U}.
Since I > 0, u(U) > 0. Note that if U is open and non-empty, then there exists a point p € U
and a ball B, (p) such that the closure of Ba,(p) is contained in U. Let B be the closure of
B, (p). Let
A= X\ By (p).

First, we note that since Ba,.(p) C U, we have A D U°. Next, let ¢ € B and « € A. Then, so
defined

d(g,p) <, d(z,p) 2 2r = d(q,x) = d(z,p) —d(p,q) =
Thus, we see that B and A are at a positive distance apart. By Urysohn’s Lemma and its
proof, there is a function f which is 0 on A and 1 on B and takes values between 0 and 1 in
general. Since f must vanish identically on A, the support of f is contained in the closure of
Bs,-(p) which is contained in U. Here is where it is convenient to take X = R™, because this
implies that closed balls are compact, so the support of f, being a closed subset of Ba,(p) is
also compact.
Therefore, p is well defined for all open sets. Now we use it to make an outer measure. Let

w*(E)=inf{u(U) | ECU, U open }.

So defined, this vanishes on the empty set. Moreover, if A C B, then every U which covers B
also covers A, so we obtain
©*(A) < p*(B).
Now note that if U C V are two open sets, then it is more restrictive to require f < U as
compared with requiring f < V. Thus, the supremum taken for V' can include more elements,
so we have
u(U) < u(V).
By similar considerations, we also see that p*(U) = u(U) if U is open. Now, let {U;} be open
sets. Define
U =uU;y,
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and note that this set is also open. If f < U, let K = supp(f). Since K is compact, by
definition of compactness and since it is covered by the U; (open cover), we have a finite open
cover,

UglleJ D K.

Exercise 12. Show that you can find a so-called “partition of unity” that is {qu};?:l non-
negative functions, which have ¢; < U; and Z?zl ¢; =1 on K. Hint: This is done in Folland’s
Real Analysis, Prop. 4.41.

So, since f is supported on K, we have that Z?Zl ¢;f = f on K, and it is also true off K

because f is zero over there. So, we have that always f = > "7 ¢;f, and moreover, f¢; < U;.
So, by the linearity of linear functionals,

L(f) =LY f6) = D L(f6;) < D n(Uy) < D u(Uy).
1 1 1 1

This holds for all f < U, so we obtain

(oo}

p(U) < u(U;).

1
Consequently, countable sub-additivity holds for all open sets. Now, if we have some other sets,
with

E=U;E;,
if >° p*(E;) = oo, then we of course get
pr(B) < p(E;).

So, assume all these guys on the right are finite. Let € > 0. Then, for each j there is an open
set U; D E; with

Then, we also have
E C UjUj =U.
By the countable subadditivity for open sets (and note that U is open) we have

p(U) <3 n(Uj).

So,
p(U) < D uU;) < D1 (B) + 55 = e+ > 1 (Ey).

Now we take the infimum over all open sets U on the left. This is a bit subtle, so let us write
it out

inf{u(U): ECU= u;U;, E; CU; open} < e+ Z,LL*(E])

When we now take the infimum on the left of w(U) for all open covers of E, it could possibly
be smaller, so we get

WE) < e+ 3 it ().
Letting ¢ — 0 we obtain countable sub-additivity for all sets. Next, we shall show that this is

a metric outer measure.
If d(A, B) > 0, then by its definition

p (AU B) =inf{u(U)|AUB C U, U is open}.

Observe that if f < V, and A C V, and ¢ < W with B ¢ W, and VN W = {, then
U=V UW D AU B. Moreover, f+ g < U. By the linearity of linear functionals

L(f +g) = L(f) + L(g)-
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Consequently,
u(U) = sup{L(f +g) = L(f) + L(9)|f <V D A,g<W DB, VNW =0}

Now, take the supremum of L over such f and ¢ for fixed V and W. Since the V' and W are
disjoint, and we are supremuming over non-negative elements, the supremum of the sum is the
sum of the suprema, so we have

sup{L(f +g) =L(f) + L(g)|f < VDA g<WDB, VNW =0} =puV) + pnW).

Basically, the f and g above are independent of each other, so one simply maximizes for f and
for g independently, which is why the supremum is equal to the sum of the suprema.
Next, we take the infimum over V' and W which contain A and B respectively,

w(U) > inf{u(V) + p(W)|V open, A C V,W open BC W, VNW = 0}
> inf{p(V)|V open, A C V} + inf{u(W)|W open, B C W}
= (A) + p*(B).
Next taking the infimum over U, which is open and contains A U B to obtain
W*(AUB) > u*(A) + u*(B) > u* (AU B).
The right side followed from countable (and thus also finite) subadditivity which we already

established. So, we conclude that p* is a metric outer measure.

Exercise 13. Show that L(f) = [ fdu for all f € C.(X). This is mostly aimed towards those
who have taken integration theory already!

Exercise 14. Show that the measure obtained in this way is unique.

Definition 9.3. For x € R", E C R", a measure p, {i1,...,%x} C {1,...,m} we define
(1) Liy. iy = Sil : OS ( )7
(2) Ellzk = STl o. ( )a and
(3) tiray = (S 00 1) (E).
Theorem 9.4 (The invariant measure for an IFS fractal). Assume that S = (S1,...,Sm) is a
family of similitudes with common scaling factor r € (0,1), X CCR", X #0, and S(X) = X
Then there exists a (non-negative) Borel measure p on R™ such that /L(IR”) =1, supp(p) = X,
and

1 m
VkEN, MZW Z iy i -
’Ll..Zk:l
Here we mean by the statement that supp(p) = X that for any A C R™ which is p measurable,
then

p(A) >0 <= AnX #0.

Proof: We will construct p on X and extend it to R™ \ X to be identically zero. In this way
the last statement will automatically hold true (although we shall also double-check for good
measure). Let z € X, and define
1 E
ME);{  TEL

0, ¢ F
For {E;};>1 disjoint then either there exists 4, j such that

z € F éé(UE =1=) 6.(E
7>1
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or not; in which case

0o( U E;) = 0= 6,(E)).

i>1
= i>1

Consequently, we have for any A, B C R", 0,(A) = §,(AN B) + 6,(A\ B). This shows that
every set in R"™ is measurable for J,.
We define

1 m
#k = W Z [539]2'1““.
21..’Lk:1
Then note that

1, z€(S;,0..08,) YE)& S;;0...08;,(z) e E

0, otherwise

[02)iy..i (E) = 05(Si, 0...05;, (E)) = {

The idea is that we want to show that letting & — oo, limg_, ,uk defines a bounded, linear
functional, that is an element of C.(R™). Then, we will use the Riesz representation theorem to
obtain a measure. Finally, we will show that the measure which we obtain in this way satisfies
the desired properties.

So, to begin, since bounded linear functionals are defined through their action on continuous
functions with compact support, let f be such a function. Then, by definition

Jat = 37 )

R™ Zl‘-lk:]-

and

1 & mk
kmny _ E _ _
MUR)_mk, . l_m’“_l'

7'1--Zk=1
To Complete the Proof:

(1) Show that for any continuous f,

{ fduk}kzl
Rn

is a Cauchy sequence. Consequently we can conclude that it converges to a well-defined
limit for each f. Call the limit

L(f) :== lim fdu®.

k—o0 Rn

(2) Observe that linearity is inherited by L from the linearity of the integral. Moreover, by

definition
’/P fdp”
Rn

Here we have used that

<l [ it = 11l

du® = 1Vk.
Rn

(3) Show that the support of u is precisely X.
(4) Show that p enjoys the invariance property given in the theorem.

We shall complete items 1, 3, and 4 next time!
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9.1. Homework.
Exercise 15. Compute the Hausdorff dimension of the Koch snowflake curve.

Exercise 16. Let A be the closed triangular region in R* with vertices (0,0), (1,0), and (3, 1).

Let 1 1 11

SJ(X):§X+bJ7 b1:(030)7 b2: (27())3 b3: <432>
Prove that N2 S*(A) is the unique compact non-empty invariant set under S = (S1, Sz, S3).
Determine its Hausdorff dimension. What is the name of this set?

We shall be entering the realm of complex analysis and complex dynamics, that is the iteration
of holomorphic (and meromorphic) functions. With this in mind, the exercises are now intended
to refresh your memory of basic, fundamental facts in complex analysis.

(1) Prove that f is holomorphic on D,.(2g) < f is R? differentiable and u = R(f), v = I(f)
satisfy u, = vy and u, = —v,. These are the Cauchy-Riemann equations.
(& 0f) = 0.

(2) Prove that f(z) = z and f(z) = ¢ are holomorphic as in R. Prove that f, g holomorphic
= fg,f +9,f/g9(g #0) also just as in R.

(3) Not like in R: Given f: R — R continuous. 3F: R — R such that F/ = f? Yes.
F(z) = [ f(t)dt.
This is not necessarily true in C. Give a counterexample.

(4) Prove that if f: Q — C, where Q is a domain, is continuous, and if 3F: Q@ — C such
that F/ = f then f,y f(z)dz = OV closed curve v C Q.

(5) Prove Goursat’s theorem: if f is holomorphic on €, then [, f =0V triangle T CC Q

where T' C ).

(6) Recall that a domain is called star-shaped if there exists a point in the domain such
that the line segment connecting this point and any other point of the domain lies
entirely within the domain. This really looks like a star. Examples include all convex
domains. Prove that if Q is star-shaped, f holomorphic, f has primitive F(z) = f; f,
and fy f =0V closed 7.

(7) Prove that if f holomorphic on G\ zg and continuous on G, we also get fy f=0Vy

with yU~ cC G.
(8) Prove that the converse is also true: If [ f = 0VT satisfying the hypothesis, then f is

orT
homolomorphic on G.

(9) Prove that if f is holomorphic on T'\ z, where z denotes a point, then [ = 0.
oT
(10) Prove the Cauchy Integral Formula: Let f be holomorphic on D = D,(zy) 3 z. Then

-2 [
oD

9.2. Hints.

(1) Assume that f is holomorphic. Near z, f(w) = f(2)+(w—2)A,(w). For the coordinates
(z,2) e C=R? we get . = 22, y = 2% and % = 0. Therefore we get

22
0 of o of 0 1 1 1
fﬁ f7z+ f7y i(fﬁc*lfy)

9z " or0z T oyoz 2t a9 lvT

= %(uz + 2w, +1(uy +wy)) = %(uT —vy +2(vz +uy)) =0
& Uy = vy and Uy = —Vs.
On the other hand, assume f is R? differentiable and
05 _0fox , 010y
0z 0Ox 0z Oyoz
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Since 9f = % = 0, we have near zq:

zZ— 20

1) = flan) M- |22

|+ 50

where lim
Z—rZ20

Since@sz:M:{

z

B(z)
—

’%O.

a 0

b O} and therefore

:f(ZO)'|‘(Z—ZO)A(2;)7 A(Z) — (a+b)—|— B(Z) 7

Z— 20

and A(z) is continuous because f_('zg — 0 as z — zp. Consequently
lim f(2) — f(20) —a+b
z2—20 Z— 20

exists.

(2) f(z) =2 has no primitive since

(z)dz = Qﬂ Fy@) (t)dt = /27T %m’e“ =2mi #0
0

oD, 0 re
,A'\
L .F
g wa
,’/f b
~ \
A \/ N
/ = /, - - Sy
FIGURE 1.

Goursat First, we split the triangle into four triangles by joining the midpoints of each of the

sides of T'. Then integration along the interior edges cancel and so

4
WES S AV ET Ty
aT ; aT}! 1<isd” Jor}

We define T} to be any T;' such that the integral achieves the maximum. We repeat
this process with Ti, defining T? for i = 1,2,3,4, such that the integral over the
boundary of T} is equal to the sum of the integrals over the boundaries of the 7. The
triangle whose integral is maximal is defined as T>. This triangle is again split into
four, and so forth, defining a nested sequence of triangles

TO>T'DTD ...

Note that the length of the boundary [071| = $|0T| and therefore [9T}| = 27*|0T|.
Furthermore, we have diam(7}) = +diam(T’) and therefore diam(7}) = 2~ *diam(T’).
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Since the triangles are compact and nested, and their diameters converge to zero, the
intersection

(T = {20} = Jim 7.
Since f is holomorphic at zy which is in the interior of 2,
f(2) = f(20) + (2 = 20) f'(20) + (2 — 20)(A(2) — A(20))
(20) + (2 = 20)(A(2)).

=/
Note that B(z) := A(z) — A(zp) is continuous at zg because A is, and that B(zy) = 0.
Since the function

f(z0) + (2 = 20) f'(20)
has a primitive, namely
2
F(2) = 2(f(20) = 20f (20)) + 5 f/(20) = F'(2) = f(z0) + (= = 20)'(20),
the integral

| G+ =) Galds =0, [ (F0) + (== 20)1 (o)) dz =0, .
oT Ty,
Consequently by linearity of the integral
(2)dz = / (z — 2z9)B(z)dz

8Tk 8Tk
= f(2)dz| < |0Ty| max |z — 2||B(2)| < |0T}|diam(T},) max |B(z)| = 2~ Fdiam(T) max | B(z)| - 27*|0T|

ot Ty, Ty ATy |
é|/ f(2)dz| < 4% - 47Fdiam(T)|0T | max | B(z)|

ar Ty,

Since T}, — zo and B(z) — B(z9) = 0 as z — zp, it follows that the maximum over
0Ty, of |B(z)| tends to 0 as k — oco. Consequently the integral on the left above must

vanish.
(3) For the proof of the Cauchy integral formula, let

[ Gy o,
g(w) == {f,(z) -

Then g is holomorphic on D \ z and it is continous at z.
Therefore since D is convex and hence star-shaped

/ glw)dw =0
oD
= f(w) dw = 1) dw = f(z)/8 dw

op W — 2 op W — 2 pWwW—=Z2

dw
w—2z0

Compute [
oD
D.

dw = 2mi and prove that the function h(z) := [ -2 is constant on
oD

9.3. Hints: the integral in Riesz’s representation. To show L(f) = [ f du Vf € Cc(X),
we first show

p(K) = inf{L(f)| f € Co(X), f2xx} VK €X.
(Note: [ xx dp = p(K) by def.)

Let U, :={x| f(z) > 1 —¢} for such an f € C.(X), f = xk. Ue is open.
Ifg<U. =(1-e)'f-g20=I(1-¢e)'f-g)>0
= (1-2)7'I(f) = I(g)
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= p(K) < w17

= u(K) < I(f)

On the other hand for U open with U D K, by Urysohn
Af € Co(X) st. f=2xxand f<U

= L(f) < p(U) (by def. of p).

w(K) =inf{u(U)| U D K,U open}

= w(K) < L(f) < p(U) YU open U D K

inf on RHS (K) gL( ) ,U(K)

:>M( ) = f{L(f)| f € Ce(X), f=xx} VK CX.

~— —

It is therefore enough to show
L) = [ £ dutor f € Culx.[0.1)

since C, is the linear span of such f, and both L and the integral [ du are linear functionals
on C..

For NeN, 1 <j < Nlet K; :={z| f(z) > £} and Ko := supp(f).
Then note that
KoDKi DKy D....

Define
0 if ¢ Q Kj,1
filw) =1 fa)- Y ifreK; i\ K;
% ifx e Kj

So defined, f; vanishes on K7_;, and on Kj, f; = %, whereas on K;_; \ K}, since

Jfl_f< — 0< fj <1/N.
Consequently,
(9.1) N7k, < fj S Nlxg,
92) NI < [ dun < Gals).
N N

If U is open and U D Kj_1, then

ij < U,
because the support of f; is K;_; which is compactly contained in U. Therefore, by the
definition of p(U) as the supremum over all such f;, we have

L(f;) < _1U(U)'
Now since for a compact set (which we note K; is) we showed that p(K;) is the infimum over
L(f) for all f € C. with f > xk;,, by (9.1)

u(K)) < 1(f) < N7 u(U),

N

Taking the infimum over all open U which contain K;_; as in the definition of y we then have
1 1

(9.3) N HEG) < Lf) < ulK;-1).

Note that so defined

N
F=> "t
j=1
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so summing over (9.2) by linearity of the integral,

N—

1 & N 1
= 2K <L) < 5 Y mE
j=1 j=1

=0

[

<.

Next we sum over (9.3) using the linearity of the functional I,

1N | N1
NZM(Kj)</fdu<NZuK
=1 i=0
Finally, we subtract these inequalities which leaves only the first and last terms, and so

= |L(f) - / < PU0) — pEN) _ plsupp())

N - N
Note that the measure of the support of f is finite because the support is compact, and for
compact sets, p(K) is defined as the infimum of L(f), and L is a linear functional (which implies
L is continuous and hence has bounded norm). Therefore we have L(f) = [ f dp.

— 0, as N — oo.

10. THE INVARIANT MEASURE ASSOCIATED TO AN IFS
Just so that we don’t forget what is going on, recall:

Definition 10.1. For z € R", E C R", a measure u, {i1,...,it} C {1,...,m} we define
(1) Tiy gy 1= Si, 0...0 Szk (1’),
(2) E“Zk = Sil o...0 Szk (E), and
(3) iy i 2= M((Sh 0...0 Sik)_l(E)'

We have nearly finished the proof of this awesome result.

Theorem 10.2 (The invariant measure for an IFS fractal). Assume that S = (51, .. ,Sm)
family of similitudes with common scaling factor r € (0,1), X CCR", X £, and S(X) =
Then there exists a (non-negative) Borel measure p on R™ such that u(R") =1, supp(p) =
and

1 m
VEEN, p=—p > i
il..ikil

Here we mean by the statement that supp(u) = X that for any A C R™ which is p measurable,
then

w(A) >0 < ANX #0.
To Complete the Proof: Recall how we defined

m

= % Z [02)iy i, -

i1.ip=1
Then note that
1, 2€(S;,0..08,) YE)& S;,0..08;,(r) € E
0, otherwise

[5$]111A(E) = 558(51'1 ©...0 Sbk(E)) = {

m

fdﬂ,k = Z le zk

R 114.1;671

and
m

PR = S

i1..0p=1

E
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(1) Show that for any continuous f,

{/Rn fdp*Yesa

is a Cauchy sequence. Consequently we can conclude that it converges to a well-defined
limit for each f. Call the limit

lim fdu®.

T k—o0 R

L(f)

(2) Observe that linearity is inherited by L from the linearity of the integral. Moreover, by

definition
’ / fdp”
R'ﬂ.

Here we have used that

<Al [ dit = 11l

/ dp* = 1k.

(3) Show that the support of u is precisely X.
(4) Show that u enjoys the invariance property given in the theorem.

Let € > 0. That X is compact, and f is continuous implies 3k > 0 such that
|z —y| <rFdiam(X), z,ye X = |f(z) - f(y)| <e.

Above we have used the fact that r < 1 hence ¥ — 0 as k — .
If | > k£ > K, then since

Tiy .4 € Xi1~~il, = Sil 0...0 Siz (X) = Sil 0...0 Szk o Sil (X)

S; (X)CcX, = S;,0..085;,..05,(X) C Si 0...085;, (X),

PESR 7}
and

diam X, = rfdiam X,

iy g
we have

|f(@iy.a) = f@iya)l <e
which follows because z;, ;, and z;, ; are both in X, ;. , so

|Tiy i — @iy | < dlam(X5, 4,) = rkdiam(X).

Summing over i41..4;, and using the trick

f(@i.0,) = mlI,k Z f(@iy i)

tpt1-0=1

because the sum on the right is simply f(z;, ;) repeated m!~* times, we have

1 S S 1
f(@ia,) — =k Z f@i )| = Z f(@iya) = @iy ) oy

Tgpq1..9=1 ig41.-01=1
1 m

Sml,k Z |f(xi1~ik) - f(xhll)'

tpt1-.0=1
m!=ke

< =€

mi—k
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Next we sum over 7;..7; and use the estimate above

. 1 & " 1
mk Z f(@iyin) % Z Z f(@iy) —k
i1.. 0 =1 i1 =1 \igp41..97=1
=|m~* Z f(xlllk) mi—k Z f(xh ZL)
1 lkzl ik+1 ’Ll—l
m 1 m
<m~* Z f(xil-/ik) mi—k Z f(‘rh ll)
il. lk—l ik+1 ’Ll—l
<m kmke =€
Since
1 — 1 &
fid =3 37 fload [ 1A = Y fai)
" i1..4=1 i1.ik=1
we have
fduk—/ fdpt| <e, 1>k>K.
R"L n

We have therefore shown that for any € > 0 there exists K € N such that for [ > k > K,

/Rn fdu’“*/w fdul| <= {/ fdu'“}kzl

is a Cauchy sequence in R, which is complete, so the sequence converges.
Consequently we define a bounded linear functional on C.(R™) by

1(f)

Now, we have called it a bounded linear functional, but let us indeed verify that it is, and that
it is also non-negative. For this, note that if

m fduk.

= 1i
k—o0 R

fZOé/fdukZOVk:»I(f)EO.
So, I is non-negative. For g € C.(R™),
I(f +g) = lim /(f + g)dp* = lim /fduk + lim /gduk — () + I(g).
k—o0 k—o0 k—o0
Similarly, for A € R,

If) = kli_{r;o//\fduk = (f).

Therefore I is linear and non-negative. The functional is bounded because

/fduk < 1l loot* (BR™) = || Flloes

(NI <Iflloe V[ €Ce(R).

By Reisz Representation Theorem there exists a Borel measure p such that

1(f) = / fdu, Wf € Cu(RM).

which implies

Note since
HFR\X) =0 VE,
if a function f has support in R™ \ X, then

/fduk:OVk — /fduzo.
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Since we can approximate the characteristic function of any compact subset of R™ by continuous,
non-negative functions, it follows that

pF(E) = u(E) for any E CCR® = u(E) =0YE CR"\ X.
Therefore we have
supp(p)® = UG, G C R™ open, such that u(G) =0,
supp(p) D R" \ X = supp(p) C X.

By the Lebesgue dominated convergence theorem,
/ldu = p(R") = lim ldp* = p*(R™) = 1.
—00
By definition,
Ziy iy, € Xiy.ip, foreach keN.
We also have
diam(X;, ;) = r*diam(X) — 0 as k — oo.

By the invariance of X under the family S, we have

X =U" . 1 X -

i1k
Then note that for any € > 0 there exists k£ € N such that
diam(X;, ;) = r*diam(X) < e.

This means that for any point y € X, since

yEX =U" 41X igs
the point y lies in at least one of the elements in the union,

y e Xi i, = |y— 4.4, < diam(X;, 5, ) = rFdiam(X) < e.

This shows that the collection of points

{{zzlzk }Zb.uikzl}kzl

is dense in X, and hence the closure of this collection of points is X. By the definition of z*,

k
Supp(ﬂ ) = {xlllk }’z(rll...ikzl'
Let p be one of these points, and let f be a compactly supported continuous function with
f(p) =1, and 0 < f < 1. Then there exists ¢ > 0 and N € N such that

ly—pl<e = f(y)>1/2, k>N = rFdiam(X)<e, pe€ X,

LN
Note that we have already seen

Xiyoigois € Xy i, = Uiy i iy CUXG

K

Consequently for any [ > N we know that p € X, and consequently

Tiy.in € Xiyin = f(@iy.in) > 1/2.

Similarly, we also have
f(xiluiN-uil) Z 1/2 ViN+1...il.
Then we also have for any k <,

1 - 1 &
1
/fd“ = ik > mk > i)
ihg1ei=1 i1.ip=1
and in the second sum taking the specific choice i;...ix we have
1 - 1 m!=N 1
Z TN Z mf(fﬂil“.m“.n) Z o NN~ N

INt1..-0=1
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Keeping N fixed and letting [ — oo, this shows that

1
dp = li dul > —.
= gim [ > 5
If we had p € supp(u)¢, then since by definition this is an open set, there would be an open

neighborhood of this point contained in supp(u)¢, and so for such an f with support contained
in this neighborhood we’d have

[ #dn < utsup(r) =0
That is a contradiction. Hence the entire set of points

Hziy i 3 ip=1}k>1 C supp(p),

and by definition supp(p) is closed so supp(u) contains the closure of these points which is X.
We have already seen that supp(u) C X, so this shows that we have equality.
Finally, we will show the invariance property. By definition,

m

and

1
= [#’l]ilnik = W Z [[6m]j1--jl]il--ik
Ji--j1=1
First, we compute that
(021513 )ir i (B) = 2((Sy -+ 850) 7 (Siy -+ Sip) T H(E).
Here, note that
(8iS;) "t =515
To see this, just compute
(Sj*lS;l)(SiSj) = the identity map.
So, we have
(S5 ...Sjl)_l(Si1 S )T =S S’i,c)_l(Sj1 ...S’jl)_1
= (8 ... 8.5 "'Sjl)_l
Thus,
[[5I]j1~~jl]i1uik = [6fr]i1‘~~i1«j1~~jz'
Let us therefore define
U1 = J1s- o5 bkl = Ji-
Then we have

H(Sl‘]jlnjl]hnik = [6w]i1~"ikj1~~~jz = [6$]i1mik+z'

Consequently,
l 1 ¢
= Wi = 7 > (8a)ju. giJin i
Ji--gi=1

m
1
Tl E S (7% R P
lk+1...’bk+1:1
So, now summing over all k combinations

m m

> i = % > S Balirinivn

ir.in=1 i1 =1ip 1. ipp=1
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1
il Z (0c)ir..ip.inss
i1...tp41=1
1 m
:mkuk+l — — Z [/il]il..ik :MkJrl.
i1...0=1

Now, let f be continuous. Taking the limit on both sides as | — co we have

1 m
. k7 § : h. .
llggo R Jap™ = 115?0 mk £ L Jrn Flilin...i-
1.0 =

Basically, the dominated convergence theorem allows us to move the limit inside everywhere,

obtaining
1 m
/]Rn fdp = mk Z o fdluli, . i,

i1...0=1

For more details, note that

_JLze o HE)
Xpmi(m)(@) = {O,else
and
Lo(r)e Esrxecp Y(E
wooln = {12@ o (E)
0, else
Therefore,

Xe—1(E) = XEC ¥
Analogously, (integration is the limit over simple functions i.e sums) and using the definition
of ,

/ Fldii i = / foSi 0. 08, du

—>/fOSi10..OSikdu

l—o0

= /f[du]il.‘z‘k

Let us now assume k is fixed. By the above calculation relating ;/**! and p! and the linearity
of the integral,

/ fdu’“”:% i / Fldu'Tiy i

i1.ip=1
1 m
l:)o mE Z /f[dﬂ]il..ik
1,1.4’Lk=1

Since

lim / fdprtt = / fdu
l— 00

/fduzﬁ i /f[dﬂ]iluik-

i1..0=1

by definition, this shows that

This means that on the right side, we also have a linear functional, namely

frooe S0 [ Sl

i1..0p=1
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which coinicides with our linear functional I. By the proof of the Riesz representation theorem
assuming the measure associated with our functional above is constructed in the same way,
these measures are therefore the same, and so

1 m
= mk Z 1]y i -

7/1~~Zk:1

The k € N was arbitrary and fixed, hence this holds for all £ € N. t

10.1. Ball counting Lemma. To compute the dimension of IFS fractals, it will be important
to be able to estimate how much certain sets intersect with our self-similar X such that SX = X.
The following lemma is key.

Lemma 10.3 (Ball counting Lemma). Let ¢,C,§ > 0. Let {U,} be a collection of open, disjoint
sets such that. a ball of radius ¢ C Uy C a ball of radius C4. Then no ball of radius § intersects
more than (14 2C)"c™™ of the sets U, (note: we are in R™).

Proof: If B is a ball of radius §, and BN U, # 0, then let p be the center of B, so that
B = Bs(p).
Then, by the assumptions of the lemma, there is some ¢q € U, such that
Uy C Bes(q).
Next, we wish to show that U, C B(142¢)5(p). For this, let
x € U,.
Then for z € BN U,, by definition of the ball, we have
|z —p| < 0.
By the triangle inequality,
2 = | < |o — 2| + |2 — p| < diam (Bes(a)) + 6 = (1+2C)6.

Here we have used that U, C Bes(q), to get that | — z| < diam (Bes(q)). So, since this

Ua . .
holds 7" any o€ Ua C B(142¢)5(p). So, in conclusion, any U, whose closure has non-empty
intersection with B is contained in

B12c)s(p)-

So, the rest of the argument is all about counting. If N of the U,’s intersect B (i.e. have # ()
intersection), then since they are disjoint, and each contains a ball of radius ¢d, and they are
all contained in B(j42¢)5(p), = adding up the Lebesgue measures of all these N disjoint balls
of radius ¢d which are contained in the one ball of radius (1 + 2C')§ we have the inequality:

= N(c6)"wn < Ln (Bas2cys(p)) = (1+20)"6"w,.

Simplifying:

g S

= N<(1+20) ¢
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10.2. Homework. The exercises shall continue with the complex analysis fundamentals to
prepare for the second part of the course.

(1)

Super-Mega-Differentiability: Prove that the derivative of a holomorphic function

is holomorphic as are all derivatives. Holomorphic functions are infinitely differentiable

(and in fact much better than merely C*°).

Maximum Principle: Prove that |f| has its maximum on the boundary. Otherwise,

f is constant.

Identity Theorem Prove that TFAE

1. f=g

2. f*¥(z0) = g*(20) Yk and some z

3. f(zn) = g(zn) Y, 20 # 20,20 — 20 € G.

Liouville: Let f: C — C be holomorphic. If f is bounded, then it is constant.

Fundamental theorem of Algebra: p(z) is a polynomial with coefficients in C,

degree of p is k > 1. Then 3! (up to rearrangement) {Tj}?:o in C such that p(z) =
k

ro 1:[ (z —1j).

7=0
Riemann’s Removable Singularity Theorem: Let f: D,.(2) \ zo0 — C be holo-
morphic and bounded. Then zy is removable. In case you have forgotten, here is the
classification of singularities:

Definition 10.4. If f is holomorphic on D,.(z0)\{z0}, then z is an isolated singularity.
(i) Removable < 3! holomorphic extension to z.
(ii) f(z) — o0 as z — zp < 3Tlg(z) holomorphic on D,(z) where p < r such that
9(z0) =0 and f(z) = ﬁ on D,(z0) \ {20}. 20 is a pole.
(iii) Neither 1 nor 2. "Essential singularity”. If f only has a finite set of singularities
on G C C of type 1 and/or type 2, f is called "meromorphic”.

10.3. Hints.

(1)

(3)

Expanding ﬁ in a geometric series one can prove that f has a power series expansion.

f(z) = Zak(z — z)k.

k>0

It follows from the Lebesgue Dominated Convergence Theorem that

M= gt [y e

271
The coefficients in the power series expansion are therefore

F®) (z0)
Kl

One way to prove the Identity Theorem is to show that 3 = 2 by considering
h = f — g and the power series expansion at zo. By continuity h(zg) = 0. So, using the
power series expansion of h at zg, assume all coefficients up to a; vanish (we know this
is true for j > 1 some j, because ag = h(zp) = 0. Then use the assumption to show
that a; = 0 also. By induction this shows 2. To show the first statement follows from
2, show that the set of points where f = g is clopen (closed and open). Since the set is
non-empty, this means that the set is the entire domain.

Assume |f| < M on C. The Cauchy Ingegral Formula implies

-2 | Ll

ODRr

ar =
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Therefore, we have

RETLEY S (1

- Tm Dr(20) (w—z)2

and

f(k:)(o)f k! /ﬁ:ﬂdw

T 2mi
6DR
Therefore, we get the estimation
k! 2rRM
k
|f( )(0)| < %WVR >0

Letting R — oo, we get f*)(0) = 0Vk > 1. Using the Identity Theorem, we get since
F®(0) = g™ (0)VE >0, g(2) = f(0) = f =g = f = f(0) is constant.

If degree of pis 1, then p(z) =az+band a #0=rog=a and r; = —g. finish.

By induction on K. If p| # 0 then J is entire and — 0 at co. = bounded = constant

= p constant
p(2)

Y z—Trg

p has at least one zero r, = p is polynomial is a rational funcion without poles

= polynomial.

p(z) = (z — ri)q(z) where g has degree k — 1 < k. = by induction 3!{r; f;é such that
k—1 k

q(z) =ro [T (2 =75). = p(z) =ro [1(z —75).
j=1 j=0

g(z) == (# — 20)f(2), 2 # 2. ¢ is holomorphic on D,(z) \ zp lim g(z) = 0 =

Z—20
define g(z9) = 0 = g is continuous on D, (zp). = ¢ is holomorphic on D, (zp) and so

79(2:%%) = 7(Z;’Z_")Z£(Z) =: f(20). Consequently this limit

lim
zZ— 20
exists, is unique, and defining f(z¢) by this limit is unique and makes f continuous at
zp. Moreover, any holomorphic function on a punctured disk which is continuous on the
whole disk is in fact holomorphic, which follows from the fact that the integral of such
a function over any triangle in the disk vanishes, hence the function has a well-defined
primitive. By super-mega differentiability the original function, that is the derivative

of the primitive, is also holomorphic.

g'(z0) exists, and lim
Z—20

11. THE DIMENSION OF IFS FRACTALS AND AN INTRODUCTION TO COMPLEX DYNAMICS

We shall now prove the major goal of the geometric measure theory part of this course!

Theorem 11.1 (Dimension of IFS Fractals!!!). Let S = (51, ..., Sm) be a family of similitudes
with common scale factor r € (0,1). Let U be a separating set, that is an open, bounded, non-
empty set with S(U) C U, and S;(U)N S;(U) =0 if i # j. Let X be the unique, non-empty,
compact set s.t. S(X) = X. Let p:=logs(m). Then we have

i)
ii)

HP(X) € (0,00), so we may conclude that p = dim(X).
Moreover, HP (S;(X) N S;(X)) =0 for alli # j.

Proof: For any k € N, by the invariance of X, we can write

XZSk(X) = U Sil OOS,k(X) = U Xih---,ik'
91,0 =1 D1 yeees =1

Each of these X;, ;. has diameter =r*diam(X). So, if §; = r*diam(X), then

My (X)< > (diam (X, 5,))" = mFrPFdiam(X)P

7/1;~~71k:1
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By definition p = logi(m) = (l)p =m=mk=r7r = H5 (X) < diam(X)P. Letting

OO HP(X) < diam(X)P < oo, because X is compact and thus also bounded.

Next, we wish to show that p-dimensional Hausdorff measure of X is positive. For this purpose,
let 0 < ¢ < C be chose such that U contains a ball of radius  and is contained in a ball of
radius C' (z %) Since U is a non-empty bounded set, clearly it is possible to find such a ¢
and C.
Let

N=@1+2C)"c"
We will prove that

1
:DX>
HIX) 2 5

by showing that if {E;},>1 cover X with diam(E;) < 1V, then
1
diam(E;)? > —.
Z iam(E};) o
In this way, we shall obtain that

1
p
H(X) =~

Since H§(X) is monotonically increasing as § | 0, it follows that

HP(X) > HI(X) > ﬁ > 0.
Now, let us make some further reductions. Any (non-empty) set E of diameter ¢ is contained
in a closed ball of radius d because the distance between any two points of F is at most §. So
it suffices to pick any old point p € E, and then d(p,e) < diam(E) = ¢ for all e € E, so by
definition E C B;s(p). With this observation we note that

diam(FE) = diam#(Bé) = Zdiam(Ej)p = Z <diarr;(35)) = 2% Zdiam(Bg)p.

Hence, it is enough to show that if

X CUB; =UBs,, 6; <1Vj,

then
= 1
P
Z(S] > N’
j=1
because
o o0 ) o0 ) 1
Zﬁf = 2pZdlam(Ej)p = Zdlam(Ej)p > PN
j=1 j=1 j=1

To prove this, we will prove:

*: if the radius of B is § < 1 then p(B) < N6P. Here p is our special measure associated to X
which has that cool invariance property.

This shows that

1=p(X) <Y wB) <N &
Above, we are using that X is contained in the balls, and u is a Borel measure, so we have
countable sub-additivity. Then, note that this shows that

1
N2
J

which is what we want.
To prove x let k € Ns.t. 7% < § < r¥=1. Then by the invariance property enjoyed by u we have

/J,(B) = % Z /‘il,u-,ik(B)'

i1yenin=1
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Since
X cU, supp(pi

..........

Thus,
if we have y;, ;. (B) # 0 then we have BNU;, i, # 0.
Next we use the fact that
Si(U)NS;(U) =0 i #j,
together with
S{U)cU = S;(U) CcUYi

to conclude
Sk(S:(U)) C Sk(U)
Si(S:(U)) C Si(U)

Moreover, we also have

= Se(Si(U)) N Si(Si(U)) =0 if k #1

Sk(Si(U)) N Sk(S;(U)) =0, for i # j,
because
S;(U)NS;(U) =0 for i # j, and Sy, is injective.
This shows that if i1, ..., 5 # j1, ..., jk, then U;, i DU g, = 0.
Now we use the fact that U contains a ball of radius & = U, . 4, contains a ball of radius
frk = ¢rk=1. Note: that erfF=! > ¢§ and CrF < C§.

Thus, U;, ... ;,, contains a ball of radius cr®=1 > ¢§, and is contained in a ball of radius Cr* < C6.
Ball coungzg Lemma e

B can intersect at most N = (1 +2C)"c™" of the {U;, i, }i} i -1

m
= u(B) = % | Z fiy...in(B) < Nm™*.
015yt =1
Note that for the last inequality we have used the fact that j;, . s, is supported in X;, . ;, C
Ui,....ir» and the mass of each of these is at most 1 because the total mass is one. Since B
intersects at most N of them, the right side of the inequality m~*N follows. Now, recalling
that
p = logi(m) = m~F = rkP = p(B) < NrkP < N§P, since % < § < 1. This is . So, we
have proven that H?(X) is positive and finite, thus by our previous results, this shows that p
is precisely the Hausdorff dimension of X. Pretty cool!
Finally, we show that the copies of X have zero-measure H” intersection. Since S; scales
by r, we have proven that HP(S;(X)) = rPHP(X) = m 'HP(X), using the definition of p.
Consequently,

= HI(X) = > H(S(X)),
Since
X =J8(x),

this holds iff HP(S;(X) N S;(X)) = 0 whenever ¢ # j. More generally, for any measure v,
measurable sets A and B

ﬂ

v(AUB)=v(A)+v(B) = v(ANB)=0
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11.1. Introducing complex dynamics. Let us begin with a famous set, the Mandelbrot set.
Definition 11.2. The Mandelbrot set is the set of ¢ € C such that the function

fo(z) = 2% +¢,
satisfies

{f2(0)},en is a bounded subset of C.

Exercise 6. Play around with this definition. Take specific values of ¢, pop them in, and see
what happens to the sequence you are obtaining.

To study this set and its mysteries, we shall require some notions from complex analysis and
the iteration of complex functions. For a function f(z): C — C, the function
ff(z):=fofofo...of(2), is f composed with itself n times.

This clearly makes sense when n is a positive integer. Complex dynamics is the study of
the family of functions {f"} for certain choices of the function f. This is exactly how the
Mandelbrot set is defined! It consists of the complex numbers, ¢, such that the quadratic
function f.(z) = 22 + ¢ satisfies

{f2(0) }nen is bounded.

So, to dig deeper into the Mandelbrot set, we need to understand fundamental facts about
iterating functions. To begin, we define what it means for a family of holomorphic functions to
be normal on a domain in C. For this, we recall a definition that you really ought to already
know.

Definition 11.3. A function f is holomorphic in a neighbourhood D,.(29) of 2, iff Vz € D,.(z)
the following limit exists

i L) = )

w—rz w—z

=: f'(2).

Proposition 11.4. This definition is equivalent to requiring that for all z € D,.(zg) there exists
a function A, which is continuous at z, and such that
fw) = f(2)+ (w—2)A,(w), Yw in a neighborhood of z.

Proof: First, assume that f is holomorphic. Then for w near z we can define

A (w)= """ w#z, A(z2)=f'(2).
Then, for all w near z, we have
Az(w)(w —2) = f(w) = f(z) = flw) = f(z) + (w - 2)A.(w),

and so defined
lim A, (w) = A.(2).

w—rz

Next assume that we have such a continuous A, (w). Then
(

lim flw) = 1(z) = lim f(z) + (w=2)A4:(w) = (z) = lim A, (w) = A,(2).

w—z w—z w—z w—z w—z

In the last step we used the fact that A, is continuous at the point z.

Definition 11.5. A family of holomorphic functions F defined on a domain G C C is normal
if for any sequence in F, there exists a subsequence which converges locally uniformly (this
means uniformly on compact subsets).
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FIGURE 2. The Mandelbrot set.

Definition 11.6. Let f : C — C. The Fatou set of f is defined to be
{z € C: 3r > 0 such that {f"} is a normal family on D, (z)}.
The Julia set of f is the complement of the Fatou set.

By demonstrating and recalling a few theorems, we will prove that if we wish to study the
complex dynamics (i.e. behavior of the family {f"}) of f : G — G for a domain G C C,
it’s actually completely equivalent to studying the dynamics on either the unit disk, the entire
complex plane, or the Riemann sphere. In this way, we can simplify the problem by working
on a simple set (disk, plane, or Riemann sphere) rather than working on some creepy wonky
set, G.

Theorem 11.7 (Open Mapping Theorem). Let f: G — C be holomorphic and non-constant.
Then f is an open map, i. e. f(G) is a domain.

Proof: Since G is connected and f is continuous, f(G) is also connected.
Let wo = f(20) and r > 0 such that D,(zy) CC G and so that

(11.1) f|7D,,,<zo)\zO £ wy

To see why we can do this, we use the Identity Theorem. If there are points z, # zp such that
zn — 20 and f(zn) = f(20), then the function

f(z) = f(z0)
is also holomorphic, and it has infinitely many zeros occurring at the points z,, which accumulate
at zg. The identity theorem then says that this function is identically zero, which would mean
that f(z) = f(z0) is constant. That is a contradiction 4.
Now, let us define

0:= min z) —wo| >0
z€0D,(z0) |f( ) 0|
Since 0D, (zp) is compact, and f is continuous, so therefore |f(z) — wo| is also continuous, the
minimum is assumed at some point (that’s why we called it a minimum not an infimum... every
minimum is an infimum but not the other way around). Also, since f(z) # wp on the closure
of D, (zp), we know that ¢ > 0.
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Claim. D5 (wo) C f(Dy(20)). If we can prove this claim, then we will have proven the theorem,
because we will have proven that any point wo € f(G) has a neighborhood, Ds/2(wo) which is
also contained in f(G), thus f(G) is an open set.

So, let us prove the claim!

Assume that w has |w — wo| < 3. Then let z € 9D, (20). The triangle inequality gives

|f(2) —w| = [f(2) = wo| — |w — wol.
By definition of ¢ as the minimum, and since |w — wy| < %, we therefore have

[f(z) —w|>6d— g = g, Vz € 0D, (2).

We would like to show that somewhere inside the disk, |f(z) — w| = 0. To achieve this, let us

consider
1

9(2) =

f(z) —w
At least on the boundary D, (zp) this function is well defined. For the sake of contradiction, let
us assume that f(z) # w for all z € D,(zp). Then g is holomorphic on all of D, (zp). Note that

) 2
lf(z) —w| > B Vz € 0D, (z0) = |g(2)] < 5 Vz € 0D, (20).
However, we have
1 1 1 2
20) = = = lg(z)| = —— > =.
g( 0) f(zo)_w wo — w |g( 0)| "LU()—UJ| 5

Yikes! Holomorphic functions assume their maximum on the boundary, not in the interior
somewhere. So this is impossible. What lead to this impossibility was the assumption that
f(z) #w for all z € D,(zp). Thus, there must be some z € D,.(z) with f(z) = w. Hence, this
shows that w € f(D,(z20)). Since w was arbitrary with |w — wo| < £, this shows that

Ds/a2(wo) C f(Dr(20)) C f(G),

o e
@

since D,.(zp) C G.

11.2. Homework.

Exercise 17. Review everything we have done thus far in the geometric measure theory part of
the course. See if there are any lingering questions, gaps, and if so, make a list of these. Bring
your list to class so that these lingering questions can get answered!

Exercise 18. Now review your complex analysis. If you can read German, you can check out
my lecture notes from teaching complex analysis to physicists in Hannover... These are linked
on the course webpage.

Exercise 19. Prove that the locally uniform limit of holomorphic functions is again holomor-
phic.

Exercise 20. Who is this guy ?
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12. COMPLEX DYNAMICS ON THE PLANE AND RIEMANN SPHERE

We would like to understand when domains in the complex plane are equivalent in a certain
sense. This sense is phrased in terms of biholomorphic maps.

Definition 12.1. A map f : G — f(G) is biholomorphic precisely when f is holomorphic, f~*
exists and is holomorphic on f(G).

Exercise 21. Prove that if [ is holomorphic with f' # 0 on a domain G, then [ is locally
1:1, in the sense that for each z € G there exists r > 0 such that f is 1:1 on D,(z). Find an
example of an f and a G which has f locally 1:1 but not 1:1 on all of G.

Corollary 12.2. Assume that a holomorphic map f: G — Q. Then it is is biholomorphic
— f’|G #0, and f is 1:1.

Proof: (=): Assume that f is biholomorphic. Then we differentiate the identity map,
flof:G=G:
(' (N (2) =1,

since the derivative of the identity map is 1. Consequently, we get that f/(z) can never vanish.
Moreover, by assumption that f is biholomorphic, f~! exists (is defined!) thus f must be 1:1.
(«<): We assume that f is 1:1 and f”G # 0. Then f is not constant. Therefore f(G) = Q
is open. To see that f~! is continuous, we use the characterization that requires the inverse
image of open sets be open. So, let U C G be open. Then (f~1)~Y(U) = f(U) is open by the
Open Mapping Theorem. Thus f~! is continuous. We can therefore compute

fH(w) = f~H(20) : £—% 1

lim = lim =
w—z0=F(£o) w — zo e=f1w)—& f(§) = f(&)  f'(&0)
The step where we changed the limit to & — & is legit because we proved that f ! is continuous,
SO

w—z0=f() = T (w)=¢— f N (20) = &.

This exists because f is holomorphic and f’| , # 0. Consequently, we have proven that f~! is

e e

o

also holomorphic.

Definition 12.3. If G, are domains in C such that 3f: G — € biholomorphic, then G and )
are biholomorphically equivalent. A map f: G — C such that f ’| o # 0is known as a conformal
map, and G is conformally equivalent to f(G).

Remark 7. “Conformal” means angle-preserving.

Theorem 12.4 (Uniformization Theorem). Let G C C be simply connected. Then G is con-
formally equivalent to one of the following:

(1) C

(2) D

(3) C=CUoo.
Moreover, the same holds for any simply connected Riemann surface (2-dimensional Riemann-
ian manifold with biholomorphic coordinate charts — C).

The following theorem shows that essential singularities are extremely special.

Theorem 12.5 (Big Picard Theorem). If f is holomorphic on D, (z)\z0, and 2z is an essential
singularity, then Ve € (0,7), #{C\ f(Ds(20) \ 20)} < 1.

Remark 8. This means that the image of any punctured disk, no matter how tiny, about the
essential singularity gets mapped to cover all of C, except possibly one point!!!
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Definition 12.6. If f is entire and lim f(z) = oo, then f has a pole at cc.
Z—r00
Corollary 12.7. Assume that f is entire. Then either

(1) f is constant.
(2) f has a pole at co.
(8) [ has an essential singularity at co.

Proof: If f is not constant, then something happens at infinity. By definition, if f has a pole
at infinity, then ﬁ =: g(z) is holomorphic near z = 0 and g(0) = 0. Consequently, f cannot

have an essential singularity at infinity by Picard’s theorem. On the other hand, if f has an
essential singulariy at infinity, then ﬁ =: h(z) has an essential singularity at 0. By Picard’s

® e

theorem, it is impossible that f has a pole at infinity.
A useful result is Montel’s Theorem, which allows us to conclude that if a family is bounded,
then it is normal.

Theorem 12.8 (Montel’s Little Theorem). If a family F is uniformly bounded, then it is
normal.

Proof: Let M > ||f|| for all f € F. Fix zp € G and R > 0 such that
Dpg(z9) CC G.
Then for any z € Dg/2(20) we have by the Cauchy Integral Formula for f € F,

oo L[ aw
flz) = /5DR(ZO) ( 2d -

2mi w— z)
, o7k M
1f(2)] < or (R—Rj2?  ©

This holds for all z € Dg/a(20). It follows that the family F is equicontinuous on this disk.
Recall that this means that given € > 0, the same d “works” in the definition of continuity for
all f € F. In particular, given € > 0, we can take
€
0=17= = fG) - fl<lz=wl swp [f(O]<clz-ul
tc (€DR/2(20)
so when

p-wl<d= = |f(z)—f(w)|<1e—_fc<e.

Note that we have a sort of Fundamental Theorem of Calculus in complex analysis, in the
sense that f(z) = szD f/(w)dw, which is why we get the estimate |f(z) — f(w)|] < |z —
w| SUDCED 5 (20) |f/(¢)|. Now, since the family was assumed to be bounded, and we proved
it was equicontinuous, the Arzela-Ascoli theorem implies that every sequence has a locally

uniformly convergent subsequence.
By Mountel’s Theorem, if a function f : D — D, then F := {f™} is a normal family. So, we can
already say something about the holomorphic dynamics on ID. In particular we have

Theorem 12.9 (Holomorphic dynamics on D). Let f : G — G be holomorphic on the simply
connected domain, G. Assume that G is conformally equivalent to the unit disk, D. Then G
belongs to the Fatou set of f.
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Proof: Let ¢ : G — D be the conformal (biholomorphic) map given from the Uniformization
Theorem. Then the map

<p:¢ofo¢_1 :D — D.
Hence, we also have ¢" : D — D for all n € N. Therefore the family

{¥"}

is a normal family, by Montel’s Theorem. Thus on any compact subset K C D, we can find a
uniformly convergent subsequence. Let ¢™* be such a subsequence, with ¢™* — g on K. In
particular, let B C G be compact. Then by the open mapping theorem ¢(G \ B) is open, which
shows that ¢(B) is closed, and being contained in D), it is therefore compact. Hence, taking
K = ¢(B) we have o™ converging on K. Therefore, we have

lim ¢"*(z) exists for all z € K.

nj— 00
Then, since
rE=go ol = [ =¢"logp™og.
Hence
lim f™(w)= lim ¢ o@™ od(w)= lim ¢ '™ (2),

Nk —>00 N —>00 N —>00
for z = ¢(w) € ¢(B). Since

N

exists, and ¢! is holomorphic and therefore continuous, we also have

lim f™(w) = liLn L™ (2) exists and equals
Ng— 00

¢t < lim go"’“(z)) .

N —>00

This shows that {f"} is a normal family on all of G. Hence G belongs to the Fatou set of f.

Corollary 12.10 (Conformal Sandwich). Assume that f : G — G for a domain G which is
conformally equivalent to a domain Q. Let ¢ : G — Q be biholomorphic. Then {f"} is normal
on G if and only if {¢©"} is normal on Q, where ¢ = ¢o fop~1t.

Proof: Since the two directions are the same by symmetry of the statement, it suffices to
prove that if {f™} is normal then {¢™} is normal. For this purpose, let K C €2 be compact.
Then B = ¢~ }(K) C G is also compact, by the open mapping theorem as in the proof of
the preceding theorem. Hence, we have a subsequence of f™ converging on B. Denote this
subsequence by {f™*}. Then, we have

lim ¢ (=) = lim 60 f™ 06! (2).

N —»00

For z € K, we have ¢~ !(z) = w € B, and therefore
lim ¢of™o¢p t(z)= lim ¢o f™(w)=¢ ( lim f”k(w)) )
N —>00 N —r00 N —>00

Above, we have used the fact that f™* converges at w € B, together with the fact that ¢ is

holomorphic and thus continuous.
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Remark 9. Two functions, f and g, are said to be conformally equivalent if there exists a
conformal map ¢ such that we have fo¢ = ¢pog, ie. f = ¢pogo ¢!, or equivalently,
g = ¢! o fog¢. By the preceding corollary, {f"} is normal on G if and only if {g"} is normal
on ¢~ 1(G). Hence, when functions are conformally equivalent, we can always choose the simpler
one to study.

Complex dynamics is all about determining when the family of iterates {f™} is normal. For f
defined on a simply connected domain G C C, assume that f: G — G, so that f o f and more
generally f™ is well defined on all of G. Let

¢$ 1 Em G,
be the conformal map given by the Uniformization Theorem, where £ =D, C, or C. Then let
fi=¢ofop ' E—E.
Note that f = ¢ o f™ o ¢~1. Therefore the preceding corollary shows that the study of
holomorphic dynamics on any simply connected domain is reduced, by the Uniformization
Theorem, to the study of holomorphic dynamics on D, C, and C. Moreover, we have proven
that in case G is conformally equivalent to the unit disk, D, then such a function f is normal
on (G. Hence, the more interesting cases shall be when G is conformally equivalent to C or C.
Since we can reduce to the case of studying the iterates of the conformal sandwich function
on C or C, it shall be much simpler to work over there. For this purpose, we shall classify all
functions which are (1) entire and without essential singularity at infinity and (2) meromorphic

on C. Recall that meromorphic means that there are only discrete poles of finite rank (i.e. no
essential singularities), and elsewhere such a function is holomorphic.

12.1. Homework.

(1) Locate and read a proof of Picard’s BIG theorem.

(2) Locate and read a proof of the Uniformization theorem.
(3) Prove that the Fatou set is always open.

(4) Prove that the Julia set is always closed.

13. ENTIRE AND MEROMORPHIC FUNCTIONS WITHOUT ESSENTIAL SINGULARITIES

We shall first prove that it is quite natural to focus on the Fatou and Julia sets of polynomials
and rational functions.

Theorem 13.1. If f : C — C is entire and without essential singularity at infinity, then f is
a polynomial.

Proof: First note that if f is bounded, then it is constant, and hence a polynomial of degree
0. How interesting (not). Let us assume that f is non-constant and therefore unbounded, then
we must have |f(z)| — oo as |z| = oco. Consequently the function
1
Fagm
is holomorphic on a disk about 0 with g(0) = 0. Since f # oo, we cannot have g = 0, and
therefore there exists k € N such that

g(z) = Zajzj, ar # 0.

Jjzk

Consequently,
1 1 k
f(z) = = % = : ~ 2k as k — oo.
9(1/2)  agz7F4+... ap+aryiz+...

Next since |f| — oo as |z| — oo, there exists R > 0 such that for all |z| > R, |f(z)| > 100000.
In particular for all such z, f # 0. So, the set of zeros of f is contained in a compact set. Since
we assumed that f is not constant, by the identity theorem f can only have a finite set of zeros
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(of finite order) because they are all contained in a compact set, and so any infinite set would
accumulate there thus implying f vanishes identically (ID theorem) which it does not.
Let {2 }7 be the zeros of f of respective degrees dj. Then consider

f(2)
[[7(z —z)%
We know that |f(2)| ~ |z|* as |2| — co. If on the one hand k < > d;, then this function tends
to 0 at infinity and is entire, hence bounded, hence constant by Liouville’s theorem. Since it

tends to zero at infinity, this would imply the function is identically 0, hence so is f, which is
a contradiction. So we must have k > 3" d;. Now, on the other hand, we consider

[T (= — )%
fz)
This function is also entire. If k > 3 d;, then by the same argument we also get a contradiction.
Hence k = ) d;, and so both of these functions are again bounded and entire, hence constant
(and that constant cannot be zero), so there is ¢ € C\ {0} such that
£:) -

e =c = f(2)=c]|[(z —z)¥
[T7(z = 2)% H

e

which is a polynomial.

So, we now see that holomorphic dynamics for entire functions without essential singularity at
oo is reduced to the study of iteration of polynomial functions. Moreover, we shall see that
such functions which are non-constant are surjective. The advantage of this is that we can
reduce the study of {f"} on some wonky G to the study of {p™} on C. To see this, start with
f : G — G is holomorphic on G, without essential singularity at 0G. Assume that G is a
simply connected domain which is conformally equivalent to the plane. Let ¢ : G — C be the
conformal map obtained through the uniformization theorem. Then p = ¢o fogp ! :C — C
is entire and without essential singularity at infinity. Consequently p is a polynomial. By the
theorem below, we shall see that as long as f is non-constant, then p is surjective. Thus the
study of {f"} on G is in this case reduced to the study of {p"} on C.

Proposition 13.2. FEntire functions without essential singularity at infinity which are mon-
constant are surjective.

Proof: By the theorem, such a function is a polynomial p(z) of degree d > 1. Proceeding by
contradiction we assume there is ¢ € C such that p(z) # ¢ for all z inC. Then the function
1
p(z) —q
is entire. Moreover, since |p(z)| ~ |z|? as |z| — oo, it follows that this function tends to zero at

infinity and hence is bounded. By Liouville the function is constant, which furthermore implies
that p is constant which it is not. Therefore the assumption that p(z) # ¢ for all z inC must

be false, and hence p is surjective.
Next let’s consider holomorphic dynamics for meromorphic functions on C.

Theorem 13.3. Any meromorphic function on C is a rational function. If it is non-constant,
then it is surjective.
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Proof: Let’s assume f(z) is non-constant and meromorphic. Let {pg}7 be the poles of f with
corresponding degrees di. Then

n
F(z):= f(2) [[(z = pe)*
1
is entire, and has at worst a pole at co. Therefore this function is a polynomial ¢(z) and hence

q(z)
f@) =mm———a
[TV (2 — i)
is a rational function. To show surjectivity first note that a meromorphic function defined on ¢
without pole is constant by Liouville’s theorem (it is entire and bounded!) Therefore the value
oo is assumed at a pole. For p # oo, for the sake of contradiction we assume f(z) # p for all
z € C. The function f(z) — p may have poles, but it has no zeros, so
1

=92

flz)—p
is entire. It has at worst a pole at infinity. If it has no pole at infinity, then it is constant and
hence so is f which is a contradiction. So, this function has a pole at infinity and hence is a
polynomial. Therefore

f(z)—pzﬁ%()asz—)oo.

Since f is meromorphic, this shows that

f(z) > pasz—o00 = f(o0) =p.

Hence f does assume the value p since oo € C.

So, holomorphic dynamics for meromorphic functions on C is reduced to the study of iteration of
rational functions. We can also reduce holomorphic dynamics on any simply connected domain,
G, which is conformally equivalent to C to the study of the iterates of a rational function. To
see this, assume that f : G — G is meromorphic. Assume that ¢ : G — C is given by the
Uniformization Theorem. Then, the study of the iterates of f is equivalent to the study of
the interates of r = ¢ o f o ¢~ L. Since f is meromorphic on C, it follows that 7 : C - Cis
meromorphic. Hence it is a rational function. If it is non-constant, then it is surjective as well.

13.1. What about essential singularities? For examples, functions which have essential
singularity at infinity, like e*, or functions which have a discrete set of essential singularities,
like exponentiating a rational function? Well, I did a bit of research into this and found a paper
which has a nice historic introduction to the general field of complex dynamics, followed by

Yeah, so this seems to be relatively unexplored territory.
Exercise 22. Read this paper: https: //arziv. org/pdf/1705. 03960.

13.2. Fixed points. A likely candidate for the Fatou set is a point zg such that
f(20) = z0.

Then, we at least know that f™(zg) converges to zg, because it is a rather monotonous convergent
sequence (it is constant). However, to belong to the Fatou set, we need to know that f™ is
normal in a neighborhood of the point zy. To understand this, we need to understand different
types of fixed points.

Definition 13.4. Let f be holomorphic in a neighborhood of zy and assume f(z9) = 2¢. The
value \ := f/(zp) is known as the multiplier at the fixed point zg.


https://arxiv.org/pdf/1705.03960
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(1) If |A| < 1, then zq is an attracting fixed point. If |A| = 0, then zq is a super-attracting
fixed point. We shall see that in both of these cases, zy belongs to the Fatou set.

(2) If || > 1, then zj is a repelling fixed point. We shall see that in this case, zy belongs
to the Julia set.

(3) If there exists n € N such that A" = 1, then zg is a rationally neutral fixed point. This
is subtle, but in this case as well, one can show that zg belongs to the Julia set (this is
an exercise).

(4) Otherwise zg is an irrationally neutral fixed point. This is quite subtle. We shall see
that such a fixed point belongs to the Fatou set if and only if {f™} stay uniformly
bounded in some neighborhood of zy. When the multiplier is of the form €2 where
0 is Diophantine (we shall define this later), then Siegel proved that a neighborhood of
zo belongs to the Fatou set (so zp also belongs to the Fatou set). In the special case
of quadratic polynomials, there is a necessary and sufficient condition on the multiplier
to guarantee that the fixed point belongs to the Fatou set (this will be an exercise, but
not for the faint hearted).

We recall here the definition of conformally conjugate functions.

Definition 13.5 (Conformally conjugate). We say that f : U — U is conformally conjugate
to g : V. — V, if there exists a conformal ¢ : U — V such that g = p o f o=t (Schroder’s
equation)

(g and f are like the same, only in different coordinate systems).

Note 1. If g = po fop™!, then 2 is a fized point for f if and only if v(20) is a fized point
forg.
Proposition 13.6. If f and g are conformally conjugate, then the multiplier A at a fized point

for f is the same for g. In words: The multiplier is invariant under conjugation by conformal
maps.

Proof: f'(20) =\X. g= o fop tifand only if gop = ¢ o f. Therefore,

(90¢) (20) = (po f)(20) = ¢'(f(20)\s
——— ——
9" (¢(20))¢’ (z0)=Ag¢’ (20) Zo0

With ¢ conformal it follows that ¢’(zg) # 0. Thus A\, = As.
Remark 10. At a fixed point, we have f(zg) = zg. Letting T'(z) = z + 20, then defining
f=T'ofoT,
note that T is a conformal map! Hence, f and fare conformally conjugate. We have
f0)=0,f"=T"'o f"oT.

So in the general study of fixed points, we lose no generality by assuming the fixed point is at
zero!

Proposition 13.7. Let zg be an attracting fixed point for an holomorphic function f on D, (zp).
Then there exists 0 < p < r such that

f(z) = 2o

on Dp(z).
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Proof: Since f is holomorphic on D,.(z), we can write it as a power series

flz)= Z ap(z — 2)F = \C\L?JJr)\(z —20) + (2 — 20)! Zak+2(z — 7o) !

k>0 —% k>0

this is a convergent power series on D,.(zg)

For A € (|]A],1), note that

|f(2) = f(20)] = )\(Z*ZO)JF(Z*ZO)Z%H(Z*ZO)ICH < Az = 20| + |2 = 20|z = 20 Z:Clk+2(2*20)]c
k>0 k>0

convergent

Since Y5 ak+2(z — 20)* converges in D, (2), it follows that there is M > 0 such that

Zak+2(z — 20)"| < M for all z € D, 3(20).
k>0

Then, letting

we also get the same inequality

Zak+2(z —20)*| < M for all z € D,(z0).
k>0

Therefore,

If(2) = f(z0)] < |||z — 20| + A;/[|/\|

=A|z—z0]

M|z — 2|

on Dy(zp). Since A < 1 we have
1f(2) = f(z0)l = [ f(2) = 20| < Alz — 20| < |2 — 20|
which shows that
f(Dp(20)) € Dp(20)-

Hence we can apply our estimate to f(f(z)) since f(z) € Dp(zo) presuming z € D,(zp), and
we have

|[F2(2) = f2(20)] < Alf(2) = f(z0)] < A%|2 = 2
and in general

[f"(2) = f"(20)| = [f"(2) = 20l < A"[z = 20| = O

as n — oo because A < 1. This proves that f™(z) — zo for all z € D,(z0).

Definition 13.8 (Basin of attraction). For an attracting fixed point zg, the basin of attraction
of zg is

A(zp) :={z|f"(2) is defined for all z and f"(z) — 29, as n — co}.

We have proven that Dp(z9) C A(2p).
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Proposition 13.9.

Alz0) = |J F(Dy(20)).

Proof: We do the standard argument, showing that the sets on the left and right are contained
in each other. Hence we will conclude that they are equal.
“C:” Let z € A(zp). Then, by definition f™(z) — zo. Since f™(z) — 2o € Dp(20), where p is
the same as the radius of the disk in the preceding proposition, there is some such N such that
for all m > N, | f™(z) — 20| < p. Hence, we have
["(2) € Dp(z0) = z€ f7(f™(2)) € 7™ (Dp(20))-
This means that
2 € [T (Dp(20)) C Unz1f ™" (Dp(20))-
Since z € A(zp) was arbitrary, this shows that
A(z0) € | F7™(Dp(20))-
n>1

“D7 If z € f7™(Dp(20)) for some n > 1, then
f"(2) € Dp(20)-

We proved that f*(w) — zq for all w € Dy(20) in the preceding proposition. Hence taking
w=[f"(z) = fHw) = fF(f"(=) = 2.
—_——
f'n+k(z)
By definition, we conclude that z € A(z). Since z € f~"(Dp(20)) was arbitrary, this shows

the containment in this direction.
Corollary 13.10. A(z) is open.

Proof: Since f is continuous, f~"(D,(z0)) is open for all n > 1. Arbitrary unions of open

sets remain open.

Definition 13.11 (Immediate basin of attraction). The connected component of A(zg) which
contains zg is the immediate basin of attraction, denoted A*(z).

13.3. Homework.

(1) Prove that every polynomial has a super attracting fixed point at co.

(2) Let T, (z) = cos(narccos z) be the n* Tchebycheff polynomial. Let F,(z) = 2T, (z/2).
Determine a conjugation of F;, and (™.

(3) Schroder was motivated by Newton’s method, to understand the question of conformal
conjugation. Consider a quadratic polynomial which has simple zeros. Determine the
basins of attraction for Newton’s method.

(4) Assume that f has a fixed point at zo with multiplier A # 0, such that A is not a root
of unity. Assume that there exists a conformal map ¢ which conjugates f to g(¢) = A(.
Prove that the conjugation ¢ is unique up to a scale factor. What can be said in case
A is a root of unity?
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(5) Show that z = —itan( conjugates
2z
1+ 22

to 2¢.
(6) Compute the basin of attraction for the super-attracting fixed point at oo for the
polynomial P(z) = 22 — 2.

13.4. Hints.

(1) Just do it.

(2) Consider the conjugation z = h(¢) = ¢ +1/¢. For |¢| = 1, use the fact that for { = e
then h({) = 2cosw.

(3) Show that f(z) = z — P(z)/P’(z) (this is the function you are iterating, which you
ought to have figured out because you learned Newton’s method in first year analysis)
has superattracting fixed points at the zeros of P and a repelling fixed point at oc.
Use the Mobius transformation ¢ = ¢(z) to send the two zeros of p to 0 and oo, and
send oo to 1. Show that this conjugates f(z) to (2. Show that the midpoint of the line
segment joining the zeros of p is mapped by f to co, and that the midpoint is sent by
¢ to the preimage —1 of 1. Show that the perpendicular bisector of the line segment
joining the zeros of P is mapped by ¢ to the unit circle. Use this to show that the basis
of attraction for Newton’s method are the respective open half-planes on either side of
the bisector.

(4) Show that any conjugation of f(z) = Az is a constant multiple of z. Do this by
considering the power series of the conjugating function and determining the coefficients.

(5) The double angle formula for tangent.

(6) The double angle formula for cosine. Consider the conformal map h({) = ¢ + 1/ for
{l¢| > 1} = C\ [-2,2]. Use this to conjugate P to (2. In this way show that the
dynamics of P on C \ [-2,2] are the same as those of ¢? on {|¢| > 1}.

14. FIXED POINTS AND CONFORMAL CONJUGATION
Note that near a fixed point
f@=z0+Mz—20)+..., A#0,
or presuming f is non-constant, then if A = 0 there is some p € N such that
flzo) =20+ ap(z—20)P +....
Since the dynamics of f, by which we mean the behavior of the iterates of f, are the same as
the dynamics of f = ¢~' o f o ¢ with
d(2) = z + 20,
and ]?((_)/) =0, let’s assume 2y = 0. Then near the fixed point
fle)=Az+..., or apzP+....

So, roughly speaking f looks like either Az or a,zP. Let’s call that function g (either g(z) = Az
if A#£ 0 or g(z) = apz? if A =0). These functions are significantly more simple than f.
Schroder asked the question:

Question 1. Does there exist a neighborhood of the fixed point and a holomorphic map v which
conjugates f to g? In other words, does there exist a solution v to

Yof=goy?
Assuming the fized point zg = 0, by which no generality is lost, we also demand that

$(0) =0, '(0)=1.
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This equation is known as Schroder’s equation. Note that it immediately implies that ~!
is uniquely defined on g(v(D,)) via ¥~!(g(v(x)) = f(g9(¥(x))) and hence any solution to
Schroder’s equation is a locally conformal map. Solving Schroder’s equation turns out to be
super important for understanding whether or not fixed points belong to the Fatou set.

Theorem 14.1 (Koenig’s). Let f have an attracting fized point zo with 0 < |A| < 1. Then there
exists a conformal mapping p(z) that maps a neighborhood of zy onto a neighborhood D,.(0) of
zero, such that

Ao(z) = (f(2), ¢'(20)=1.
Moreover, ¢ is unique up to multiplication by ¢ # 0. This shows that ¢ o f o p~1(2) = Az, and
therefore f is conformally conjugate to multiplication by A in a neighborhood of the fixed point.

Proof: Without loss of generality, let zo = 0. Note that we can do this because we may just
complete the proof for

f::TofoT_l T(z) =z — z, T_l(Z)ZZ-I-Zo-

Then 0 is a fixed point for f , and we have proven that the multiplier for f is the same as that
for f. So, proving the theorem for f , we obtain ¢ for f , so that
MNg=@f=@TofoT™ ' = NgoT =§Tof.
Thus, we use
p:=poT.

Then Schroder’s equation is solved for f with ¢. Moreover,

¢'(20) = ¢'(T(20)) = §(0) = 1.
So, we may indeed lose no generality by assuming the fixed point is at 0. Now, since 0 is an
attracting fixed point, let us assume for the rest of this argument that z € D,(0), where p is
from our preceding propositions. In particular, this guarantees that f™(z) is well defined, since

f: Dp(0) into itself. Hence, every time we compose f with itself, the result has a power series
which converges in D,(0). Now, let

on(2) = A7 (2).
First, note that since A is a non-zero complex number, by the preceding considerations, ¢, (2) is
holohomrphic in D,(0). Therefore, it has a convergent power series. We claim that this power
series is of the form:

(14.1) on(z) = z+Zakzk.
k>2

The proof is by induction. For n = 1, we have

pr(2) = AT () =2+ ) AT

E>2
since f is holomorphic and therefore has a power series of the form
f(Z):ZCka, C1 :>\7
E>1

since f(0) = 0. So, the base case is true.
Continuing inductively, let us assume that the result holds for n. Then, for n + 1, we first note
that ¢,,+1 has a convergent power series. Moreover, by its definition:

Pt (2) = ATATF(SM(2) = AT a1 (@)F = ATIATIAS ()R Y al(f1(2)"

k>1 k>2

k>2 k>2
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By the induction assumption,

on(z) =2+ Zakzk.

k>2
Hence,

Pnir(2) =2+ 3 apz® + X7 e (£ ().
k>2

We note that since
n

f(z) == A+chzk = f(z)=2" A+chzk
k>2 k>2
Consequently, the terms in the series
D azt AT e (1)
k>2

have powers of z starting with z? and increasing. Since ¢, ;1 has a convergent power series, it
follows that its convergent power series is of the form

ont1(2) =2 + Z b2
n>2

This proves the desired statement. (Note that the fact they were named ay, in (14.1) is irrelevant
- the point is that the first term in the power series is z, and the rest of the terms have higher
powers of z going from 22 on upwards).

Now, we want to prove that the ¢, actually converge to something. By the convergence of the
power series of f, there exists ¢ > 0 fixed, and § > 0 (without loss of generality also assume
that § < p) such that

(*) |f(2) = Az| < c|z|? for |2 < 6.
Thus
1F(2)] < A||2] + clz]? < (JA] + cd)]z.

We can now choose ¢ small enough such that (|A| +¢d) < 1 (which is possible because |A| < 1).
Then this implies two things. Since

2| <& = [f(2)] < (]A[ + ed)|z] < 2] <4,
this shows that
(**)f(D5(0)) € Ds(0),  f*(Ds(0)) € D5(0),  and [f*(2)] < (|A[+¢d)" 2], [2] <o
Choose § possibly smaller so that (| + ¢d|)? < |A]* +2|A|cd + ¢26? < |A|. Then
fIm(2) = A=)

[on+1(2) = () = AT TH(f(2) = AT (2)] = XS
) | f7(2)2 9 (A + e6)?z]2 cp™|z]? (JA] + ¢d)?
< < = h = <L
SR S T P IINT

Now, we have shown that

2
C|Z
onit(2) = on()] < "Ly <6

Al
Without loss of generality, choose § perhaps a bit smaller to guarantee that
c6?
— <L
A

Then we have
[nt1(2) — @n(2)] < p" Vz € Ds(0).
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Consequently, for all k¥ > 1 we can estimate

k k n+k
| ontk(2) = 0n(2)] €Y lonss(2) = Pnijor(2)] < Y p =" gl
j=1 i=1 I=n

Since 0 < p < 1, the series
o0
>0
=1

converges. The tail of a convergent series can be made as small as we like. Hence, given any
€ > 0, we may choose n sufficiently large such that

oo
Zpl < €.

l=n

We therefore have
n+k 0o

[ontk(2) —en(2) <D P <D ol <
l=n l=n

This shows that {¢,(z)} is Cauchy for all |z| < ¢, and moreover, converges uniformly there.
We therefore have a holomorphic limit function, ¢.
Let us see what happens with the limit function. The way we have defined it,

n =AM = pno f = AT = AT = A,
So, we have
ono f=Apni1-

Since ¢, converges uniformly on Ds(0), and f : Ds(0) to itself, taking the limit on both sides
we obtain

po f=Ap.
By the locally uniform convergence of ¢,, — ¢, using the Cauchy Integral Formula we obtain
that all the derivatives converge as well.

Exercise 23. Write up the details of this argument. In particular, prove that if p, — @ locally
uniformly, then we also have ¢!, — ¢’ locally uniformly. Repeating, one obtains the locally
uniform convergence of all derivatives.

Since ¢, (0) = 1 for all n, it follows that ¢'(0) = 1 as well. We can therefore decrease the
radius, ¢, of our disk a bit more, to guarantee that ¢ is injective with ¢’ # 0 on D;s(0). Tt is
therefore a biholomorphic (conformal) map onto its image. So, we have obtained the
The last thing to prove is the uniqueness statement. On Ds(0) assume that we have

o(f(2)) = Ao(z)
then
o(f(0)) = ¢(0) = Ap(0),
and X # 1, which forces
$(0) = 0.
The same argument shows that ¢(0) = 0. Near zero, we may therefore define
b=popt.
Since ¢ and ¢ are both conformal, we have
f) =9 orop=poNop.
So, in particular

poplodop=Aop = podlod=Aopod Tl = Por=Aow.
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Since 1(0) = 0, the power series of 1 is of the form
P(z) = Z a2
k>1
On the one hand then
Yo A(z)= Z ap\F 2.
E>1
On the other hand, this is equal to
Aop(z) = /\Zakzk.
E>1
By the uniqueness of coefficients in these expansions, we must have
arA = Nay  Vk> 1.
For k =1 this is fine, but since A # 1, the only way this equation is satisfied for k£ > 2 is when
a,=0 Vk>2.
Thus
P(z) =po ¢ (z) = cz,

for some non-zero ¢ € C. Consequently,

p(2) = coidog(z) = o).
£

Here id is the identity map, id(z) = z.
Remark 11. Note that an equivalent formulation, since ¢ is conformal if and only if ¢~ is

conformal, is to require the existence of a conformal map A such that
f(h(2)) = h(Az).
To see this, just let h = ¢ ~!. By what we proved, we have
XAop=ypof = Az=gofop l(z) =
T (A2) = o7 (2)).
This is
h(Az) = f(h(2)).
As a corollary, we can obtain the same result for repelling fixed points!

Corollary 14.2. If zo (WLOG = 0) is repelling, then 3! (up to x by ¢ # 0) conformal ¢
conjugating f(z) to Az.

Proof: By assumption, there is some r > 0 so that we can write
fy=xz+...

on D, (0). Since |A| > 1 > 0, then f’(0) # 0. We can take r > 0 sufficiently small, so that and
we may assume

T

on D, (0). Moreover, we can also take r sufficiently small so that f is bijective from D, (0) to
the image of this set under f. Therefore, we have proven that f~! is holomorphic on f(D,.(0)).
Furthermore, since f(0) = 0, by the chain rule,

F7H0) =0 and (f71)(0) = AL,
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Hence, 0 is an attracting fixed point for f~!. We may therefore apply Koenig’s Theorem to f~!.
This gives the existence which is unique, up to scaling by a non-zero constant, of ¢ conjugating
f~ to A~1. In particular, there is ¢ which is biholomorphic on some disk about zero, with

¢(0) =0, ¢'(0)=1
and

o/ 71(2) =A""0(z) = Aop=go .
&2

The uniqueness follows from Koenig’s Theorem.

14.1. Homework.

(1) Prove that all rationally netural fixed points belong to the Julia set.

(2) Locate a proof of Pfeiffer’s theorem from 1917 and read it. The theorem states: there
is A = €?™® 50 that the Schréder Equation has no solution for any polynomial f.

(3) A number ¢ is Diophantine (badly approximated by rational numbers) if there exists
¢ > 0,4 < oo so that |¢ — %\ > o for all p,q € Z,q # 0. This is equivalent to
(A" — 1] > en'™* for all n > 1. Which real numbers are Diophantine? Which are
not? Quantify the set of Diophantine real numbers measure theoretically in terms of
Hausdorff measure and dimension.

(4) We used an argument to obtain convergence in Koenig’s theorem which is an example
of a general analysis trick. Prove that if you can show that for a family of functions
{fn} and for all z € K for some compact K that

|[frmt1(2) — fm(2)| <™ Vze K, forall m> N for some N,

where the constant ¢ < 1, then the sequence {f,} converges uniformly on K.
(5) Locate a proof of Siegel’s theorem and read it. The theorem states: if ¢ is Diophantine,
f£(0) =0, f/(0) = exp 2mi¢, then there exists a solution h to Schroder’s Equation.

14.2. Hints. Rationally neutral fixed points, cases:

(1) A=1p=1

(2) A=1,p>1

3) \"=1,1#1
Write f(2) = Az +azPTt+ ... a #0.
Case 1: Conjugate f by p(z) =az — f = po fop ™t =a(f(2) = a(22) +a(2)?+...) =
Az+2%24 .- = WLOGa = 1. Move 0 to oo by z — _71 —g(z)=z+ —l—g—i—.... Fatou proved
that ¢ conjugates g to z — z + 1.
Case 2: Another conjugation.
Case 3: Reduce to case 1 or case 2 by considering f”.
Conclude that at such a fixed point, there are both “repelling” and “attracting” directions.
Thus all rationally neutral fixed points are in 7.

15. SUPER ATTRACTING FIXED POINTS, IRRATIONALLY NEUTRAL FIXED POINTS AND
ITERATION OF RATIONAL FUNCTIONS

We shall prove the classification theorem for fixed points of holomorphic functions. We begin
by proving the Koenig’s egg theorem.
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Theorem 15.1 (Conformal conjugation at super-attracting fixed points). If f has a super-
attracting fized point, which without loss of generality is located at zero, then for f # 03! (up
to p — 1 root of unity) conformal ¢ such that ¢(0) =0, and

fod=goo, g(z)=2"
where f(z) = azP + ... is a holomorphic function in a neighborhood of z = 0.

Proof: Fix
c>1, r>0
such that
[f(z)] <c|z|” Vze D.(0).
Note that we can do this because f has a convergent power series, as it is holomorphic in a
neighborhood of z = 0,

f(z) =azl + Z apz".

k>p+1

1
5:min{ T ,C,l,r}.
cr—1 2

If(2)] < c|z|P < cdP715 < 6.
Hence f maps the closed disk of radius ¢ into itself. Consequently, f™ also maps this disk into
itself.

Now, choose

Then, note that

Claim 2. »
If"(2)| <cc® |2|P Vz e Ds(0), Vn>1.

The proof is by induction and teamwork. For the base case, we have the estimate
|f(2)] < clz]".

This is the statement of the claim when n = 1. Now, assume that the claim holds for some n.
Since f™(z) is in the closed disk of radius §, we get the estimate
n—1

@ = 1) S el " P < e [2P7)P = e
This is the statement of the claim for n + 1. So it’s true. Next, note that by our choice of 4,
we have

pn+1

|z z

" (2)] < ccpnfl|z|pn <ec? P < 2% — 0 asn — 0.

So f is converging to zero in Ds(0).
We wish to obtain the conformal map. For this purpose, let

b:= i ﬁ-ei(i:e)7
|a|

a=lale®, 6 ¢€lo,2m).

where

We define first
@(z) := bz.
This is a conformal map since b # 0. (Why is this true? Think about it!) Then
fEf=¢"ofoo,
and }
f=bYaz)P+..)=abP 2P + ... =2P 4. ...
Since f and f are conformally conjugate, we may simplify life a bit by assuming that
flz)=2"+....

(That is, we may without loss of generality assume that a = 1).
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Define

bul2) = ()P
This is tricky business, because of that fractional exponent. Fractional exponent are really
properly defined in C via the complex logarithm, using

w® = 6log(w)x )

So, for this to be well-defined, it is very important to know that w is staying in some region of C
where we can define the logarithm. Any small neighborhood away from zero will be fine. This
looks a bit scary though, because our function f is converging to zero quite fast... However,
note that
fz)=2P(1+ Z apz"7P).
k>p+1
So, we compute that

Since f is holomorphic on Ds and maps this disk to itself, f™ is holomorphic for all n, and

therefore the term
(1+ Z apz" P =1+ Zajzj.
k>p+1 Jj=1
The series on the right is the convergent power series for the holomorphic function, f™. Hence

1
v

(15.1) on(2) = (")) " =2 (14 ay2

j=1
The first part, z is totally fine. It is well defined everywhere. Also holomorphic everywhere.
The second term is holomorphic for |z| small, because due to the convergence of the series,
the series can be estimated from above by |z| times a constant. Hence, the expression in the
parentheses can be made very close to one, taking z small. Therefore this fractional power is
well defined.
We then compute that

n— -t n -r.
$n—10f=("THFEP T =) TP = (9a(2))P
Consequently, if we can prove that ¢,, converges locally uniformly to some nice holomorphic ¢,
we will obtain in the limit that

pof=(d)
We will prove that
o o
H Tl converges.

n=1 n

Since this is a telescoping product, with

N
H ¢7L+1 _ ¢N+1
ne—1 n d)l ’

This shows that

ONL 6 s dra(2) = 1(2)9(2).

b1

Compute for this purpose

Gnp1 (TP (FU)PP

Pn (fmp=" (fmr="

Above we recognize

U =di(f) = (.
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So

n

Pnt1 _ (1 (f™))P
¢n (fryp"

Then, also
@y = (o) =gy
We write this equivalently as
[T

On the inside we use (15.1) to get this equal to

PP+ Y a(fm(2)k?

k>p+1

The coefficients above, ay, come from the power series expansion of our function, f (itself). So,

we get
—n—1

s (14 S () r)

Pn (frp

n—1

o
= (14 3wl
k>p+1
It is sufficient to prove that the product
¢n+1

Pn

II

n>1

converges. For |z| small, by the estimate
@) < el
we have that

1+ Z ak(f"(z))k_p >1-0(z]) > 0.

k>p+1

So, the following will be helpful.

Exercise 24. Prove that if {a,}n>1 are all positive, then

[le.

n>1

Z log a,

n>1

converges if and only if

CONVETQES.

Therefore, it suffices to prove that

|¢n+1|>
1
Z °g< 6]

converges, because we can apply the preceding exercise with

::|¢n+1|

an >0
|Pnl
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for all n for all |z] < §. By our calculations above,

p 1
¢;+1 1+ 3w
" k>p+1
we get
¢n+1 _ 1 n k—p
log G, | = o log |1+ Z ar(f"(2)) .
n p k>pti

Since we can estimate

1+ 3 af()hr <2,

k>p+1

Z log ‘q{)”‘“
= on
This converges because p > 2 > 1.

Hence, we have that the product converges, since it converges absolutely, which also shows that

I 6,(2) = 6(2)

and the convergence is uniform on Ds(0), taking 0 possibly smaller, but really, it ought to be
small enough already.

Since the uniform limit of holomorphic functions is holomorphic, we have that ¢ is holomorphic.
We recall that so defined

our estimate becomes

1
SQZW'

n>1

bn-10f = (én)".
The right side is well defined as n — oo, since ¢,, — ¢. The left side is also well defined. So,
we obtain in the limit

pof=(d)"
Why is this a conformal map? Recall (15.1). Differentiate:
z 1+Zajzj = 1—|—Zajzj +z 1+Zajzj
Jj=1 j=1 Jj=1

Now set z = 0. We get just one from the first term. Hence we have ¢/, (0) = 1 for all n.
Therefore, since the ¢,, converge uniformly to ¢, we also get ¢’(0) = 1, since ¢ is holomorphic
(why?). Therefore, ¢ is bijective onto its image in some neighborhood of 0. Without loss of
generality, take 0 perhaps a bit smaller, so that ¢ is bijective from D;(0) to ¢(Ds(0)).
Finally, we demonstrate the uniqueness up to roots of unity. If ¢ o f = ¢P, with ¢(0) = 0, we
muck around a bit
Yof=Pop = f=yp ooy

We also have

f=¢"700.
So

Yoo =¢ P od — doy ol =Pogoy.

Let us define

d:=porpt.
Then

D(2") = (®(2))".
We consider the power series of ® near zero. Since ¢(0) = (0) = 0, we also have
®(0) =0.
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So the power series looks like

B(0)2F + ... — Z‘D(j ©.i) —aoper+ ...

y|
ISR

Since both ¢ and 1 are conformal, their derivatives cannot vanish, so neither can the derivative
of ® (why?), so this forces
®'(0) = ¥'(0)?) = ' (0)P~ ' =1.

Next, we write out both sides more carefully:
P

dW) (0)2PI d@ (0
S0 (800

y| |
ISR SR

On the right side, the terms start with z? and then zP*! etc. On the left side the terms
between 2P and z%? do not appear. Consequently, the coefficient on the right side for eg zP*!
must vanish. Since we have the series multiplied by itself p times, the coefficient of zP*! comes
from taking the z' term p — 1 times and the 22 term the last time. There are p ways to do this,
so the coefficient is
@//(0)

21

p®'(0)
Since ®'(0) # 0, this forces ®”(0) = 0.
Exercise 25. Continue (suggestion: by induction) to prove that ®U)(0) = 0 for all j > 2.

So, this means that ®(z) is just given by ®(z) = Az, where A is a p — 1 root of unity (that is
AP~1 =1). Recalling that

O :=pop =Xz = ¢(2) = M(2).
&

It remains to study what happens at neutral fixed points.

15.1. Neutral fixed points.

Proposition 15.2 (The neutral case). Let A = €™ where 6 € R. Assume that f is holomor-
phic and has a fized point at z = 0 with multiplier A\. Then, if a holomorphic function h to
Schrdder’s equation exists, formulated as

f(h(z)) = h(Az), K'(0)=1,
this h is injective in D, for some r > 0.

Proof: Since h'(0) = 1 # 0, this shows that A’ # 0 in some disk about zero, because b’ is
also holomorphic and thus continuous. It was an exercise to prove that a holomorphic function

L)

whose derivative is non-zero is locally injective. The exercise completes the proof.

Proposition 15.3. Just for fun, it is nice to include the fact that if a holomorphic function has
a non-zero derivative at a point, then it is locally injective, that is injective in a meighborhood
of that point.
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Proof: Without loss of generality, let us assume that the point in question is z = 0. Then, f
is holomorphic in D,.(0) for some r > 0. Thus, we have

- /0 T QdC+ £(0) Yz € Dy (0).

This is because the segment from 0 to z lies entirely inside D,.(0), and since f is holomorphic, one
can directly prove that the derivative of the function on the right is the same as the derivative
of the function on the left. Moreover, they have the same value at z = 0, so the left and right
sides above agree. Then, by assumption f’(0) # 0. Let’s say

f10) =
For simplicity, we shall prove the result for the function
1
o) = 172).
Then ¢ too is holomorphic in D, (0) and ¢’(0) = 1. This is rather convenient. Moreover,
o) = [ §€)dc + 900)
0

Since ¢'(0) = 1, there exists § > 0 with 6 < r such that

1

/
-1 —.
911 < 3

Then note that for all z and w in Ds(0),

o |—\/ qac— [ dc\ ‘w] (©)de|.

/ dQdc— [ 14| < / 19/(C) — 11d¢| <
[sz] [Z’w] [Z7w]

This is because the segment from z to w lies entirely in Dy(0) since z and w are both in this
disk, and disks are extremely convex. So, we get
/ 1d¢
[z,w]

/ JQdc— [ 1dc / J(Q)dc| >
[z,w] [z,w] [z,w]

Recalling that
[ oo

We estimate

1
—|z —w|.
2

<l = L) = Sz wl
_2zw 22’ w—2z w|.

l9(2) — g(w)| =
we therefore get that for all z,w € Ds(0)
1
l9(2) = g(w)| 2 S|z —w| = V2 #w e Ds(0)g(2) # g(w).

Consequently g is injective on Dg(0). Now, note that
9(2) # g(w) = f(z) # f(w).

Hence we also get

f(z) # f(w) Vz,w € Ds(0).
&b
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Corollary 15.4. Assume that f is holomorphic in a neighborhood of 0, with f'(0) # 0, and
f(0) = 0. Then there exists r > 0 such that both f and f=1 are holomorphic in D,.(0).

Proof: From the preceding proposition, we know that there exists 6 > 0 in which h is
holomorphic and injective. Since f’(0) # 0, f is clearly non-constant. Therefore by the open
mapping theorem f(Ds(0)) is open. Moreover it contains 0 since f(0) = 0. We therefore have
some p > 0 which is contained in f(Ds(0)). Simply define

r := min{J, p}.

©'e

Then both f and f~! are defined and holomorphic in D,.(0).

Proposition 15.5. Assume that f is holomorphic in a neighborhood of 0, and has a fixed point
at 0 with multiplier X with |A\| = 1. Then a solution h to Schrider’s equation exists if and only
if {f"} are uniformly bounded on some D,.(0) for some r > 0.

Proof: If h exists, then since h and h~! are both holomorphic on some D,.(0), we have

f(2) = h(X"h™1(2)).

We may assume h is continuous on the closed disk, D,.(0), by possibly taking r smaller. Then
we note that the image of a compact set, like the closed disk, under a continuous function, like
h~1 is again a compact set. So, there is some p > 0 such that the image under h=! of D,.(0)
is contained in D,(0). Then, note that A\"(D,(0)) C D,(0). Here we note that the fact that
|A| = 1 is used, and that this statement holds for all n € N. The closure of this set is again
compact, so the image under h, also being continuous, is therefore also compact. Hence, we
have f™(z) is contained in a compact subset of C for all n.

On the other hand, if | f*| < M for all n € N for all points in some D, (0), then let

n—1
1 o
:75 ATt ), n>1
n
0

We clearly have
lpn(2)| < M Vz € D,(0).

Hence, by Montel’s little theorem, it is normal, and contains a convergent subsequence. Note
that

onof=— Z A~ JfJ+2 Z}\ ]+1f]+1 n+1fn+1 Z A ]+1fj+1

whereas
n—1 n—1

1 . ,
== —j+1 pi+1 J+1 pj+1
Apn = — Y AIHIT() A+§A P ().

0

Hence
Ynof=Xpn+ O(l/n)a

since f and f™ are uniformly bounded, as is |A"| = 1. Consequently, passing to a convergent
subsequence of the ¢, (which we abuse notation and still call ¢,,), we obtain in the limit that

pof=Ap.
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So defined, ¢,,(0) = 0 for all n. Since A = f’(0) we have A=7(f7)(0) = 1, hence ¢/,(0) = 1 for
all n. We therefore get that ¢'(0) = 1. Consequently ¢ is biholomorphic in a neighborhood of

e e

0.

The definition of a normal family should really be phrased on the Riemann sphere. The reason
is that it is possible for a point to belong to the Fatou set, where in a neighborhood of that
point, the iterates f™ converge locally uniformly to the function which is identically equal to
infinity. Really, it sounds weird, but it is in fact precise as defined below.

Definition 15.6. Let R be a meromorphic function. The family { R™} is normal on an open set
U C C precisely when, the family is equicontinuous there with respect to the spherical metric
on C. This means that for any compact V C U, for any € > 0 there exists d > 0 such that

de(z,w) <d = da(R"(2),R"(w)) <e VneN, VzwelV.
In this way, we can make sense of “locally uniform convergence to the constant function, co”

on the Riemann sphere. For example, assume that R is a rational function which fixes infinity.
Then let

1
If 0 belongs to the Fatou set of f, then we define co to belong to the Fatou set of R. Let U be
the component of the Fatou set of f which contains 0, then for ¢(z) = %, ¢(U) is the component

of the Fatou set of R which contains oco.
We therefore obtain, combining the previous two propositions, a necessary and sufficient con-
dition for a neutral fixed point to belong to the Fatou set!

Corollary 15.7. A neutral fized point belongs to the Fatou set if and only if there is a solution
to Schrader’s equation.

Proof: For the converse direction, if there is a solution to Schroder’s equation, then we have
proven that the iterates of f are uniformly bounded. Hence, by Montel’s theorem, they are a
normal family.

For the forward direction, assume that a neutral fixed point belongs to the Fatou set. Then we
claim that the iterates are uniformly bounded in a neighborhood of the fixed point. Without
loss of generality, let us henceforth assume that the fixed point is at zg = 0. We shall argue by
contradiction. Assume that the iterates are not uniformly bounded in any D, (0). This means
that for every k € N we can find n > k and z,, with |z,, | < % so that

£ (2ny )| > k-

In particular, in any neighborhood D/ (0) there are some iterates and corresponding points,
which we are calling f™* (z,, ), such that f™(z,, ) is super large.

Now, by assumption, the family of functions {f™} is normal on an open set which contains the
fixed point, 0. So, for sufficiently large kK = K, we have that

D1k (0) is contained in the Fatou set.

This means that the sequence
1™ he>x
has a uniformly convergent subsequence on Dy, (0). Let us call this subsequence { f "ki}. Note
that on the one hand
J(0) = 0Vny, .
However, we also have
| £ (an] )| >k — oo.
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In particular,
de(f"3 (2ny, ), 00) = 0.

J

So, by the triangle inequality
de(f (zny ), £779(0)) 2 dg(0,00) = dg(00, f™ (2 ))-

For all j large, we can make
ik, 1
dC(OO, f ki (anj )) < id(fj(oa OO)

Then for all j large we have

Ae(f™ (e, ), 175 (0)) 2 W

However, the definition of being normal requires that taking

da(0,
627«:(300) >0

there exists § > 0 such that
de(2,0) <6 = da(f™ i (2), [ (0)) <e.
Since Zny, = 0, as j — oo we have for any § > 0 points with

d~
de(zn,,0) <8 da(f™ (zn,,), £ (0)) = C(OTOO)

This is in direct violation of the definition of normal. 4 The proof is completed by this contra-

> €.

diction.

So, now we know a necessary and sufficient condition for the irrationally neutral fixed points
to belong to the Fatou set. Do they always belong to the Fatou set? Nope. It depends on the
number theoretic properties of the angle, 6, in the exponent of the multiplier e?**. We recall
some famous (but too difficult for us to prove here) results.

Theorem 15.8 (Pfeiffer (1917)). There is A\ = e*™® with ¢ irrational so that the Schréder
equation has no solution for any polynomial f.

Definition 15.9. ¢ is Diophantine (badly approximable by rational numbers) if there exists
c> 0, < oo so that

P c
6- 2>
| q‘ q*
for all p,q € Z,q # 0. This is equivalent to
A" — 1] >en'™H, Vn#£1.

Remark 12. Almost all real numbers are Diophantine - but not alll By the exercises, the
Schréder equation has no solution for any rationally neutral fixed point. This shows that the
connection between the number-theoretic nature of the angle of the multiplier at the fixed point
is intimately related to the behavior of the iterates near the fixed point. It may very well be an
open question to determine necessary and sufficient conditions on the angle at the fixed point
(this is @ where the multiplier is e>™) so that Schréder’s equation admits a solution...

Theorem 15.10. (Siegel, 1950s) If ¢ is Diophantine, f(0) = 0, f'(0) = e2™¢, then there exists
a solution h to Schroder’s Equation.

As a corollary we obtain
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Corollary 15.11. If f has a fized point at zy with multiplier ™% such that ¢ is Diophantine,
then zqy is in the Fatou set of f.

There is a necessary and sufficient condition for the multiplier, in case of irrationally neutral
fixed points of quadratic polynomials, which determines whether or not such a point belongs
to the Fatou set. It may well be an open problem to determine this in general...

15.2. Classification of all fixed points as elements of either the Fatou or Julia set.
First we need a definition.

Definition 15.12. A simply connected component of the Fatou set such that f is conformally
conjugate to an irrational rotation is a Siegel disk. Let such a component be denoted by €.
This means that there exists a conformal map ¢ such that

O(f(2)) = Ad(2), A=¢e""0 e R\ Q.
Theorem 15.13. Let zg be a fized point of a holomorphic function f. Then
(1) If zo is an attracting or super attracting fixed point, zo belongs to the Fatou set.
(2) If zq is a repelling fixed point, then it belongs to the Julia set.
(8) If zo is a rationally neutral fized point, then it belongs to the Julia set.

(4) If zo is irrationally neutral, then it belongs to the Fatou set if and only if there is a
solution to Schrider’s equation. Otherwise it belongs to the Julia set.

Proof: In a neighborhood of an attracting fixed point, we have proven that the iterates
f™(z) — 2o, where z is the fixed point. Hence, all the iterates are uniformly convergent to the
constant function zg, and therefore the family {f"} is normal in this neighborhood of zy. If zg
is a super-attracting fixed point, the iterates f™(z) — zp in a neighborhood of the fixed point
as well, so by the same argument, zj is in the Fatou set.
If 29 is a repelling fixed point, then we have proven that (without loss of generality take zo = 0)
f is conformally conjugate to
g(z) = Az.
Note that for any z # 0,
9" (2) = A"z — o0 as n — oc.
Now, I claim that the iterates of g cannot form a normal family in any neighborhood of 0. To
see this, assume that some subsequence g"* converges on some neighborhood of 0. Then, since
g™ (0) = 0 for all ng, the limit at zero is zero. However, for any z # 0, g"*(z) — oco. So, the
limit function would have to vanish at zero and be identically infinity on some D,.(0)\ {0}. This
violates the definition of being normal. To see this, let
dC(OO7 0)
= 3 .
Since the limit is oo for all z # 0, we have
dg (9" (2), 9" (0)) = dg(0,00) — dg (o0, g™ (2))-

For large k, we can make the
4e(00,6™ (2)) < 350, 00)
thereby obtaining
delg™ (), 47 (0) > 5dz(0,0).
Hence, there is no 6 > 0 such that
de(9"(2),9"(0)) <€ Vda(z,0) <0, VneN.

So, indeed, the family {¢™} is not normal in any neighborhood of the repelling fixed point at
zero. Consequently, neither is f.

The statement concerning rationally neutral fixed points is an exercise. Note that it implies
that there is never a solution to Schréder’s equation in the rationally neutral case (1)
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If zp is an irrationally neutral fixed point, the statement has been demonstrated previously.

We know how to classify fixed points and whether they are in the Fatou or Julia set. If we are
interested in iteration of meromorphic functions on C, we have proven that all such functions
are rational functions. In this case we also know precisely how many fixed points such functions
have.

Theorem 15.14. A rational map of degree d has precisely d + 1 fized points, counting multi-
plicity, unless of course it is the identity.

Proof: If the rational map is constant, that is of degree d = 0, then we have R(z) = ¢ for
some ¢ € C for all z € C. Precisely one such point is equal to ¢, hence R has d + 1 = 1 fixed
point. So, henceforth we assume that R is of degree d > 1 and therefore non-constant, and also
that R is not the identity map.

To simplify our arguments, we will use a bit of conformal conjugation. Assume that there is a
map ¢ : C — C which is meromorphic and bijective. Then, consider

R:=¢oRo¢p L.

The R has a fixed point at z if and only if R has a fixed point at @(z0). Since ¢ is bijective,
this shows that the number of fixed points of R is equal to the number of fixed points of R. We
shall use this to justify the reduction to the case in which R does not map infinity to infinity.
If infinity is a fixed point for R, then let us define

1
(Z)(Z) - ; -G
for a finite complex number, c¢. Then,
1
-1 o
5 =
Hence ¢ : C —Cis bijective and meromorphic. Moreover,
- 1
R=¢ 'oRop:00— —c— R(—¢) > ——.
¢ oRog:o0 ¢ (=) R(—c)+c

Thus, choose some ¢ € C such that R(—c) # —¢, which is possible by the assumption that R
is not the identity map. Then, R(oo) £ 00. Since R has fixed points in bijection with those of
R, we may without loss of generality assume that R does not fix infinity. Proving the theorem
in this case proves it for R, which implies the result for R since its fixed points are in bijection
with those of R.

Let ¢ # oo be a fixed point of R = P/Q). We shall always assume that when we write

these two polynomials have no common factors. Thus, if { # oo and

R(()=¢ = Q(¢) #0,
because P and @ have no common zeros. (If Q({) = 0, then since P({) # 0 this would make
R(¢) = o0 # (). Then we observe:

R(() =¢ < R(()—C:W

Since the denominator is nonzero, the degree of the zero of the function
R(z)—z

=0.
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at the point ( is the same as the degree of the zero of the function
P(z) = 2Q(2)

at the point (. This is true for all ( # oco. Hence the number of fixed points of R is equal to
the number of zeros, counting multiplicity, of the polynomial

P(z) — 2Q(z2).
Since R does not map infinity to infinity, the degree of the numerator of R is less than or equal

to the degree of the denominator of R, hence the degree of P is less than or equal to the degree
of Q). Therefore, since the degree of R is

max{deg(P), deg(Q)}
the degree of R, that is d, is equal to the degree of (). Consequently the polynomial

P(z) — 2Q(z) is of degree d + 1.
By the Fundamental Theorem of Algebra, this polynomials has d+1 zeros, counting multiplicity.

We will use the above result to prove the following awesome theorem on the Julia set!!!
Theorem 15.15. The Julia set is not empty for rational functions with degree > 2.
We shall prove this next time.

15.3. Homework.

(1) * For a quadratic polynomial P(z) = 2™z + 22, where {p,/q,} is the sequence of
rational approximations to 6 coming from its continued fraction expansion, show that
a conjugation of P to e2™¢ exists if and only if

<0

i IOg(anrl )

an

n=1
(2) Prove that such a conjugation exists for almost all 6, that is for all § € R apart from a
set of one-dimensional Hausdorff measure equal to zero. (Of course that is the same as

all # € R apart from a set of one-dimensional Lebesgue measure equal to zero).

15.4. Hints.

(1) There is a reason there are only two exercises, and the first exercise has a star. The
sufficiency of the condition was proved by Brjuno in 1965. The necessity was proven
by Yoccoz in 1988. If you find yourself stuck, just look up the proofs and work through
the details to complete the exercise.

(2) As you may have noticed, much of this complex dynamics material is from the book by
Lennart Carleson and Theodore W. Gamelin. You can find a proof of this in Section
V.1 of that book, which is apparently due to Yoccoz.

16. THE FATOU AND JULIA SETS OF RATIONAL FUNCTIONS

We begin by giving a useful characterization of being a normal family in the context of a
compact, complete metric space. Note that C is such a space!

Proposition 16.1 (Arzela-Ascoli). Assume that a family of functions are defined on a com-
pact, complete metric space, (X,d), and that they are all maps from (X,d) to (X,d). Then, if
the family is equicontinuous, every sequence from the family has a uniformly convergent subse-
quence, and the limit to which this sequence converges is a continuous function. Moreover, the
converse holds: if every sequence of the family has a uniformly convergent subsequence, and the
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limit to which the sequence converges is a continuous function, then the family is equicontinuous.
If either of these two equivalent conditions hold, the family is normal.

Proof: If the family of functions are equicontinuous, and they map from a compact metric
space into a compact metric space, then they are bounded in the sense that for all f in the
family, f(X) C X is compact. The Arzela-Ascoli theorem therefore guarantees the existence of
a convergent subsequence. As the uniform limit of continuous functions, it is also continuous.
For the converse, we argue by contradiction. Assume the family is not equicontinuous. Then
at some point z € X there is a sequence of points z; — z and functions in the family fx such
that for some fixed € > 0,

d(fr(zk), fu(2)) > €.
Now, as a sequence of functions in the family { fx} has a convergent subsequence. Let us pass to
this subsequence, but still call it {fi} because it has the same properties, it is just converging
to some f which is by assumption continuous. Moreover the convergence is uniform. Since f is
continuous there is § > 0 such that if

dw,z) <6 = d(f(w), f(2)) <

W ™

Hence, by the triangle inequality
d(fi(zk), fi(2)) < d(fe(zr), f(zk) + d(f(2k), £(2) + d(f(2), fi(2)).

By the uniform convergence fr — f, for all k large we can make the first and last terms less

than $. Since the points z, — z, for all k large we can make d(zx,z) < 0 so that the middle

term is also less than 5. We therefore get that
d(fx(zx), f,(2)) <e for all k large.
1

e e
-

Theorem 16.2. The Julia set is not empty for rational functions with degree > 2.
Proof: Let R be a rational function of degree > 2.

Claim 3. R"™ has degree d™.

Proof of the claim: Write

R(z) = p(z) p(z) = aH(z —rg), q(z)= bH(z —55).

q(2)’ ; ;
Consider R(R(z)) =
allf (/g —rk)  aq(z) " II} (p(2) = q(2)) all} (p(2) = rrq(2))

bITi (p/a—s;)  ba(z)~"IIV'(p(2) = sja(2))  ba(z)" " I1)"(p(2) — sjq(2))
Assume first that the degree of p is greater than or equal to the degree of ¢q. Therefore the
degree d of R is equal to n and n > m. The numerator in R(R(z)) has the factor p(z) a total
of n times, and is therefore of degree n?. The denominator has the factor ¢"~™ which is of
degree m(n — m) times the product which has leading term p™, which is of degree nm. So all

together the denominator is of degree at most

m(n —m) +nm = 2nm — m>.

The denominator could be of lower degree, which can only occur if p and ¢ are of the same
degree, and a = bs; for some s;. However, this is not problematic for the proof, because since

n>m
2

0<(n—m)?>=n?-2mn+m?> = 2mn —m? <n’
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So, unless there is some other weird cancellation, R(R(z)) is of degree n? = d2. Can there be
any weird cancellation?
The numerator vanishes iff
p(z) = rrq(z)
for some r; and some z. The denominator vanishes iff

p(z) = 5;4(2)
for some s; and some z, or if n > m and g vanishes. I claim that the numerator and denominator
can never both vanish. To see this, if we have both

p(2) = req(2) and p(2) = s;q(2) = r4q(2) = sj9(2) = rp =55 or q(2) = 0.
The first, 7, = s; never happens, and in the second case ¢(z) = 0 here together with p(z) =

rrq(z) implies p(z) also vanishes but they cannot both vanish at the same point! Hence,
impossible. Similarly, if

p(z) = rkq(z) and q(z) =0 = p(z) = 04.
Hence, there is no cancelation of the numerator and denominator. So, the numerator and
denominator of R(R(z)) have no common zeros and hence the degree of R(R(z)) is indeed
n? = d?.
Exercise 26. Complete the proof of the claim (hint: induction) to prove that the degree of R’
is d7. The case in which m > n is very similar.

We shall proceed with the proof by contradiction. We assume J = (), so that the family
of iterates of R is normal on C which is compact, hence there exists a uniformly convergent
subsequence. Let us call that subsequence R™ and their uniform limit f. Then this function
f is continuous on C with respect to the dg metric.
Let us dispatch with the case in which f = co. In this case, we consider the rational function
. 1
R(z) = .
® = R
This function is conformally conjugate to R. Since ¢(z) = 1/z is a bijection from C to itself,

and since R™* converges uniformly to co on all of C, we get that R converges uniformly to the
constant function 0 on all of C. Thus, there exists N € N such that for all j > N

1 )
d@(an (Z), 0) < gd@(o, OO) vz € C.
In particular, we get
1
de(R" (z),00) > dg(0,00) — da(0, R™ (2)) > §dC(0, o0) > 0.

So, in particular, the R™ have no poles in @, and moreover, they are entire and bounded. Thus
the R™ are all constant for j > N. Since they converge to 0 this means that they are all equal
to the constant zero function. This is a contradiction to the fact that R™ has degree d"i. So,
we cannot have R™1J converging uniformly on C to the constant function, oco.

What else can we determine about the limit function? First, note that with respect to d¢ the
functions { R"} are all continuous on the entirety of C. Yep, even at their poles. Hence, the limit,
being the uniform limit of continuous functions is also continuous on C. Let us call this limit
function f. Whenever f(z) # oo, by arguments from our previous results, we obtain that the
family {R"} is uniformly bounded (in the usual sense, |R"| < M for some fixed M > 0 for all n)
in some neighborhood of zy. Consequently, we can apply the dominated convergence theorem
to conclude that the integrals over closed curves in that neighborhood of f is zero, and we
therefore obtain that f is holomorphic in such a neighborhood. Consequently, f is holomorphic
whenever it is not infinity. Now, f can only have finitely many zeros of finite multiplicity
because f = 0 shall lead to a contradiction. If f = 0, then we would get that the family {R"}
is uniformly bounded on C, hence they are all constant, which is a contradiction. So, we know
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that f has finitely many zeros of finite multiplicity. Therefore, % is a meromorphic function on
C. Hence, it is a rational function. Hence f is also a rational function. It therefore has some
finite degree. Now, let us use the results concerning the fixed points of rational functions. The
iterates R™ have d" +1 fixed points (counting multiplicity). These are contained in a compact
set, C. Hence they accumulate somewhere. Let us pass to a subsequence of R™ but still call it
by the same name but such that we have fixed points for these R™ at z,, which tend to some

20 € C. By the uniform convergence to f we therefore have
f(z0) = 20-
Claim 4. The limit function f is not the identity function. Nor is it an entire function.

Let us prove this by contradiction. Assume that f(z) = z for all z € C. Fix M > 0. Then
since f is holomorphic in Dj;(0), and it is bounded by M there, we get that all the iterates
{R"™} are bounded in this disk. Hence they have no poles in there. Letting M — oo, we get
that {R™} can only have a pole at infinity for all n. Hence they are all polynomials. Since
their degrees are greater than or equal to zero, they all have a super-attracting fixed point at
oo. Hence, some open neighborhood of co belongs to the Fatou set, and all iterates converge
to the constant function, oo in this neighborhood. Now that we assumed that the Julia set is
empty, the limit to which our subsequence R™ converges must therefore also be the function
which is constant and equal to infinity (or at least in an open neighborhood of co we must have
f(2) = o0). This violates the fact that the limit is meromorphic and thus has discrete zeros and
poles. 4 Hence, the limit function, whatever it may be, is not the identity. This proves the first
part of the claim. For the second part we may proceed similarly. Note that if f is entire, then
f is uniformly bounded on any Djs(0). Hence we obtain the same for all the iterates there.
Hence, letting M — oo we get that the only place the iterates can have a pole is at infinity. We
therefore get the same contradiction in this case as well.

Now, let us assume that some z,; is a fixed point of a certain R"7. Then on the one hand

foR™ — fo f uniformly as j — oo.
So, fixing the point z,, we get

foRY (zn;) = f(f(zn,)-
On the other hand, by definition of being a fixed point of that particular R™ we get without
letting j — oo for this particular n;,

F(R" (zn;)) = f(zn,).
Hence

So, whenever R" has a fixed point at z,,, f has a fixed point at f(z,,). Since R™ has d" + 1
fixed points, counting multiplicity, we get that f has a fixed point at f(z,,). However, the
number of fixed points of f is finite, because f is not the identity. This means that the set
{f(zn,)} is a finite set. Now, f is of finite degree, so it cannot send infinitely many points
to the same point. Therefore, the set of fixed points of the R™ must be also finite, and the
multiplicity at these fixed points must be tending to infinity. So, the set {2y, };>1 of fixed points
of {R"};>1 is finite and the degree of these fixed points tends to infinity. Near a fixed point,
p # 0o, the power series of R™ (z) is of the form
R (z)=p+ Zak(z - p),
E>1

where
(R") ) (p)

k! '
The degree of the fixed point is the minimal & such that ay # 0. Now, by the uniform con-
vergence to f, we also get the uniform convergence of the derivatives to the corresponding

ap =
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derivatives of f. Therefore, since the degree of the fixed point p # oo is tending to infinity,
this forces f to vanish at p to infinite order. By the identity theorem, then, f = 04. So, the
only fixed point p can be infinity. However, then the same argument shows that f has a pole
at infinity of infinite order, which violates the fact that f is a rational map (and hence of finite

€'

order). This is a 4 contradiction.
16.1. Self similar natural of the Julia set.

Definition 16.3. Let R be meromorphic on C. (Thus it is a rational map). Then we say that
E is completely invariant if £ and E° are invariant under R, in the sense that both

R(E)CE
and
R(E°) C E“.
This terminology may seem weird & priori, but let us see that it is sound.
Proposition 16.4. Assume that the rational map is non-constant. Then E is completely
invariant if and only if R(E) = E.

Proof: Assume E is completely invariant. Note that the empty set is completely invariant as
is C. We have proven that all rational maps which are non-constant are surjective from C to
C. So, we have

On the other hand .
C=R(EUE®)=R(FE)UR(E°) C EUE".
Consequently, we must have
R(E)=E, R(E°)=E".
For the converse statement, if we assume R(E) = E, then we also get, via

R(C) = R(E)UR(E°) = EUR(E®) =C = EUE® = R(E°) = E°.

e e
-

Exercise 27. What about when R is a constant map? Which sets are invariant? Also, observe
that a set E is completely invariant if and only if its complement is completely invariant.

With the notion of completely invariant, we can prove that the Julia set enjoys this property!

Theorem 16.5. The Julia set J of a rational map is completely invariant. The Fatou set is
also completely invariant.

Proof: If either the Julia set or Fatou set is empty, we have proven that both @ and C are
completely invariant, so we are done. If the function R is constant, then the Fatou set is C,
so we are done in this case. Let us assume that R is not constant. Let us also assume that
the Fatou set is not empty. Let D,(z9) C F. Then, let {R"*} be a subsequence of {R"}
which converges uniformly on D,(zg) for some p < r. Hence {R™ '} converges uniformly

on R(D,(z0)). By continuity of R this set is bounded, and by the open mapping theorem,
it is closed, hence it is compact. Therefore every uniformly convergent subsequence gives rise
to a uniformly convergent subsequence on R(D,(z9)). We can do this for any p < r. So, in
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particular, we get that R(Dp(zp)) is in the Fatou set for p < r. Since R(zp) is contained in this
set, and since it is an open set by the open mapping theorem, we have

R(F) C F.

To obtain the converse, note that if R™ converge uniformly on D,(2g), then R™*1 converge
uniformly on R™!(D,(z0)). Hence R™*(D,(20)), which is open by the continuity of R, and
which contains R™!(zg) (which could be several different points, but that is not important), is
in the Fatou set. Thus

R YF)cF = FCR(F).
Combining with the reverse containment, we have
R(F)=F.
Consequently, since R is non-constant in this case, we have that F is completely invariant, and

so is its complement, J.
The next theorem shows that the Julia set is the same for all iterates of our rational function.

Theorem 16.6. YN > 1, J(R) = J(RY). The same statement holds for the Fatou set, that
18

F(R) = F(RM).

Proof: First, assume that R is constant. Then its Fatou set is C. Since R" = R is also
constant for all n, the Fatou set of R" is C for all n. So, let us assume that R is not constant.
Then it is surjective because R is a rational map. Let D,(zy) € F(R). Then the family
{R"},>1 is equicontinuous there. Since the family {(R")"},>1 is contained in {R"},>1 it is
also equicontinuous in D, (o). Therefore this is also contained in F(RY). Hence we obtain

F(R) C F(RM).
For the reverse containment let { R™*} be a subsequence of { R™}. Then since it is a subsequence,
ng — 0o as k — 0o. Hence, so, in particular, we can pick a subsequence of it which has

— ny. = a positive integer multiple of N.

ng. J

j+1

Hence, this subsequence is of the form
(R} = {RV™0)

for some sequence of integers {m;}, for some fixed non-negative integer p. Assuming that the
family {R™} is normal in a neighborhood of z, we get a uniformly convergent subsequence

{RV™)
consequently
RpHNmu, — RP(RNqu )

also converges uniformly. This is a subsequence of {R™i}. So, it is in turn a uniformly
convergent subsequence of { R™*}. Hence we see that whenever the family { RV"} is normal, so
is {R"}. Therefore

F(RN) C F(R).
Therefore these sets are equal, so that
F(R)=F(RYN), VYN>1.
The same statement holds for the complements,

J(R)=J(RN), VN>1.
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We shall use but not prove the following lovely theorem.

Theorem 16.7 (Montel’s Big Theorem). If a family of functions is meromorphic on domain G
and the image under G of the family omits three points, then the family is normal. In particular,
if 321, 29, 23 such that f(G)N{z}3_, =0 Vf € F then F is normal.

16.2. Homework.

(1) Locate and read a proof of Montel’s big theorem.
(2) Locate and read a proof of the Riemann-Hurwitz theorem.

17. JULIA SETS OF RATIONAL MAPS
In addition to fixed points another type of distinctive point is a critical point.

Definition 17.1. A point z € C is a critical point if one of the three equivalent conditions
below holds:

(1) R is not injective on any open neighborhood of z.
(2) R'(z) =0.
(3) Let f(w) := R(w) — R(z). Then f vanishes at z with multiplicity greater than one.

Definition 17.2. The multiplicity of z € C is the degree of the zero of the function R(w) — z
for w = z and is denoted by mult(z).

We will use but not prove the following theorem.

Theorem 17.3 (Riemann-Hurwitz). Assume R is not constant and of degree d. Then

> mult(z) — 1 =2(d - 1).

zeC

The proof of this theorem relies upon some rather deep results in topology concerning the Euler
characteristic of Riemann surfaces. Similar to the proof of the fact that the Julia set of any
rational function is non-empty for all rational functions of degree at least two, which relied
on the number of fixed points, we can use the Riemann Hurwitz theorem to prove that any
coompletely invariant set for a rational map of degree at least two has at most two elements.

Theorem 17.4. Any finite completely invariant set for R rational of degree at least two has at
most 2 elements.

Proof: Assume S is such a set. Then R(S) = S, and so R acts as a permutation on the
elements of S. Assume S has n elements. Then R is uniquely identified with an element o
of the symmetric group S,. This group has n! elements hence the order of o is finite. Let
this order be k. This means that R* acts as the identity element on S. We have already
computed that the degree of RF is d* where d is the degree of R. Note that the multiplicity
of the zero of RF(w) — z at w = z is d*. This is because the function R*(w) — z has precisely
d* zeros counting multiplicity by the Fundamental Theorem of Algebra. Perhaps that is not
immediately apparent, but writing

Rk(w) _ p(’w)

=, RMw)=2z <= g(w) := p(w) — zq(w) = 0.

P R w) (1) = plus) — 24(u)

The function g(w) : C — C is a polynomial of degree equal to the degree of R¥, which is d*.
Hence this function has precisely d* zeros counting multiplicity by the Fundamental Theorem
of Algebra, and g(w) = 0 iff R¥(w) = z. So, if one of these zeros were to be some w # z, then
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R~%(2) > w which shows that w € S because S is completely invariant. Then since R¥ acts as
the identity on S, this means that

RF(w) = w # z = R*(w).

This is a contradiction. So the only solutions to R¥(w) — z = 0 is w = z and hence the
multiplicity of z for R* is d*. This holds for each z € S. So we have

Zmult(z) —1=n(d"-1)< Zmult(z) —1=2(d"-1)

z€S 2eC

® e

which shows that n < 2.
Definition 17.5. The orbit of a point z € Cis
O(z) == {R"(2)}nez.

Note that this includes both the forwards and backwards orbits. If the orbit of a point is finite,
then we say that point is exceptional. The set of all such points is denoted by E(R).

Proposition 17.6. The exceptional set of a rational map of degree at least two has 0, 1, or 2
points.

Proof: If z € E(R), then by definition the orbit of z has finitely many elements. Since the
orbit of z is the same as the orbit of R(z) as well as the same as the orbit of R™!(z), the orbit
is completely invariant. By the preceding theorem the orbit of z has 1 or 2 elements. It has at
least one element because it contains z = R%(2). If the orbit of z contains only z, then it is a
fixed point. If the orbit of z also contains w so that R(z) = w # z, then we know that either
R(R(z)) = R(w) = w or R(R(z)) = z. Hence either w is a fixed point of R or z is a fixed point
of R%2. Consequently the total number of exceptional points is at most twice the number of
fixed points of R plus the number of fixed points of R2. This is finite because R has precisely
d + 1 fixed points, and R? has precisely d? + 1 fixed points. Since the orbit of any exceptional
point is completely invariant, and the orbit of any point in the orbit of z is the same as the
orbit of z, it follows that the orbit of each exceptional point is contained in E(R). There are
finitely many of these, they are each completely invariant, hence E(R) is a finite, completely

invariant set. By the preceding theorem it contains at most 2 points.

Theorem 17.7. The Julia set of any rational map of degree at least two is infinite, and the
exceptional set is contained in the Fatou set.

Proof: If the Julia set is finite, then because it is completely invariant, it contains at most
2 points. We know that the Julia set is not empty. So, first assume the Julia set contains
one point. We can conjugate such that WLOG this point is co. Then since the Julia set is
completely invariant,
R(x) C J =00 = R(c0) = o0,
and
R (0) C T =00 = R !(o0) = o0.

Consequently, R has no poles in C and is an entire function. Since it has degree at least two,
R is a polynomial. For any polynomial oo is a super-attracting fixed point, because 0 is a
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super-attracting fixed point for the function

1

R/ 9 roRop, o(2) =0"'(2) =1/
and ¢~1(0) = co. We have already seen that if two functions are conformally conjugate such as
¢ loRop = E, then R has a fixed point at co if and only if R has a fixed point at ¢~ 1(c0) = 0.
Moreover the multiplier at the fixed point is the same for R as for R. Since the polynomial R
is of degree d > 2, 1/R tends to 0 of order d as z — oo hence R has a zero of order d at 0.
By the Fundamental Theorem of Algebra, R has precisely d zeros counting multiplicity. Hence
this function has only one zero of order d at zero so

ﬁ =cz?, cecC\{0} = R(z)=c12%

Since 0 is a super-attracting fixed point for R it lies in the Fatou set for R and consequently
¢~ 1(0) = oo also lies in the Fatou set of R. This is a contradiction because this point was
assumed to be in the Julia set which is distinct from the Fatou set.
If the Julia set contains two points, we can again assume by conformal conjugation that these
points are {0, 00}. By the complete invariance of the Julia set we have a few possibilities. One
possibility is that R(0) = 0 and R(c0) = oo. By the complete invariance of the Julia set,
R71(0) € {0,00}. If R7Y(0) = c0 = R(0o) = 0 which is impossible. So, we also have that
R7Y0) = 0 and R™!(c0) = oco. Consequently, R is a polynomial of degree d > 2. By the
preceding argument oo is in the Fatou set, a contradiction.
The other possibility is that R(0) = oo, and R(oc0) = 0, due to the complete invariance. In this
case R(z) = P(z)/Q(z) has a Laurent expansion about 0 of the form ¢;2z77 + ... with ¢; # 0.
Consequently when we consider long division of the polynomials P and @ it follows that the
degree of @ is strictly larger than the degree of P. We can also see this because R vanishes at
infinity, so the degree of  must be larger than that of P. If there were any other point p € C
such that R(p) = 0, then again by the complete invariance of J such a point would necessarily
be contained in J which it is not. Hence, the only zero of R is at infinity, and this zero must
therefore be of degree d which is the degree of R. Consequently R(z) = cz~%. Then

R%(z) = R(R(z)) = ¢}

has a super-attracting fixed point at z = 0. It follows that 0 is in the Fatou set of R?, and
by one of our previous results, the Fatou set of RV is the same as the Fatou set of R for any
N € N. Hence 0 is in the Fatou set of R as well, which is a contradiction because 0 was assumed
to be in the Julia set.

So, it is impossible for the Julia set to have 1 or 2 points, and this shows that it must have
infinitely many points because it is not empty.

Next we consider the exceptional set. If it is just one point, by conformal conjugation we may
assume that this point is co. Then the orbit of this point is co and hence R(00) = co = R™!(c0)
and so R is a polynomial because it is an entire non-constant function with pole at infinity. As
we have seen above oo is a super-attracting fixed point for any polynomial of degree at least
two and hence lies in the Fatou set.

If the exceptional set contains two points, without loss of generality we assume these two points
are 0 and co. Then we either have R(0) = 0, R(cc) = oo which implies R(z) = cz¢, and both
0 and oo are in the Fatou set. By the above argument the other possibility is that R(co) = 0,
R(0) = oco. In this case we showed that R(z) = cz~¢, and again both 0 and oo lie in the Fatou
set because this is true for R? (both 0 and oo are in the Fatou set of R? in this case).

So, in all cases the exceptional set lies in the Fatou set.
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Theorem 17.8. Any completely invariant closed set A satisfies one of the following: either
ACER)CForADJ.

Proof: Assume A is such a set, and let U := C \ A. Then U is open and completely invariant.
Therefore the complement of U, being A is also completely invariant. If A is finite, then it has
at most two points. It follows that since A is completely invariant, the orbit of each element of
A lies in A and hence is finite, so A C E(R). If A is infinite, consider {R"} on U. Since U is
completely invariant, for each z € U, R*(z) € U  C\ A and hence the family {R"} on U omits
all points of A, of which there are more than three! So, the family R™ is normal on U, and hence
U C F. The reverse inclusion therefore holds for their complements, so U¢ = A D F¢ = 7.

Theorem 17.9. The Julia set is perfect for any non-constant rational map.

Proof: Let J' denote the set of accumulation points of the Julia set. Then since J is closed it
follows that J’ C J. Note that since J is infinite and is contained in C which is compact, the
Julia set has accumulation points, so J’' # (). The idea is thus to show that J’ is completely
invariant because then we have proven that any completely invariant closed set is either in
the Fatou set or it contains the Julia set. Since J' is in the Julia set, it cannot be in the
Fatou set! First let’s show that J’ is closed. If z is an accumulation point of J’/, then any
open neighborhood U of z contains an element of 7/, which is an element of J since J’ C J.
Therefore, this shows that z is an accumulation point of 7, hence z € J’. Hence, J’ contains
all its accumulation points and is therefore closed.

Next we show the complete invariance of J'. Let z € J'. Then there is a sequence {z,} C J
which converges to z. The function R is continuous on C, and therefore R(z,) — R(z). Since
R(z,) € J for every n by the invariance of 7, we have a sequence in J, namely {R(z,)} which
converges to R(z). Therefore R(z) is an accumulation point of 7 and so R(z’) € J'. Hence for
any z € J' we have R(z) € J’.We have thereby shown the inclusion

RJINYCJ = J cRYT).

Next let 2 € R7Y(J’), and w = R(z) € J'. Then since R is non-constant, it is an open map.
Since w = R(z) € J', for an open set U containing z, R(U) is an open set containing w which is
an accumulation point of 7, and so R(U) has non-empty intersection with 7. Therefore since

R(T)=J,
RYRNT)=UNR Y T)=UNT #0.

So, for any open U containing z, U N J # 0. It follows that z is an accumulation point of J
and so z € J’. This shows that

RY JIYcTJ = J cRJ)cCJT.
So
R(jl) — jl

is completely invariant. Since it is a closed set, by the previous theorem it is either contained
in F or it contains 7. Since J' C J which is disjoint from F, we cannot have J’' C F, and so
we must have

Jo>2I>T = J=J.
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Hence every point of 7 is an accumulation point of 7 which is the definition of being perfect.

17.1. Homework.

(1) Determine the Julia set of the function R(z) = 22.
(2) Determine the Julia set of the function R(z) = 22 — 2.
(3) Determine the Julia set of the Lattés function
(22 + 1)2
42(22 - 1)’
(4) Determine the Julia set of the function 1 —2/22.
(5) Show that the Julia set is the closure of the repelling periodic points. A repelling
periodic point is a piont such that R™(zp) = 2o for some n. Take the minimal such
n. Then zg is a fixed point for R™, and thus is termed attracting, repelling, rationally
neutral or irrationally neutral according to the type of fixed point of R™.
(6) Show that the Julia set of a Blaschke product B(z) of degree d > 2 is either the unit
circle or a Cantor set on the unit circle.

17.2. Hints.
(1) Consider |z| <1 and |z| > 1.
(2) Recall a previous exercise about this function.
(3) Show that a dense subset of C is iterated to the repelling fixed point at co.
(4) Show that this function has the same Julia set as the previous one.
(5) Show that the Julia set of R and R™ are the same for any n. Then use the fact that

the Julia set contains all repelling fixed points.

(6) Show that the iterates of a Blaschke product are normal both inside and outside the
unit disk. Thus the Julia set is a perfect subset of the unit disk. Consider what cases
are possible and use the results we have proven.

18. FRACTAL NATURE OF THE JULIA SET AND PROPERTIES OF THE MANDELBROT SET
The Julia set of a rational map of degree at least two is either C or has empty interior!

Theorem 18.1. The Julia set of a rational map R of degree at least two is either C or has
empty interior.

Proof: Let us decompose Casa disjoint union

C=0JUJUF.
Let us also assume that z € J , so the interior of J is not empty. Then there exists r > 0
such that D,(z) C J C J. Applying R, by the Open Mapping Theorem, R(D,(z)) > R(z)

is an open set. By the complete invariance of J this set lies in J. Hence there is an open
neighborhood of R(z) in J, so R(z) € J. This shows that

R(J)cJ.
For the reverse inclusion we use continuity, because R~!(D,.(z)) is an open set contained in J
hence contained in j SO
RNJ)C T,
and we see that J is completely invariant. Since the Fatou set is also completely invariant, we
have the following

R(JUF)=JUF = R(J)=0J,
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so the boundary of J is also completely invariant. It is closed since its complement is by
definition open. By a preceding result, since the intersection of the Julia set, which is closed
and hence contains its boundary, with the Fatou set is empty, either the boundary of the Julia
set contains the Julia set, or the boundary of the Julia set is empty. By assumption the Julia
set has non-empty interior, so if it has non-empty boundary, then it cannot be contained in its
boundary. It follows that the boundary of the Julia set is empty. This means that the Julia set
is open as well as closed, and hence is the entire C. This shows that if the Julia set has non-
empty interior, then it is C. On the other hand, if the Julia set is not @, by the contrapositive,
it cannot have non-empty interior, so if the Julia set is not C, then it has empty interior. These

are the only two mutually exclusive possibilities.

The following proposition will allow us to prove the self-similarity property of J. Basically,
take any open set which has non-empty intersection with the Julia set. No matter how small
that is, the inverse images of R of this open set will eventually cover all of 7.

Proposition 18.2. Let R be a rational map of degree at least two, and U a non-empty open
set such that UNJ # 0. Then

(1) We have
U r"w)>C\ER) > J.
n>0
(2) Moreover there exists N € N such that
R*U)D J
for alln > N.

Proof: Well, it makes sense to prove (1) first, because we will likely need it to prove (2) which
is a stronger statement. Define

U == | B"(U).
n>0
Define R
V.=C \ Uo.
If V = () then we are done. If V has three or more points, we are led to a contradiction because
this would mean that the family {R"},>1 on the set U is normal. Then we would have U C F
which contradicts the fact that U N7 # (). So, V has at most 2 points. We wish to show that
V C E(R).
Then we get the reverse inclusion for the complements:
Uy > C\ E(R).

So, for the sake of contradiction we assume there is some zp € V' \ E(R). Then it must have an
infinite orbit. We will show that a point has an infinite orbit iff the backwards orbit is infinite.
Assume that the backwards orbit is finite,

O_(Z()) =K= {ZQ,. . -;Zk}~

Then consider R™! on K. R™!(z;) is a set of one or more points in K. If two points z; and z
have a common pre-image meaning the sets

RN (z) N R (=) #0,
then applying R to a common point in this pre-image we get that z; = z;. Hence, for each
j=0,...k,
Ril(Zj) CK



102 FRACTALS

is distinct. Fach of these sets contains at least one point. Since K is a finite set, this means
that each of these pre-images contains exactly one point, and so R~! : K — K is a bijection. It
can therefore be identified with a permutation, an element of the group Si41. This is a group
of finite order, so there exists n € N such that (R™1)" = R™ acts as the identity on K. Now
we consider the forward orbit. For each z; € K we have

R_n(Zj) =2 = z; = R"(Zj)
for all j =0,1,...,n. In particular R"(zy) = z9. Hence
R"k(2) = R*(2), Vke&N.

Consequently, the forward orbit O (z9) can have at most n + 1 elements. This shows that if
the backward orbit is finite, then the whole orbit is finite. Consequently, if the whole orbit is
infinite, then the backwards orbit is infinite. Of course the reverse statement is also true: if the
backwards orbit is infinite, then the whole orbit is infinite (because it contains the backward
orbit!). So, we have shown the equivalence

#07(2) = 00 = #0(2) = ox,

where in this statement z is arbitrary.

In our particular case of concern here, we have zg not in E(R) hence it has infinite orbit, hence
the backwards orbit is infinite. We will use this to achieve a contradiction. First, if some
R~ (z9) € Up, for some m € N then there is some k € NU {0} such that

R™™(2) € R*(U) = R™(z) = R*(w), weU.
Then applying R™ to both sides,
29 = R™*(w) € R™H(U) C U,.

This contradicts zp € V = C\UO. So, this shows that we must have R~ (zy) U, for all m € N.
Since the backwards orbit of zg is infinite, there are infinitely many points R~"(zg) € C \ Up.
By definition of Uy, the family of iterates R™ on U omits all these points, and there are not
just three but infinitely many! By Montel’s Theorem the family of iterates is therefore normal
on U, so U C F which we have already seen is a contradiction since U N J # 0.
So, the assumption of a point zg € V' \ E(R) leads in all cases to a contradiction, hence there
can be no such problematic point! This shows that V' C E(R) and taking complements reverses
the inclusion,

C\V=U;>C\ER)DJ.
The second statement is rather ingenious. Since we know that the Julia set is infinite and
perfect, the intersection U N J is not only not empty, but must contain infinitely many distinct
points. Choose three distinct points. Since they are all in U which is open, let’s call the points
for instance z1, 22, 23, and there exist ¢; > 0 for ¢ € I = {1,2,3} such that D, (z;) C U.
Moreover we can choose

€= %min{el,q,eg, |zi — 2|t # j € I}.
Then D.(z;) := U; are at a positive distance from each other, have non-empty intersection with
J, and are open sets contained in U.
Claim 5. For each i € I there exists j € I and n € N such that
U, ¢ R'(U))

Proof: By contradiction we assume not. Then there exists an i € I such that for each j € T
and every n € N
U; ¢ R*(U;).
Hence
Uj ¢ Up>1 R*(U;), j=1,2,3.
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Since these three sets are disjoint, there exist points in U; which are not in U,>1R"(U;), and
which are distinct. Hence R™ on U; omits these three points and is therefore normal. This
is again a contradiction because it would imply U; C F which it is not because U; N J # 0.

Claim 6. There exists n € N and i € I such that
U; C R™(Uy).
Proof: We have shown that there is some j € I such that
U; C R™(Uh).

If j = 1, then the claim is proven. Otherwise, without loss of generality (we can change their
names) assume U; = Us. Then by the previous claim once more, we have some k € I and
no € N such that

U C R™(Us).

If k = 2, the claim is proven. Otherwise, if k = 1, then
U, C an(UQ) C Rn2(Rn1 (Ul)) = Rr2tm (Ul),

and so in this case the claim is also proven. So, the remaining case is that kK = 3. Then by the
previous claim, there is [ € I and ng € N such that

U, C R™(Us).
If [ = 3, then the claim is proven. If [ = 2, then
Uy C R™(Us) C R™(R™(Uy)) = R™1"2(Uy),
and so the claim is proven. If [ = 2, then
Uy C R™(Us) C R™(R™(Uy)) C R™(R™(R"(Uy)))
= Rretretruqy)),

So in this case the claim is also proven, and we have proven it in every possible case!
Now we can complete the proof of the proposition, which given the amount of work perhaps
ought to be a theorem. For U; C R™(U;) as in the claim, let

S :=R".
Then S is also a rational map of degree at least two. Since
U; C S(U;) = S(U;) C S*(U;)
we have an increasing sequence
U, c S(Uy) C...8%U;) c SFHWy).

We have proven that the Julia set of R and any of its iterates R™ are identical. So the Julia
set of R is the same as that of S, and we write both as 7. By definition of U,

Uing #0,
and Uj; is open, so by part (1) applied to U; with respect to S,
J C Unzosn(Ui).
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On the right side we have an open cover by the open mapping theorem. The Julia set is a closed
subset of C which is compact, hence J is also compact. Therefore any open cover admits a
finite sub-cover and so there is M € N such that

J c UM s™U;) = SM(Uy),

since S™(U;) € SM(U;) for all n < M, n > 0. Note that S™ = R"™. So, we have by complete
invariance of J for any s € N

j — R‘}(j) C RQ(RTLM(U’L)) — RnM-i—s(Ui) C RTLM-i—S((])7
where the last statement follows since U; C U. Hence for any m > N := nM we have

J C R™(U).

We can now prove that the Julia set is self-similar!

Theorem 18.3. The Julia set is self-similar in the sense that for any z € J,
T ={R"(2)}n>1.

Proof: Let z € J. Then z ¢ E(R) C F, so the backwards orbit of z is infinite. Let € > 0 and
z9 € J. Consider U := D.(zp). By the proposition there is N € N such that

J c RN (U).

Moreover the Julia set is completely invariant which means that R~"(z) € J c RN (U). So
there exists w € U such that R7"(z) = R™(w) and hence w € R™""N(z). By definition of
Usw

|w — zo| < e.

This shows that for each zg € J and € > 0, there is an element of O~ (z) = {R™"(2)},,>1 which
is at a distance less than € from zy. Hence O~ (z) is dense in J. Therefore the closure of this

€'

set contains the closure of 7 which is equal to J because J is closed.

This last result as well as our previous result shows the connection between Julia sets and sets
of non-integer Hausdorff dimension. Julia sets have an invariance property, a self-similarity
property, and either have empty interior or are the whole space!

18.1. The Mandelbrot set. The Mandelbrot set focuses on the dynamics of quadratic poly-
nomials

P.(z):=2* +c
As you will show in the exercises, the c-plane is like the moduli space of quadratic polynomials,
because it is in bijection with the conjugacy classes of quadratic polynomials. So, when we look
at the Mandelbrot set, we are looking at the dynamics of the conjugacy classes of quadratic
polynomials. Recall the definition

M = {c e C: P}0) are bounded for all n € N}.

Let us prove a result which characterizes the Mandelbrot set.
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Theorem 18.4. The Mandelbrot set is a closed subset of the disk {|c| < 2} which meets the
real azis in the interval [—2,1/4]. The Mandelbrot set consists of precisely those ¢ such that
|P™(0)] < 2 for all n. The ¢ in the Mandelbrot set are precisely those ¢ € C such that 0
does not belong to the basin of attraction of the superattracting fixed point at co. Moreover, the
Mandelbrot set does not have any holes, in the sense that there are no open bounded components

of C\ M.
Proof: Assume that |c| > 2. We claim that for all n > 2 we have:
[P O)] = [el(e] = 1)
Let us compute the base case, that is for n = 2:
[PZO)] = c* + ¢ > |e]” —[e] = [el(le] = 1) = |el(Je] = 1)

So the base case is true, and now we assume it for some n > 2. Then we compute:

2n72

2272

PO = (P2 +el 2 [PHOR = el = (Jl(lel = 1)) = ke

n72* n—1
=lel*(lel = 1)*" 7 = e = le|*(le] = 1)*" " —lel.

Since |c| > 2, for n > 2 note that
2n—1

(lel = 1)

> 1.
Consequently

271—1 27171

el(lel = 1*"™ = (e = D>+ (el =1 = 14 (e — 1)
Multiplying the far left and far right sides both by |c| we get

1

n—1 n—
lel*(Je] —1)*" = el + lel(le| = 1)*" .

Therefore we have proven that
IPEFL0)] > (e = 1) = el > el - 1)*" .

This completes the proof by induction, because it is the statement for n + 1. So, whenever
le| > 2, and n > 2, the iterates of P, are bounded below by

le|(c] = 1)2"" = 0o as n — oo since || > 2 = |¢| — 1> 1.

So, we therefore see that the Mandelbrot set is contained in the disk D2 (0).
Moreover, if |P?(0)| < 2 for all n, then this certainly implies that ¢ € M. So, it is a sufficient
condition. To see that it is also a necessary condition, we assume that |P"(0)| = 2+ 6 for some
d > 0, and for some m. If |¢| = |P.(0)| > 2, then we have already proven that ¢ ¢ M. So, now
assume that
|Pe(0)] = |e| <2,
and for some m > 1, we have
[P 0)] = [(P(0)% + ¢ > (2+6)% —|e] > (2+0)* —2 > 2+ 44.
We claim by induction that
IR (0)] > 2 4 4%
The base case with & = 1 is proven. We assume it for some k and then need to show it for
k+ 1. So we estimate

[P (0)]

Y

|PTTRO)2 = || > (2 +4%6)% — 2 = 4+ 4(4F)5 + (4%6)% — 2
— 24 4Ft1g 4 42k 62 > 9 4 4Rt

This completes the proof by induction. Hence,

|PmHR0)| > 2 + 4%6 — oo as k — oo,

which means that ¢ cannot be by definition in M. Hence, if ¢ € M, the it is necessarily true
that
[P (0)] <2 VYm>1.
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To prove that M is closed, let us change our perspective a bit. I claim that for each n, the
function
[F:(0)]

is a continuous function of ¢. For n =1,

[P (0)] = fi(e) = Ic]-
This is a continuous function. Proceeding by induction as usual then we assume that f,(c) :=
|PI'(0)] is a continuous function of ¢. Then

Fat1(e) = [PEFHO0)] = |fn(0)* + .
The function f,(c)? + ¢ is a continuous function of ¢ since f,, is continuous. Moreover the

absolute value function is also a continuous function. Therefore the composition is a continuous
function. This completes the proof by induction. So, we can now write

M={ceC: f,(c) € D2(0) Vn>1}
=) /2 (D2(0)).

n>1

Since each f, is a continuous function, the pre-image of the closed disk is a closed set. The
intersection of any collection of closed sets is also a closed set. This shows that M is closed.
Next, we wish to prove that M does not have any holes in it. For this, let us define instead
functions

en(c) == PI(0).
We claim that these are holomorphic (and indeed entire, polynomial) functions of ¢. The base
case is certainly true. Then,

pns1(c) = PITH0) = (P1(0)* + ¢ = ¢n(c)* +c.

2

Since by induction, ¢,, is a polynomial, we also have that ¢,,(¢)? is a polynomial. Consequently

Pnt1(c)
is also a polynomial. Now, let’s think about the open set, C\ M. For the sake of contradiction,
assume that it has some bounded component, ). Then 2 is a bounded, open set, and its
boundary is contained in M. The functions ¢, are all holomorphic on 2. Therefore, the
maximum principle dictates that they achieve their maximum values on the boundary, that is
for any ¢ € Q,

len(c)] < sup [pn(2)]-
z€0Q
Now, since 92 C M, we have proven that
lon(2)] <2 Vze M.

So then we get that
lon(c)| <2 Vee Q.

However, this immediately implies, by our characterization of the Mandelbrot set, that Q C M.
This is a contradiction. Hence, the Mandelbrot set has no holes.

So, let us proceed with the formulation of the Mandelbrot set in terms of the basin of attraction
of the super attracting fixed point at infinity. It suffices to prove that

[P (0)] <2Vn <= 0 ¢ A(c0),

where A(00) is the basin of attraction of the super attracting fixed point of P, at co. Now —
is pretty clear, because if 0 € A(co) then this requires P?(0) — oo which clearly cannot happen
if the iterates are all bounded above by 2.

For the converse direction, we first show that P.(A(c0)) = A(co). Assume that z € A(o0).
Then we have

P (z) = 00 = PI(P.(2)) > 00 = P.(z) € A(c0) = P.(A(c0)) C A(c0).
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Next note that if z € A(co) then
P Hz) w00 = PM(P;'(2)) = 00 = P, l(2) € A(0) = P, '(A(0)) C A(c0)

so we get applying P, to both sides

A(o0) C P.(A(c0)).
Consequently, we have equality, that is

A(0) = Po(A(0),
We can repeat the argument to get that for all n

A(o0) = PI(A()),  P7(A(00)) = A(o0).

If for some m we have |P7(0)| > 2 we get that P/"(0) € A(oo) and therefore 0 € P, ™ (A(c0)) =
A(00). So, this shows that if 0 ¢ A(co) then we get
|[PM0)| <2 Vm>1 = ce M.

Finally, let us ponder the real numbers in the Mandelbrot set. If ¢ is real, then the equation

1 1-4
—zrz+c=0 < xzithc7
has no real roots if ¢ > i. The equation has one real root at % if ¢ = i,
if c < 1. If ¢ > 1, then first note that P7(0) is real and increasing. This can be proven by
induction:

P.(z) —x=0 < 2°

and two real roots

1
P.(0)=¢, P}0)=c+c>c> T

Similarly, for
P 0) = P2(0)* + ¢,
we have that
P"(0)? — P™(0) +¢>0
because the equation
> —z+c

has no real roots for ¢ > %. By induction, P*(0) = = > i. So, the sequence is real and

C
increasing. If P*(0) had some finite limit point, call it =, then since the limit of real numbers

is a real number when it exists, we would get
. n I T n+1 _ o
nl;rréo Pl (z) = nlLII;OP () =2 = P.(x)=x4.

C
So, this shows that no real numbers greater than % are in M. Now, we already know that no
real numbers less than 2 are in M because any number with modulus greater than 2 is not in
M. So, finally on the interval [—2,1/4], let

1 V1-4e
a=—-+—->

2 2
be the larger of the two real roots of P.(z) —z = 0. Then, since ¢ € [—2,1/4], we have

1 v1-4 1 V148 1 3

Then we claim by induction that |P?(0)| < a for all n. We have proven the base case. Next,
[PEH0)] = [(PF(0))* + ¢ = £(P8(0)* + o).

In case of + we have
(PM0)? +c<a’+c=a
since
a?—a+c=0.
In case of — we have
—(PM0))? —c < —c<a,
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since we proved that
a>|c.

So this proves that the iterates all have |P?(0)| < a for all n. By definition, ¢ € M.
It is nice to recall, but we shall not prove, the following result which further characterizes the
Mandelbrot set.

Theorem 18.5. If P?(0) — oo, then the Julia set of P. is totally disconnected. Otherwise,
P"(0) is bounded, and the Julia set is connected. Consequently, the Mandelbrot set consists of
precisely those ¢ such that the Julia set of the conjugacy class of P. is connected.

What is meant by totally disconnected?

Definition 18.6. A set S is totally disconnected in this context means that the connected
components are single points.

The geometry of the Mandelbrot set and its various bits and pieces is therefore closely tied
to the geometry of the Julia and Fatou sets of the conjugacy classes of quadratic polynomials.
It could be interesting to investigate other Mandelbrot inspired type sets. For instance, what
if we replace the conjugacy classes of quadratic polynomials with polynomials of a different
degree? What happens? What if we instead look at such a thing but for conjugacy classes of
rational functions of a certain degree, d? Do you have other ideas for interesting related topics
to investigate? Have fun with it!

18.2. Homework.

(1) Show that any quadratic polynomial can be conjugated to a monic polynomial, 22 +
az + B.

(2) Show that any monic polynomial can be conjugated to move any given point to 0.

(3) Show that conjugating a fixed point to 0 you obtain Az + 22, where X is the multiplier
of the fixed point.

(4) Show that to uniquely determine the conjugacy class of the polynomial, you can move
the critical point to 0, and then the polynomial is of the form P.(z) = 22 + ¢. In this
way different ¢ correspond to different conjugacy classes of quadratic polynomials.

(5) Show that the Hausdorff dimension of the Julia set of the polynomial P.(z) is 2 if ¢ is
on the boundary of the Mandelbrot set.

(6) * For small values of ¢, consider a family {f;} of maps of the form z +— e 27z 4 22,
Show that there exists a sequence {t,} such that the Hausdorff dimension d,, of the
Julia set of f;, satisfies

lim sup d, = 2.
n—oo
18.3. Hints. This hint is for exercise # 6. This is actually a pretty recent result contained in
a research article from Heinemann & Stratmann published in 2001. If you get stuck on this
exercise, find their paper and work through the proof. Interestingly, the proof connects IFS
fractals to Julia sets of quadratic polynomials, thereby tying together the main topics of this
course. It seemed like a nice way to wrap things up.
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